Towards Decoding the Nature of Dark Matter at the LHC

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory

NExT Physics meeting RHUL 1st of November 2017

Collaborators & Projects

- L. Panizzi, A. Pukhov, M.Thomas, AB arXiv:**1610.07545**
- D. Barducci, A.Bharucha, W. Porod, V. Sanz, AB arXiv:**1504.02472**
- G. Cacciapaglia, I. Ivanov, F. Rojas, M. Thomas, AB arXiv:1612.00511
- S.Novaes, M. Gregores, P.Mercadante, S. Quazi, S. Moon, S.Santos, T.Tomei, S. Moretti, M.Tomas, L. Panizzi, AB (pheno-exp/CMS) – follow up arXiv:1612.00511
- M.Brede, D. Locke, L.Panizzi, M.Thomas, AB follow up 1610.07545
- E.Bertuzzo, C.Caniu, O.Eboli, G. di Cortona, AB follow up1610.07545
- T. Flacke, B. Jain, P. Schaefers, AB DM from Z' and Top partners, arXiv:1707.07000
- I. Shapiro, M. Thomas, AB Torsion DM, arXiv:**1611.03651**
- I. Ginzburg, D.Locke, A. Freegard, T. Hosken, AB distinguishing DM spin at the ILC

While Higgs Boson Discovery has completed the SM, the SM itself can be viewed itself as a piece of a bigger puzzle since SM is theoretically and empirically incomplete

Why we are so keen to study DM?

Why we are so keen to study DM?

Why we are so keen to study DM?

Alexander Belyaev

Decoding DM at the LHC

Alexander Belyaev

Decoding DM at the LHC

Efficient scattering off nuclei: DM Direct Detection (DD)

Signature from energy deposition from nuclei recoil: LUX, XENON, WARP,

Efficient scattering off nuclei: DM Direct Detection (DD)

Signature from energy deposition from nuclei recoil: LUX, XENON, WARP,

Efficient scattering off nuclei: DM Direct Detection (DD)

Signature from energy deposition from nuclei recoil: LUX, XENON, WARP,

Note: there is no 100%correlation between signatures above. For example, the high rate of annihilation does not always guarantee high rate for DD! **Actually there is a great complementarity in this:**

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we can efficiently determine the nature of DM

Hunting for DM at Colliders

Hunting for DM at Colliders

Hunting for DM at Colliders

Can we test DM properties at the LHC?

- From LHC DM forum (arXiv:1507.00966):
 - "Different spins of Dark Matter particles will typically give similar results..... Thus the choice of Dirac fermion Dark Matter should be sufficient as benchmarks for the upcoming Run-2 searches."
- Let us check the effects of DM spin on Missing transverse momentum (MET) distributions at the LHC:
 - Iet us start with EFT approach first the simplest modelindependent approach:
 - Complete set of DIM5/DIM6 operators involving two SM quarks (gluons) and two DM particles
 - consider spin=0, 1/2, 1 DM
 - mono-jet signature
 - explore LHC discovery potential for scenarios with different DM spins and potential to distinguish these scenarios

Mono-jet diagrams from EFT operators

DIM5/6 operators (spin 0,1/2,1)

Complex scalar DM [†]									
$\frac{\tilde{m}}{\Lambda^2} \phi^{\dagger} \phi \bar{q} q$	[<i>C</i> 1]*								
$\frac{\tilde{m}}{\Lambda^2}\phi^{\dagger}\phi\bar{q}i\gamma^5q$	$[C2]^*$								
$\frac{1}{\Lambda^2} \phi^{\dagger} i \overleftrightarrow{\partial_{\mu}} \phi \bar{q} \gamma^{\mu} q$	[<i>C</i> 3]								
$\frac{1}{\Lambda^2}\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi\bar{q}\gamma^{\mu}\gamma^5q$	[C4]								
$\frac{1}{\Lambda^2} \phi^{\dagger} \phi G^{\mu\nu} G_{\mu\nu}$	[C5]*								
$\frac{\Lambda}{\Lambda^2}\phi^{\dagger}\phi\tilde{G}^{\mu u}G_{\mu u}$	[<i>C</i> 6]*								
Dirac fermion D	M [†]								
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} q$	[D1]*								
$\frac{1}{\Lambda^2} \bar{\chi} i \gamma^5 \chi \bar{q} q$	[D2]*								
$\frac{1}{\sqrt{2}} \bar{\chi} \chi \bar{q} i \gamma^5 q$	[D3]*								
$\frac{\Lambda}{\Lambda^2} \bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q$	[D4]*								
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$	[D5]								
$\frac{\Lambda}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} q$	[D6]								
$\frac{\Lambda^{-}}{\Lambda^{2}} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} \gamma^{5} q$	[D7]								
$\frac{\Lambda^2}{\Lambda^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$	[D8]								
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	[D9]*								
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} i \gamma^5 \chi \bar{q} \sigma_{\mu\nu} q$	[D10]*								

