
Drones: Making faster and smarter
decisions with software triggers
Sean Benson, Konstantin Gizdov
IML Workshop 11/04/2018

Introduction: The size of the problem/opportunity

1fb-1 ~ 1012
proton-proton collisions

each bunch crossing produces:
• 1.5-2.0MB @ ATLAS/CMS
• 60kB @ LHCb
(8MB @ ALICE leading to much
lower instantaneous lumi.)

Introduction: LHC data acquisition

Wide range of physics goals across experiments.
However, there is a common approach to data collection:

Hardware
trigger

FPGA-based determination of quick-to-access
information, such as calorimeter energy

Software
trigger

Offline
production

Analysis
selections

More detailed information, from a more advanced
reconstruction, track finding, particle ID, etc.

Further centralised data reduction using full
reconstruction and final calibrations

Final data reduction using our favourite software
tools.

Introduction: LHC data acquisition

Wide range of physics goals across experiments.
However, there is a common approach to data collection:

Hardware
trigger

Input: 30MHz

Software
trigger

Offline
production

Analysis
selections

Typical output: 1-10kHz

Real time

Introduction: Computing for the LHC

Offline: WLCG
• 42 countries
• 170 computing centres
• 2 million tasks run every day
• 750,000 computer cores
• 400 petabytes on disk and

400 petabytes on tape

Online: Event filter farms
• Located close to each

experiment
• Mini data-centres consisting of

1000s cores

Tangent: Standard HEP experimental physicist
mindset

Introduction: Standard HEP experimental physicist
mindset

�7

Hardware
trigger

make really
basic cuts

understandable
basic info.

Introduction: Standard HEP experimental physicist
mindset

�8

Hardware
trigger

Software
trigger

make loose
cuts

still do this even though we have
almost all the info we want.

-> understandable, we need to be fast

Introduction: Standard HEP experimental physicist
mindset

�9

Hardware
trigger

Software
trigger

Offline data
reduction

drag our heels and
be as loose as possible

(mainly with cuts)

Introduction: Standard HEP experimental physicist
mindset

�10

Analysis
sel.

Hardware
trigger

Software
trigger

Offline data
reduction

Now do something
smart with our favourite

tool

Overall point

�11

Analysis
sel. When we get to this stage, we

often know what was the
best we could have done

What was the point of that aside?

�12

There is logic behind such a mindset
 - if I keep my options open as long
as possible, then I can make sure I do
the best job possible.

Using final analysis packages earlier requires that they are supported
in a specialised “production environment” and using dedicated
computing farms at the detectors

-> If a new package made, needs to be brought into software
stacks.

But I can already use TMVA in production environments!
True, but 100s of TMVA ANNs running next to each other is not fast.

Software triggers

�13

But such production environments are highly specialised because
they need to be.

Requires well behaved code/models that can perform reconstruction
and selections in a time constrained environment.

-> Software triggers need to perform orders of magnitude data
reduction in close to real time.

2 main challenges (summed up in Luke’s talk on Monday):
• Ensuring the model can be evaluated with low latency
• Supporting the technology of tomorrow (serving layer).

MV methods used now: BBDT - low latency

�14

Efficient, reliable and fast high-level triggering using a bonsai
boosted decision tree - Gligorov & Williams, JINST 8 (2013)
P02013

Central idea: discretise the input features used to create the BDT

Computing result: Evaluation means consulting look-up table
- If/else statements in BDT evaluation -> 1D array

Physics result: Similar performance to normal BDT

Figure 2. Discriminating variable distributions for the backgrounds. From left to right : pure combinatorial,
ghost background, prompt charm.

