Nik|het

ATLAS

EXPERIMENT
=xac var
Avect: &N0IRIW
LS -1 C2:47:0¢ CRIT

Drones: Making faster and smarter
decisions with software triggers

Sean Benson, Konstantin Gizdov
IML Workshop 11/04/2018

Loowt 74374700
LU R S
S 0N X001 AL

S Expe m-xuj.-l%&é.f

Carlarosenes '.l'l.l{xl 3543 4821 D
R rsu.oﬁ’k S0 . .

-




Introduction: The size of the problem/opportunity

LHC 2011 RUN (3.5 TeV/beam)

—o— ATLAS 5.583 fb™'
—A— CMS 5.727 fb™!
—o— LHCb 1.196 fb™"

—0— ALICE 4.891 pb™!
al PRELIMINARY

1fo-1 ~ 1012
proton-proton collisions

each bunch crossing produces:
1.5-2.0MB @ ATLAS/CMS
60kB @ LHCb W

(8BMB @ ALICE leading to much s el

. . 1300 1700 1800 1000 2000 2100 2200
lower instantaneous lumi.) Fill number

(genera ted 2011-10-31 01:20 including fill 2267)

Delivered integrated luminosity (fbo™')




Introduction: LHC data acquisition

Wide range of physics goals across experiments.
However, there iIs a common approach to data collection:

Hardware FPGA-based determination of quick-to-access
trigger information, such as calorimeter energy
Software More detailed information, from a more advanced
trigger reconstruction, track finding, particle ID, etc.
Offline Further centralised data reduction using full
poroduction reconstruction and final calibrations
Analysis Final data reduction using our favourite software
selections tools.




Introduction: LHC data acquisition

Wide range of physics goals across experiments.
However, there iIs a common approach to data collection:

Input: 3S0MHZz
trigger .
99 Real time
Typical output: 1-10kHz
trigger
Offline
production

Analysis
selections



Online: Event filter farms
Located close to each
experiment
Mini data-centres consisting of
1000s cores

Offline: WLCG

42 countries

170 computing centres

2 million tasks run every day
750,000 computer cores
400 petabytes on disk anad
400 petabytes on tape

Google sarth
(&
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Introduction: Standard H
mindset

P experimental physicist

Hardware
trigger

make really
basic cuts

understandable
basic info.



Introduction: Standard H
mindset

P experimental physicist

Hardware Software
trigger trigger
make loose
cuts

still do this even though we have
almost all the info we want.
-> understandable, we need to be fast



Introduction: Standard H
mindset

P experimental physicist

Hardware Software Offline data
trigger trigger reduction

drag our heels and
be as loose as possible
(mainly with cuts)



Introduction: Standard H
mindset

P experimental physicist

Hardware Software Offline data Analysis
trigger trigger reduction sel.

Now do something
smart with our favourite
tool

ITMVA

¥ TensorFlow



Overall point

Analysis
sel. When we get to this stage, we

often know what was the
best we could have done

Q-

® TensorFlow
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What was the point of that aside”

There is logic behind such a mindset
- If | keep my options open as long
as possible, then | can make sure | do
the best job possible.

Using final analysis packages earlier requires that they are supported
iNn a specialised “production environment” and using dedicated
computing farms at the detectors

-> |f a new package made, needs to be brought into software
stacks.

But | can already use TMVA in production environments!
True, but 100s of TMVA ANNSs running next to each other is not fast.
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Software triggers

But such production environments are highly specialised because
they need to be.

Requires well behaved code/models that can perform reconstruction
and selections in a time constrained environment.

-> Software triggers need to perform orders of magnitude data
reduction in close to real time.

2 main challenges (summed up in Luke’s talk on Monday):
- Ensuring the model can be evaluated with low latency
- Supporting the technology of tomorrow (serving layer).
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MV methods used now: BBDT - low latency

Efficient, reliable and fast high-level triggering using a bonsai

boosted decision tree - Gligorov & Williams, JINST 8 (2013)
P02013

Central idea: discretise the input features used to create the BDT

Computing result: Evaluation means consulting look-up table
- If/else statements in BDT evaluation -> 1D array

Physics result: Similar performance to normal BDT

type | €1—body
Evaluated on toy model cuts 63%

BDT 77%
BBDT | 74%

separating B from D decays
using pt and IP info.
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MV methods used now: Main

3

3

DT drawback

While it is proven (indeed, a large number of LHCb analyses rely on
its use in the software trigger), the method has a significant

limitation:

- Does not scale with the number of inputs:
- Assuming 10 bins / input, new input increases an array size by

an order of magnitude

- A typical analysis uses 10+ features => quickly run to GB of

lookup table per analysis.

Is there another way”?

15



Looking at the problem another way...

All models used for background
rejection map inputs to
probabillities

If we have a complex multi-layer
model, we can approximate
it to arbitrary precision using
a model that we can make
more suitable to low latency
environments.

Neural Networks

. Volume 4, Issue 2, 1991, Pagas 251-257
ELSEVIER !