Complex vector DM [‡]	
$\frac{\tilde{m}}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \bar{q} q$	[V1]*
$rac{ ilde{m}}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} ar{q} q \ rac{ ilde{m}}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} ar{q} i \gamma^5 q$	[V2]*
$\frac{1}{2} (V^{\dagger} \partial_{\mu} V^{\nu} - V^{\nu} \partial_{\mu} V^{\dagger}) \bar{a} \gamma^{\mu} a$	[V3]
$\frac{2\Lambda^2}{\frac{1}{2\Lambda^2}} (V^{\dagger}_{\nu}\partial_{\mu}V^{\nu} - V^{\nu}\partial_{\mu}V^{\dagger}_{\nu})\bar{q}i\gamma^{\mu}\gamma^5 q$ $\frac{\bar{m}}{\Lambda^2} V^{\dagger}_{\mu}V_{\nu}\bar{q}i\sigma^{\mu\nu}q$	[V4]
$\frac{2}{\tilde{m}} V^{\dagger}_{\mu} V_{\nu} \bar{q} i \sigma^{\mu\nu} q$	[V5]
$\frac{1}{m} \frac{1}{2} V^{\dagger}_{\mu} V_{\nu} \bar{q} \sigma^{\mu\nu} \gamma^5 q$	[V6]
$\frac{1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} q$	[V7P]
$\frac{\frac{2\Lambda}{2\Lambda^2}}{2\Lambda^2} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}i\gamma^{\mu}q$	[V7M]
$\frac{\frac{2\Lambda}{2\Lambda^2}}{2\Lambda^2} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} + V^{\nu}\partial^{\nu}V^{\dagger}_{\mu})\bar{q}\gamma^{\mu}\gamma^5 q$	[V8P]
$\frac{\frac{2}{1}}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V8M]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}q$	[V9P]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu}) \bar{q} i \gamma_{\mu} q$	[V9M]
$\frac{1}{2\lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V^{\dagger}_{\sigma})\bar{q}\gamma_{\mu}\gamma^5 q$	[V10P]
$\frac{1}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial^{\nu}V_{\mu} - V^{\nu}\partial^{\nu}V^{\dagger}_{\mu}) \bar{q} i\gamma_{\mu}\gamma^5 q$	[V10M]
$\frac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} G^{ ho\sigma} G_{ ho\sigma}$	$[V11]^*$
$rac{1}{\Lambda^2} V^{\dagger}_{\mu} V^{\mu} \tilde{G}^{ ho\sigma} G_{ ho\sigma}$	$[V12]^*$

* operators applicable to real DM fields, modulo a factor 1/2

[†]Listed in J. Goodman *et al.*, *Constraints on Dark Matter from Colliders*, Phys.Rev. **D82** (2010) 116010, [arXiv:1008.1783]

[‡] All but V11 and V12 listed in Kumar *et al.*, *Vector dark matter at the LHC*, Phys. Rev. **D92** (2015) 095027, [arXiv:1508.04466]

Decoding DM at the LHC

Mapping EFT operators to simplified models

Properties of MET distributions:

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

Distinguishing DM operators/theories

- energy dependence of the DM operator $\rightarrow M_{DMDM}$ distributions \rightarrow slopes of MET
- projection for 300 fb⁻¹: some operators C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 can be distinguished from each other
- Application beyond EFT: when the DM mediator is not produced on-the-mass-shell and M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}

Absolute values of the cross sections provide an additional information to distinguish EFT operators