Table 1. Performance on the toy model data of a cut-based, BDT-based and BBDT-based HLT algorithm.
en�body are the efficiencies on the n-body signals. The instability is the increase in the rate under the imper-
fect online conditions (see text for details).

type e4�body e5�body instability
cuts 63% 55% 9%
BDT 77% 68% 55%

BBDT 74% 69% 10%

rate does; however, the BBDT rate is very close to the cut-based one. For an experiment with
this level of possible instability online, the BDT performance here is unacceptable. Of course, if
one knew how much instability to expect the training data could just be smeared to account for it.
Unfortunately, online instabilities often fall into the category of Rumsfeldian uncertainties. They
are expected to occur but where and by how much is unknown; thus, it is very difficult to produce
training samples that guard against all possible online instabilities. This section demonstrates that
the BBDT is almost as stable as cuts while being almost as efficient as a BDT. This makes it ideal
for an HLT algorithm.

This BBDT had 10 allowed split points per variable. The smallest allowed keep region that
could be defined was 5s wide (in the lowest region of IP). In general, more allowed split points
gives higher efficiency but also introduces more sensitivity to online instabilities. When defining
the allowed split points, the grower of the BBDT has total control over the size of the smallest
possible keep regions that can be defined. Typically, it is possible to define the split points such
that online instabilities will not be an issue without the need for complicated simulation studies.

4. Performance at LHCb

The performance of the BBDT algorithm as actually deployed in the LHCb experiment is described

– 7 –

Evaluated on toy model
separating B from D decays

using pT and IP info.

MV methods used now: Main BBDT drawback

�15

While it is proven (indeed, a large number of LHCb analyses rely on
its use in the software trigger), the method has a significant
limitation:

• Does not scale with the number of inputs:
• Assuming 10 bins / input, new input increases an array size by

an order of magnitude.
• A typical analysis uses 10+ features => quickly run to GB of

lookup table per analysis.

Is there another way?

Looking at the problem another way…

�16

All models used for background
rejection map inputs to
probabilities

If we have a complex multi-layer
model, we can approximate
it to arbitrary precision using
a model that we can make
more suitable to low latency
environments.

Construction

�17

Vanilla network
The model is made to approximate the original classifier

through a supervised learning technique, though not in the tradi-
tional sense. Instead of a label as signal or background taken
from the training data, the output of the original classifier is used
as a label. This means that the loss function is defined as

L =
X

i

�
F(~xi) �Gi(~xi)

�2 , (1)

where F(~xi) and G(~xi) are the outputs of the original and drone
models on datapoint i of the mini-batch, respectively. The ad-
vantage of such a loss function is per-event equivalence of the
original and drone model, in addition to equivalence of perfor-
mance. For the drone training detailed in this article, standard
mini-batch stochastic gradient descent is used. A feature of this
method is that the drone classifier does not see any training data,
but rather learns the same properties from the original classifier,
and thus is a neural network that learns from another neural
network in an empirical manner.

2.2. Model morphing during the learning phase
In order to keep the hyperparameter space to the minimum

required level, additional degrees of freedom are added only
when required. This removes the possibility of choosing an
incorrect size of the drone network. During the learning phase,
the following conditions are required to trigger the extension of
the hidden layer in the jth epoch:

� ⌘ (L j �L j�1)/L j < , (2)

L j < L̂ � �L j, (3)

where  is the required threshold and L̂ is the value of the loss
function when the hidden layer was last extended.

When the conditions in eqs. 2 and 3 are met, the linear model
is updated to extend the weights matrices and bias vectors to
accommodate the layer addition. The associated neurons are
initialised with a zero weight to ensure continuity of the loss
function value.

3. High energy physics application

3.1. Data sample
In order to demonstrate the functionality of the toolkit, data

samples generated from the RapidSim package [12] are used.
The interesting signal is chosen to be the B0

s ! J/ (! µµ)�(!
KK) decay, and the background is the D0 ! ⇡⇡⇡⇡ decay. A
total of 10000 candidates is generated for each decay.