Approximation capabilities of multilayer feedforward
nelworks

Kurt Hernik 2
& Show more

hitps://doi.crg/10.1016/0893-5C80(91)30000-T Cet rights and content

Abstract

We show that standard multilayer feedforward networks with as few as & single
hicden layer and arbitrary bounded and nonconstant aclivation function are
unversal approximators with respect to LP(j1) performance criteria, ‘or arbitrary
finite input environmant measuras y, provided only that sufficiently many hidden
units are available. If the activation function is continucus, bounded and
noncenstant, then continucus mappings can be learned unifcrmly over compact
input sets. We alsc give very general conditiors ensuring that networks with
sufficiently smooth activation functions are capable of arbitrarily accurate
aporoximation to a function and its derivaives.
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Construction

Small single hidden
layer, sigmoid
activation

trained network

/

reward drone for giving the

same response update with standard

If convergence, add more degrees SGD

of freedom to the hidden layer
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Events

Putting it into action -

S decay separation

B decay use case -> Separate B->J/Ppo from D->Trrrm

10

1000 2500
Hm signal EEE signal
B background B background
800 A 2000 A
600 A 1500 A
H} H
= C
400 4 1000 A
200 - 500 -
0 [ f
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HEm signal I signal
EEm background 350 Emm background
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min pr

Generate signal and background
from RapidSim - arXiv:1612.07489

Events

5000

4000

3000

2000

1000

Training signal

Test signal Probability Events

Training background Probability Events

Test background Probability Events

IIII|IIII|IIII|IIII|||IC)I|II

: 1
Classifier output probability

train with sk-Learn
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Putting it into action - B decay separation

Train drone from sk-Learn classifier

EE signal
1000 ~ B background
100 4
: 800 -
é YE’ 600 -
2 1071 :>j
g 400 -
107 | 200 - |
(I) 5|0 1(|)0 150 2(|)0 250 3(|)0 0 —0.0I0004 —O.0I0002 0.00000 0.0(50(3 O.OOIOO4
Epoch Approx. difference
300 epochs Result is a drone that for each data
alpha (learning rate): 0.05 point, gives the same value as the

layer extension threshold: 0.05 original



Putting it Into action - Jet separation

Generate jets using Pythia + Fastdet 2 800
Signal: JetS prOdUCGd iﬂ aSSOCiatiOﬂ W|th W i 700[— Test signal Probability Events
Backgrouﬂd: QCD jets 600%— Training background Probability Events
500 -:_ Test background Probability Events
4oof—
Train sk-Learn MLP: 200k
relu activation, 3 hidden layers soof-
100; ¥-v~
O;~;ﬁ%ﬁ%%gg9@@Q£&&¢@@ﬁﬁ@£&fﬁ%%m%@%%ﬁ%*fﬁﬁ**?¥fi BOA
0 0.2 0.4 0.6 0.8 1
Classifier output probability
v 107! 7
S o] No real change to the drone creation
£ procedure
1073 B
0 200 400 600 800 1000

Epoch



Performance In detall

True measure of performance is found from the ROC curve: Signal eff. vs. background

Signal efficiency

rejection

1.0 -
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0.4 0.6
Background rejection

0.8

1.0

Shown are the ROC curves of the
original sk-learn classifier (red) vs:

- drone 100 epochs

- drone 500 epochs

- drone 1000 epochs

- drone 1500 epochs

Conclusion: we can train an
approximation network with same
performance but simpler structure
than the original network
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Testing further: Convolutional NN

Take our B and D data before.

Make a more advanced Keras network:

Single hidden layer drone,
same algorithm as previously
described

1.0 A

0.8 1

o
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Signal efficiency

0.2

0.0 1

0.0 0.2 0.4 0.6 0.8
Background rejection

mode L

model.

mode L.

mode l.

model.

mode L.

= Sequential()

add(LocallyConnected1D( =
= = 'sigmoid'
= )))

add (GlobalMaxPoolingl1D())

add (Dense ( = 'sigmoid'))

add (Dense ( = 'sigmoid"'))

compile( = 'adam' =

‘binary_crossentropy' = ['accuracy'])

ROC curves show identical
performance
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Remarks

Drone never sees any data or labels, only asks the original model
what it thought of a point in the parameter space
=> |_earns from other models, not from the data

Analysts have complete freedom to design original networks,
standardisation means all can be ported to the low latency

environment

No need to re-invent the wheel:
Keras already provides the C++ to use in production environments

LWTNN gives convenient saving and loading
- ONNX conversion makes life even easier.

Caffe % DL4J I ENTK

Chainer Ceepleaning$ KERAS

MINERVA ~ mxnel % ® theano 3 *torch
23



Single algorithm, multiple classification, ubiguitous
(dreaming)

Standard HEP filtering:

Common

/ particles

di-jet/ di-jet/ di-jet/ di-jet/
B-candidate B-candidate B-candidate

|

Distinct Distinct Distinct Distinct
signal signal signal signal
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Single algorithm, multiple classification, ubiguitous
(dreaming)

scikjt , scikit
cam | = TMVA, Q) Ce

NALT Avivavi -
N4 N\ | NI
single drone
multiple outputs

Vsl

R
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Single algorithm, multiple classification, ubiguitous
(dreaming)

Our dream:
Common
particles

|

di-jet/
Single classifying B-candidate

Distinct Distinct Distinct Distinct
signal signal signal signal
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Repo/docs & final remarks

Networks presented here are available in the GitHub repo:
HEPDrone, in addition to:

- Standard drone model

- Converter from original NN to drone

- JSON storage, for loading with LWTNN

Principle explained in: arXiv:1/12.09114

Low latency environments face challenges which potentially restrict the freedom

We have demonstrated the approximation principle that allows our networks to
learn the features of others with no access to the data

Such an extension can be used to not only speed-up the networks of different
packages for use in low latency environments, but also makes use the ability of
networks to provide more than one output classification.

With an analyst able to provide a network for their particular signature of
Interest.


https://github.com/Tevien/HEPDrone
https://arxiv.org/abs/1712.09114