LHC@13TeV reach at 3.2 fb⁻¹

LanHEP → CalcHEP / Madgraph → LHE → CheckMATE 2 chain

LHC@13TeV reach projected 100 fb⁻¹

LanHEP → CalcHEP / Madgraph → LHE → CheckMATE 2 chain

LHC@13TeV Reach for spin 0 and $\frac{1}{2}$ DM

			Exclude	d Λ (GeV) :	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 $\rm fb^{-1}$				
	Operators	Coefficient	$10 \mathrm{GeV}$	DM Mass 100 GeV	$1000 { m GeV}$	$10 {\rm GeV}$	DM Mass 100 GeV	1000 GeV		
	C1 4 C2	1 / 4	 							
× V	C1 & C2	$1/\Lambda$	456	424	98	1168	1115	267		
Complex calar DN	C3 & C4	$1/\Lambda^2$	750	746	400	1134	1131	662		
Complex Scalar DM	C5 & C6	$1/\Lambda^2$	1621	1576	850	2656	2611	1398		
	D1 & D3	$1/\Lambda^2$	931	940	522	1386	1405	861		
	D2 & D4	$1/\Lambda^2$	952	936	620	1426	1399	1022		
M	D1T & D4T	$1/\Lambda^2$	735	729	476	1217	1199	780		
Fermion DM	D2T	$1/\Lambda^2$	637	638	407	1053	1052	670		
rmic	D3T	$1/\Lambda^2$	586	625	391	969	938	644		
c Fe	D5 & D7	$1/\Lambda^2$	1058	967	721	1580	1591	1190		
Dirac	D6 & D8	$1/\Lambda^2$	978	1050	579	1608	1585	955		
	D9 & D10	$1/\Lambda^2$	1587	1592	958	2613	2619	1580		

LHC@13TeV Reach for spin 1 DM

			Exclude	d Λ (GeV) a	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹				
	Operators	Coefficient		DM Mass	5	DM Mass				
			$10~{\rm GeV}$	$100 { m GeV}$	$1000~{\rm GeV}$	$10~{\rm GeV}$	$100~{\rm GeV}$	$1000~{\rm GeV}$		
	V1 & V2	M_{DM}^2/Λ_D^3	831	833	714	1162	1161	997		
	V3 & V4	M_{DM}^2/Λ_D^4	930	931	833	1196	1193	1070		
	V5 & V6	M_{DM}^2/Λ_D^3	784	791	711	1095	1104	993		
DM	V7M & V8M	M_{DM}^2/Λ_D^4	930	926	882	1195	1193	1130		
Vector	V7P & V8P	M_{DM}/Λ_D^3	796	791	652	1112	1102	911		
	V9M & V10M	M_{DM}/Λ_D^3	796	799	737	1109	1114	1027		
Complex	V9P & V10P	M_{DM}/Λ_D^3	794	782	609	1110	1089	850		
Con	V11 & V11A	M_{DM}^2/Λ_D^4	1435	1442	1309	1844	1850	1683		

Distinguishing DM operators

energy dependence of the operator $\rightarrow M_{DMDM}$ shape $\rightarrow MET$ shape

On the BG uncertainty

• The BG is statistically driven, e.g. pp-> Zj \rightarrow nnj BG is defined from the pp \rightarrow Zj \rightarrow I⁺I⁻j one

CMS-PAS-EXO-16-013

E ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell\nu)$ +jets	Total	Total	Data
GeV)			(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	1.6 ± 0.1	1.6 ± 0.6	3

On the BG uncertainty

δΒ/Β

- The BG is statistically driven, e.g. pp-> Zj \rightarrow nnj BG is defined from the pp \rightarrow Zj \rightarrow l⁺l⁻j one
- For the high enough statistics the BG error can be as low as 1%, but not much lower than this!
- Once ~ 1% dBG is reached (we assume as a floor), the increase of luminosity does not improve LHC sensitivity: the BG uncertainty linearly grows with luminosity together with signal
- at about 300 fb⁻¹ such saturation is reached for all operators for current LHC cuts

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^{2} = \min_{\kappa} \sum_{i=3}^{7} [(\frac{1}{2}N_{i}^{k} - \kappa \cdot N_{i}^{l})/(10^{-2}BG_{i})]^{2} \quad : \text{if } \chi^{2} > 9.48 \text{ (95\%CL for 4 DOF)} - \text{operators can be distinguished!}$$

			mplex S	I.		Dirac Fermion DM					
		100 C1	GeV C5	1000 C1	${ m GeV} { m C5}$	100 D1	GeV D9	1000 D1	GeV D9		
Complex Scalar	$100 \ { m GeV}$	C1 0.0 C5 15.74	19.7 0.0	25.54 0.37	$\begin{array}{c} 74.63\\ 16.25\end{array}$	11.73 1.11	41.79 3.93	25.78 0.74	52.58 7.35		
DM	1000 GeV	C1 19.89 C5 50.86	0.36 13.86	0.0 10.34	11.82 0.0	2.33 21.03	$2.09 \\ 3.7$	0.27 11.18	$4.58 \\ 1.53$		
Dirac Fermion DM	$\frac{100}{\mathrm{GeV}}$	D1 9.88 D9 30.49	$1.17 \\ 3.59$	$2.52 \\ 1.96$	25.99 3.96	$0.0 \\ 7.99$	$\begin{array}{c} 9.23 \\ 0.0 \end{array}$	$2.4 \\ 2.71$	14.17 0.52		
	1000 GeV	D1 20.31 D9 37.38	$\begin{array}{c} 0.73 \\ 6.54 \end{array}$	$0.27 \\ 4.18$	12.92 1.6	2.25 11.96	$2.93 \\ 0.5$	$\begin{array}{c} 0.0\\ 4.89\end{array}$	5.42 0.0		