3.2. Training of the original classifier
The machine learning classifier chosen is the Multi-layer

perceptron of SciKit-Learn, which is constructed as

classifier = MLPClassifier(activation=’relu’,
batch_size=’auto’, beta_1=0.9, beta_2=0.999,
early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(3, 3),
learning_rate=’constant’,

learning_rate_init=0.001, max_iter=200,
nesterovs_momentum=True, power_t=0.5,
random_state=1, shuffle=True,
solver=’lbfgs’, tol=0.0001, momentum=0.9,
validation_fraction=0.1, verbose=False,
warm_start=False, alpha=1e-05)

The neural network is trained using kinematical properties
of the respective decays. These include the pseudorapidity, ⌘,
and momentum transverse to the direction of the input proton
beams, pT, of the decaying particle. In addition, the minimum
and maximum pT and ⌘ of the final state particles is used. The
signal and background distributions of the input variables are
shown in Fig. 1.

In the training of the original classifier, half of the data is
reserved in order to test for overtraining. The output probability
distributions of the signal and background samples after the
training are shown in Fig. 2. It can be seen that the test and
training samples are in good agreement, showing that the original
SciKit-Learn classifier is not significantly overtrained.

3.3. Drone conversion
The drone neural network is trained following the procedure

outlined in Sec. 2, In total, 300 epochs are used with the learning
rate of the stochastic gradient descent set to 0.05. The value of 
is chosen to be 0.02.

The loss history of the training is shown in Fig. 3 as a function
of epoch number. The convergence is also shown in Fig. 4, which
shows the di↵erence in the value of the loss function with respect
to the previous epoch. The epochs that triggered an increase in
the number of hyperparameters are also overlaid. In total in this
example, an increase was triggered 104 times. The total number
of parameters in the final drone neural network is therefore 3233.
It is interesting to note that with the algorithm design of Sec. 2,
the introduction of the new parameter space causes the drone
network to learn faster, as evidenced by increases in Fig. 4 with
continuing descent of the loss function.

3.4. Drone storage and transferability
The hyperparameters and structure of the drone are required

to be portable and easily stored for later usage. For this the JSON
format was chosen as mediator. It is human-readable and easily
accessible in the Python and C++ environments commonly used
in HEP. Thus, it is readily deployable in both personal and
production environments.

Provided is a tool to export and save a drone neural network
to a JSON formatted file which preserves the input & output
structure, the layers and nodes, all hyperparameters and activa-
tion functions. The drone configuration is later read in by an
equivalent tool into the production software framework, which
then constructs a class object based on the Keras model. The
C++ class implements a flexible member structure that is capable
of completely reproducing the original drone. The production
implementation may be used for all data reduction levels, be it
in the form of the LHCb high level trigger for example up to
the latest stages of data handling and output. This allows for
the drones to be applied using a wide range of observables and
event reconstruction properties.

2

Small single hidden
layer, sigmoid
activationtrained network

The model is made to approximate the original classifier
through a supervised learning technique, though not in the tradi-
tional sense. Instead of a label as signal or background taken
from the training data, the output of the original classifier is used
as a label. This means that the loss function is defined as

L =
X

i

�
F(~xi) �Gi(~xi)

�2 , (1)

where F(~xi) and G(~xi) are the outputs of the original and drone
models on datapoint i of the mini-batch, respectively. The ad-
vantage of such a loss function is per-event equivalence of the
original and drone model, in addition to equivalence of perfor-
mance. For the drone training detailed in this article, standard
mini-batch stochastic gradient descent is used. A feature of this
method is that the drone classifier does not see any training data,
but rather learns the same properties from the original classifier,
and thus is a neural network that learns from another neural
network in an empirical manner.

2.2. Model morphing during the learning phase
In order to keep the hyperparameter space to the minimum

required level, additional degrees of freedom are added only
when required. This removes the possibility of choosing an
incorrect size of the drone network. During the learning phase,
the following conditions are required to trigger the extension of
the hidden layer in the jth epoch:

� ⌘ (L j �L j�1)/L j < , (2)

L j < L̂ � �L j, (3)

where  is the required threshold and L̂ is the value of the loss
function when the hidden layer was last extended.