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^{7} \left[\left(\frac{1}{2}N_i^k - \kappa \cdot N_i^l\right) / (10^{-2}BG_i) \right]^2$$

: if $\chi^2 > 9.48$ (95%CL for 4 DOF) – operators can be distinguished!

			Complex Scalar DM			D	irac Fer	Dirac Fermion DM				Complex Vector DM						
		ļ	$100 { m GeV}$		1000	$1000 { m ~GeV}$		$100 {\rm GeV}$		$1000 { m GeV}$		$100 {\rm GeV}$				$1000 {\rm GeV}$		
			C1	C5	C1	C5	D1	D9	D1	D9	V1	V3	V5	V11	V1	V3	V5	V11
Complex Scalar	$100 \\ GeV$	C1 C5	0.0 15.74	19.7 0.0	25.54 0.37	$\begin{array}{c} 74.63 \\ 16.25 \end{array}$	11	41.79 3.93	25.78 0.74	52.58 7.35	22.97 0.18	32.89 1.53	54.35 8.2	$\begin{array}{c} 73.34 \\ 15.73 \end{array}$		34.61 1.9	52.34 7.24	$\begin{array}{c} 80.85\\ 19.13\end{array}$
DM	1000 GeV	C1 C5	$19.89 \\ 50.86$	0.36 13.86	0.0 10.34	$\begin{array}{c} 11.82 \\ 0.0 \end{array}$	2.33 21.03	2.09 3.7	0.27 11.18	$4.58 \\ 1.53$	0.06 11.57	$0.45 \\ 6.82$	$5.29 \\ 1.26$	11.41 0.01	0.06 10.84	$0.68 \\ 6.1$	$4.42 \\ 1.61$	14.36 0.14
Dirac Fermion	$100 \\ \mathrm{GeV}$	D1 D9	9.88 30.49	$1.17 \\ 3.59$	2.52 1.96	25.99 3.96	0.0 7.99	$9.23 \\ 0.0$	$\begin{array}{c c} 2.4\\ 2.71 \end{array}$	$\begin{array}{c} 14.17 \\ 0.52 \end{array}$	1.85 2.49	$5.09 \\ 0.62$	15.34 0.73	25.37 3.69	2.29 2.31	$5.85 \\ 0.39$	13.85 0.56	29.81 5.36
DM	$1000 ext{GeV}$	D1 D9	20.31 37.38		0.27 4.18	12.92 1.6	2.25 11.96	$2.93 \\ 0.5$	0.0 4.89	$\begin{array}{c} 5.42 \\ 0.0 \end{array}$	0.32 4.98	$0.82 \\ 2.02$	$\begin{array}{c} 6.33 \\ 0.06 \end{array}$	12.58 1.44	$\begin{array}{c} 0.08\\ 4.56\end{array}$	$\begin{array}{c} 1.18\\ 1.61 \end{array}$	$5.08 \\ 0.04$	15.7 2.55
	100 GeV	V3 V5	$\begin{array}{c} 18.06 \\ 24.86 \\ 38.36 \\ 50.03 \end{array}$	$1.45 \\ 7.24$	0.06 0.44 4.79 10.0	13.34 7.57 1.3 0.01	1.72 4.57 12.86 20.55		0.32 0.79 5.67 10.89	5.5 2.14 0.06 1.39	0.0 0.74 5.61 11.2	$0.77 \\ 0.0 \\ 2.5 \\ 6.54$	$6.25 \\ 2.68 \\ 0.0 \\ 1.11$	12.9 7.25 1.14 0.0	0.1 0.57 5.24 10.52	1.06 0.03 2.04 5.83	5.34 2.04 0.13 1.49	16.03 9.59 2.13 0.16
Complex Vector DM	1000 GeV	V1 V3 V5 V11	19.73 25.96 37.33 54.48	$\begin{array}{c} 1.78 \\ 6.47 \end{array}$	0.06 0.65 4.04 12.42	12.46 6.72 1.68 0.13	2.13 5.21 11.72 23.85		0.08 1.12 4.59 13.43	5.02 1.7 0.04 2.41	0.1 1.01 4.84 13.74	$0.59 \\ 0.03 \\ 1.93 \\ 8.55$	5.83 2.17 0.14 2.03	12.09 6.41 1.55 0.16	0.0 0.85 4.34 13.01	$0.89 \\ 0.0 \\ 1.57 \\ 7.73$	$4.78 \\ 1.65 \\ 0.0 \\ 2.57$	15.14 8.6 2.72 0.0

NEX

Importance of the operator running in the DM DD ↔ Collider interplay

- the connection between physics at high and low energy is crucial to properly explore complementarity collider and non-collider DM experiments
- RGEs for the EFT introduce the mixing between different operators Kopp,Niro,Schwetz,Zupan(2009); Hill, Solon(2012); Frandsen, Haisch, Kahlhoefer, Mertsch, Schmidt-Hoberg (2012); Kopp,Michaels, Smirnov(2014); Crivellin,D'Eramo,Procura(2014);Crivellin, Haisch(2014); Berlin, Robertson,Solon,Zurek(2016); D'Eramo, de Vries, Panci(2016); D'Eramo,Kavanagh, Panci(2016)

$$\mathcal{L} \supset -\frac{J_{DM}^{\mu}J_{SM,\mu}}{\Lambda^2}, \qquad J_{\mu}^{SM} = \sum_{i=1}^{3} \left[c_{Vq}^{(i)}(\Lambda) \overline{q^{(i)}} \gamma_{\mu} q^{(i)} + c_{Aq}^{(i)}(\Lambda) \overline{u^{(i)}} \gamma_{\mu} \gamma_{5} u^{(i)} + \dots \right]$$

let us take, for example, $J^{\mu}_{DM} = c_{V\chi} \overline{\chi} \gamma^{\mu} \chi + c_{A\chi} \overline{\chi} \gamma^{\mu} \gamma_5 \chi$

Once the wilson coefficient are evolved at the low scale, we need to match the low energy parton-level lagrangian with the low energy nucleon one

$$\mathcal{L} \supset -\frac{J_{DM}^{\mu}}{\Lambda^{2}} \left(c_{V}^{(N)} \overline{N} \gamma_{\mu} N + c_{A}^{(N)} \overline{N} \gamma_{\mu} \gamma_{5} N \right) \quad \text{and} \quad \sigma_{SI}^{N} = \frac{\mu_{N}^{2}}{\pi} \frac{(c_{V\chi} c_{V}^{(N)})^{2}}{\Lambda^{4}}$$

where
$$\mu_{N} = m_{\chi} m_{N} / (m_{\chi} + m_{N})$$

(1 7)

Importance of the operator running in the DM DD ↔ Collider interplay

In case of axial operators, e.g

 $c_A^{(q)} c_\chi \overline{\chi} \gamma^\mu \chi \overline{q} \gamma_\mu \gamma_5 q \qquad (D7) \qquad \text{or} \qquad c_A^{(q)} c_\phi \phi^\dagger \overleftrightarrow{\partial}_\mu \phi \overline{q} \gamma^\mu \gamma_5 q \qquad (C4)$

couplings $\mathbf{c_v}^{(q)}$ arise due to the running of the wilson coeffcient $\mathbf{c_A}^{(q)}$ leading to sizable constraints on the DM DD constraints

 One can use runDM program (github.com/bradkav/runDM) by F. D'Eramo, B. J. Kavanagh & P. Panci

 $c_A^{(u)}, c_A^{(d)}, c_V^{(u)}, c_V^{(d)} = (1,1,0,0)[5\text{TeV}] \rightarrow (1.1, 1.1, 0.04, -0.07)[1\text{GeV}]$

Importance of the operator running in the DM DD ↔ Collider interplay

In case of axial operators, e.g

 $c_{A}^{(q)}c_{\chi}\overline{\chi}\gamma^{\mu}\chi\overline{q}\gamma_{\mu}\gamma_{5}q$ (D7) or $c_{A}^{(q)}c_{\phi}\phi^{\dagger}\overleftrightarrow{\partial}_{\mu}\phi\overline{q}\gamma^{\mu}\gamma_{5}q$ (C4) couplings $\mathbf{c}_{v}^{(q)}$ arise due to the running of the wilson coeffcient $\mathbf{c}_{A}^{(q)}$ leading to sizable constraints on the DM DD constraints

 One can use runDM program (github.com/bradkav/runDM) by F. D'Eramo, B. J. Kavanagh & P. Panci

Beyond EFT: SUSY

There is no limit on the LSP mass if the mass of strongly interacting SUSY particles above ~ 1.9 TeV

Susy Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature
- The only way to probe CHS is a mono-jet signature

 ["Where the Sidewalk Ends? ..." Alves, Izaguirre, Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13;
 Han, Kribs, Martin, Menon '14

Susy Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature
- The only way to probe CHS is a mono-jet signature

 ["Where the Sidewalk Ends? ..." Alves, Izaguirre, Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13;
 Han, Kribs, Martin, Menon '14

Susy Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for any leptonic signature
- The only way to probe CHS is a mono-jet signature

 ["Where the Sidewalk Ends? ..." Alves, Izaguirre, Wacker '11],
 which has been used in studies on compressed SUSY spectra, e.g.
 Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13;
 Han, Kribs, Martin, Menon '14

Signal vs Background

but the difference in shapes is difference in rates encouraging, especially for large DM is pessimistic ... mass \rightarrow biger M(DM,DM) \rightarrow flatter MET $pp \rightarrow vvj vs. pp \rightarrow \chi\chi j$ pp->vvj vs. pp->yyj Background events/bin Background u=93 GeV • u=93 GeV S and BG 10 u=500 GeV u=500 GeV number of events for 10-2 100 fb⁻¹ 10-3 10^{3} 10-4 10² 10⁻⁵ 10 10⁻⁶ 10-7 normalised signal and Z 10-1 10⁻⁸ background distributions 10-2 10⁻³ 10⁻⁹ ō 2000 Ω 200 2001600 2000 (GeV)

Signal and Zj background parton-level $p_{\tau}^{\ j}$ distributions for the 13 TeV LHC

LHC/DM direct detection sensitivity

Barducci, Bharucha, Porod, Sanz, AB JHEP 1507 (2015) 066, arXiv:1504.02472

- SUSY DM, can be around the corner (~100 GeV), but it is hard to detect it!
- Great complementarity of DD and LHC for small DM (NSUSY) region

Case of inert 2 Higgs Doublet Model (i2HDM): consistent model with scalar DM

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} \qquad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+\\ h_1+ih_2 \end{pmatrix}$$

$$V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \frac{\lambda_5}{2} \left[(\phi_1^{\dagger}\phi_2)^2 + (\phi_2^{\dagger}\phi_1)^2 \right]$$

Case of inert 2 Higgs Doublet Model (i2HDM): consistent model with scalar DM

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} \qquad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+\\ h_1+ih_2 \end{pmatrix}$$

$$V = -m_1^2 (\phi_1^{\dagger} \phi_1) - m_2^2 (\phi_2^{\dagger} \phi_2) + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \lambda_2 (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_2^{\dagger} \phi_1) (\phi_1^{\dagger} \phi_2) + \frac{\lambda_5}{2} \left[(\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_1)^2 \right]$$

LHC reach for I2HDM with mono-jet signature

LHC is sensitive only to low DM masses – similar BG & signal shapes, poor improvement with luminosity increase

Beyond the mono-jet signature

Example of the vector resonance in the Composite Higgs model: $Z' \rightarrow TT \rightarrow t \ t \ DM \ DM \ signature$

Complementarity of LHC and non-LHC DM searches

for the model with Vector Resonances, Top Partners and Scalar DM $TT \rightarrow t t DM DM$

The role of Z' vs QCD for pp \rightarrow TT \rightarrow t t DM DM

LHC is probing now DM and top partner masses up to about 0.9 and 1.5 TeV respectively: above bounds from QCD production alone by ~ factor of two!

Decoding the nature of DM at the ILC

muon spectrum from the models with scalar and fermion DM

e+e- \rightarrow D+ D- \rightarrow DM DM W+ W- \rightarrow DM DM jj $\mu\,\nu$

$\textbf{Data} \rightarrow \textbf{Theory link}$

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 to make the first step towards this: hepmdb.soton.ac.uk/phenodata
 - recently has got a status of the permanent server at Southampton
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - users can upload their own model and perform simulation became a very attractive feature for all range of researchers
 - no database of signatures yet (is under development) you input could play and important role
- As a HEPMDB spin-off the PhenoData project was created hepmdb.soton.ac.uk/phenodata (thanks to Dan Locke and James Blandford)
 - stores data (digitized curves from figures, tables etc) from those HEP papers which did not provide data in arXiv or HEPData, and to avoid duplication of work of HEP researchers on digitizing plots.
 - has an easy search interface and paper identification via arXiv, DOI or preprint numbers. PhenoData is not intended to be a replication of any existing archive

Summary

- Different DM spin → different energy dependence of the DM component of the EFT operator, different M_{DMDM} distributions → different MET distributions: thus the MET is related to the DM spin andrespective operator and can characterise it
- At the LHC from 300 fb⁻¹ it is possible to distinguish several classes of operators, all models are public at HEPMDB https://hepmdb.soton.ac.uk/
- The strategy on distinguishing EFT DM operators is generically applicable beyond EFT, when the DM mediator is not produced on-the-mass-shell -M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}
- We should explore more signatures and models to prepare more complete framework on decoding LHC signatures
- ILC is very complementary to the LHC in exploration of DM properties

Thank you!

Backup Slides

Parametrisation of the Vector DM operators

- The cross section for $qq(gg) \rightarrow DM DM$ process with a power of the energy asymptotic power, Δ_s takes a form: $\sigma_{2\rightarrow 2} \propto \frac{1}{\Lambda^2} \times \left(\frac{E}{\Lambda}\right)^{\Delta_{\sigma}}$
- On the other hand, from EFT operator we have: $\sigma_{2\to 2} \propto \frac{1}{E^2} \times \left(\frac{E^{D-4}}{\Lambda^{D-4}}\right)^2$ where **D** is the actual energy dimension of the EFT operator
- So, one finds: $\Delta_{\sigma} = 2(D-5) \implies D = \Delta_{\sigma}/2 + 5$
 - Note: D can be different from naive dimension d = 5 or 6
 - consider V7P as an example: $\frac{1}{2\Lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} q$
 - with *d*=6, however for each (allowed) VDM longitudinal polarisation there is an additional (E/M_{DM}) factor, so the actual energy scaling of VDM EFT operator, *D* is different!

Relation of the actual dimension (D) and the naive one (d) for VDM operators

V_{DM} Operator	Λ_d	d	Λ_D	D	$\Delta_{\sigma}(\sigma_{2\to 2} \propto E^{\Delta_{\sigma}})$	Amplitude Enhancement
V1,V2,V5,V6	$\frac{1}{\Lambda}$	5	$\frac{M_{DM}^2}{\Lambda^3}$	7	4	$(E/M_{DM})^2$
V3, V4, V7M, V8M, V11, V12	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}^2}{\Lambda^4}$	8	6	$(E/M_{DM})^2$
V7P,V8P,V9,V10	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}}{\Lambda^3}$	7	4	E/M_{DM}

we suggest a new parametrisation of VDM operators: since the energy E and the collider limit on L are of the same order, it is natural to use an additional M_{DM}/A factor for each power of E/M_{DM} enhancement, so collider limits are not artificially enhanced
[~100 TeV !!! for MDM =1 GeV, see Kumar, Marfatia, Yaylali 1508.04466]
and will be of the same order as limits for other operators

• Dictionary between limits on Λ in different parametrisations:

$$\Lambda_D = \left(\Lambda_d^{d-4} M_{DM}^{D-d}\right)^{\frac{1}{D-4}} \text{ and } \Lambda_d = \left(\Lambda^{D-4} M_{DM}^{d-D}\right)^{\frac{1}{d-4}}$$

i2HDM benchmarks

BM	1	2	3	4	5	6
$M_{h_1} ({\rm GeV})$	55	55	50	70	100	100
M_{h_2} (GeV)	63	63	150	170	105	105
M_{h_+} (GeV)	150	150	200	200	200	200
λ_{345}	$1.0 imes10^{-4}$	0.027	0.015	0.02	1.0	0.002
λ_2	1.0	1.0	1.0	1.0	1.0	1.0
Ωh^2	$9.2 imes 10^{-2}$	$1.5 imes 10^{-2}$	$9.9 imes10^{-2}$	$9.7 imes 10^{-2}$	$1.3 imes 10^{-4}$	$1.7 imes 10^{-3}$
σ_{SI}^p (pb)	1.7×10^{-14}	$1.3 imes 10^{-9}$	4.8×10^{-10}	4.3×10^{-10}	$5.3 imes10^{-7}$	2.1×10^{-12}
R_{SI}^{LUX}	$1.6 imes 10^{-5}$	0.19	0.51	0.37	0.48	$2.5 imes 10^{-5}$
$Br(H \to h_1 h_1)$	$5.2 imes 10^{-6}$	0.27	0.13	0.0	0.0	0.0
σ_{LHC8} (fb)						
h_1h_1j	$5.44 imes 10^{-3}$	288.	134.	$6.05 imes10^{-3}$	1.80	$7.23 imes 10^{-6}$
h_1h_2j	36.7	36.7	6.48	3.90	6.93	6.93
h_1h_1Z	$6.14 imes10^{-2}$	21.4	30.7	12.2	0.101	2.52×10^{-2}
h_1h_1H	$1.70 imes 10^{-4}$	8.98	4.21	$2.19 imes10^{-4}$	0.100	$3.33 imes10^{-7}$
h_1h_2H	$5.35 imes10^{-3}$	$6.31 imes 10^{-3}$	$9.80 imes10^{-3}$	$7.54 imes10^{-3}$	$3.86 imes10^{-2}$	$5.51 imes 10^{-4}$
h_1h_1jj	$2.39 imes10^{-2}$	17.2	8.11	$4.44 imes 10^{-2}$	0.212	$1.62 imes 10^{-2}$
σ_{LHC13} (fb)						
h_1h_1j	$1.67 imes 10^{-2}$	878.	411.	$1.93 imes10^{-2}$	6.25	$2.50 imes 10^{-5}$
h_1h_2j	92.4	92.4	17.8	11.1	19.1	19.1
h_1h_1Z	0.153	46.2	66.9	28.3	0.241	$6.47 imes 10^{-2}$
h_1h_1H	$6.69 imes 10^{-4}$	35.3	16.5	$9.08 imes 10^{-4}$	0.441	1.51×10^{-6}
h_1h_2H	$1.18 imes10^{-2}$	$1.40 imes 10^{-2}$	$2.47 imes 10^{-2}$	$1.99 imes 10^{-2}$	$9.82 imes 10^{-2}$	$1.34 imes 10^{-3}$
h_1h_1jj	0.101	62.7	29.6	0.189	0.904	$7.49 imes10^{-2}$

A Simplified Model with Vector Resonances, Top Partners and Scalar DM

$$\begin{split} \mathcal{L} &= \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_{Z'q} + \mathcal{L}_{Z'\ell} + \mathcal{L}_{Z'Q'} + \mathcal{L}_{\phi Q'} - V_{\phi} \\ \mathcal{L}_{kin} &= -\frac{1}{4} \left(\partial_{\mu} Z'_{\nu} - \partial_{\nu} Z'_{\mu} \right) \left(\partial^{\mu} Z'^{\nu} - \partial_{\nu} Z'^{\mu} \right) + \frac{M_{Z'}^2}{2} Z'_{\mu} Z'^{\mu} \\ &\quad + \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - \frac{m_{\phi}^2}{2} \phi^2 \\ &\quad + \overline{T'_s} \left(i D - M_{T'_s} \right) T'_s + \overline{Q'_d} \left(i D - M_{T'_d} \right) Q'_d \,, \\ \mathcal{L}_{Z'q} &= \lambda_{Z'q\bar{q},L/R} Z'_{\mu} \left(\bar{q}_{L/R} \gamma^{\mu} q_{L/R} \right) \,, \\ \mathcal{L}_{Z'\ell} &= \lambda_{Z'\ell+\ell-,L/R} Z'_{\mu} \left(\bar{\ell}_{L/R} \gamma^{\mu} \ell_{L/R} \right) \,, \\ \mathcal{L}_{Z'Q'} &= \lambda_{Z'T'_s \overline{T'_s,L/R}} Z'_{\mu} \left(\overline{T'_s,L/R} \gamma^{\mu} q_{L/R} \right) \\ &\quad + \lambda_{Z'T'_s \overline{T'_s,L/R}} Z'_{\mu} \left(\overline{T'_d,L/R} \gamma^{\mu} T'_{d,L/R} \right) \\ &\quad + \lambda_{Z'T'_d \overline{T'_d,L/R}} Z'_{\mu} \left(\overline{B'_d,L/R} \gamma^{\mu} B'_{d,L/R} \right) \,, \\ \mathcal{L}_{\phi Q'} &= \left(\lambda_{\phi T'_s t} \phi \, \bar{t}_R \, T'_{s,R} + \lambda_{\phi T'_d t} \phi \, \bar{t}_L \, T'_{d,L} + \lambda_{\phi T'_d t} \phi \, \bar{b}_L \, B'_{d,L} \right) + \text{h.c.} \,, \\ V_{\phi} &= \frac{\lambda_{\phi}}{4!} \phi^4 + \frac{\lambda_{\phi H}}{2} \phi^2 \left(|H|^2 - \frac{v^2}{2} \right) . \end{split}$$

NEX