When the conditions in eqs. 2 and 3 are met, the linear model
is updated to extend the weights matrices and bias vectors to
accommodate the layer addition. The associated neurons are
initialised with a zero weight to ensure continuity of the loss
function value.

3. High energy physics application

3.1. Data sample
In order to demonstrate the functionality of the toolkit, data

samples generated from the RapidSim package [12] are used.
The interesting signal is chosen to be the B0

s ! J/ (! µµ)�(!
KK) decay, and the background is the D0 ! ⇡⇡⇡⇡ decay. A
total of 10000 candidates is generated for each decay.

3.2. Training of the original classifier
The machine learning classifier chosen is the Multi-layer

perceptron of SciKit-Learn, which is constructed as

classifier = MLPClassifier(activation=’relu’,
batch_size=’auto’, beta_1=0.9, beta_2=0.999,
early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(3, 3),
learning_rate=’constant’,

learning_rate_init=0.001, max_iter=200,
nesterovs_momentum=True, power_t=0.5,
random_state=1, shuffle=True,
solver=’lbfgs’, tol=0.0001, momentum=0.9,
validation_fraction=0.1, verbose=False,
warm_start=False, alpha=1e-05)

The neural network is trained using kinematical properties
of the respective decays. These include the pseudorapidity, ⌘,
and momentum transverse to the direction of the input proton
beams, pT, of the decaying particle. In addition, the minimum
and maximum pT and ⌘ of the final state particles is used. The
signal and background distributions of the input variables are
shown in Fig. 1.

In the training of the original classifier, half of the data is
reserved in order to test for overtraining. The output probability
distributions of the signal and background samples after the
training are shown in Fig. 2. It can be seen that the test and
training samples are in good agreement, showing that the original
SciKit-Learn classifier is not significantly overtrained.

3.3. Drone conversion
The drone neural network is trained following the procedure

outlined in Sec. 2, In total, 300 epochs are used with the learning
rate of the stochastic gradient descent set to 0.05. The value of 
is chosen to be 0.02.

The loss history of the training is shown in Fig. 3 as a function
of epoch number. The convergence is also shown in Fig. 4, which
shows the di↵erence in the value of the loss function with respect
to the previous epoch. The epochs that triggered an increase in
the number of hyperparameters are also overlaid. In total in this
example, an increase was triggered 104 times. The total number
of parameters in the final drone neural network is therefore 3233.
It is interesting to note that with the algorithm design of Sec. 2,
the introduction of the new parameter space causes the drone
network to learn faster, as evidenced by increases in Fig. 4 with
continuing descent of the loss function.

3.4. Drone storage and transferability
The hyperparameters and structure of the drone are required

to be portable and easily stored for later usage. For this the JSON
format was chosen as mediator. It is human-readable and easily
accessible in the Python and C++ environments commonly used
in HEP. Thus, it is readily deployable in both personal and
production environments.

Provided is a tool to export and save a drone neural network
to a JSON formatted file which preserves the input & output
structure, the layers and nodes, all hyperparameters and activa-
tion functions. The drone configuration is later read in by an
equivalent tool into the production software framework, which
then constructs a class object based on the Keras model. The
C++ class implements a flexible member structure that is capable
of completely reproducing the original drone. The production
implementation may be used for all data reduction levels, be it
in the form of the LHCb high level trigger for example up to
the latest stages of data handling and output. This allows for
the drones to be applied using a wide range of observables and
event reconstruction properties.

2

reward drone for giving the
same response

if convergence, add more degrees
of freedom to the hidden layer

update with standard
SGD

Putting it into action - B decay separation

�18

Figure 1: Comparison of the signal and background distributions used to train the SciKit-Learn classifier.

4. Summary

It has been demonstrated that for the case of a high energy
physics event selection application, a drone neural network is
able to accurately approximate and learn the features of a neural
network with a di↵erent structure. The proposed algorithm
design allows the drone to learn the aforementioned features
without ever having access to the training data, or indeed any
data, but only with appropriate questioning of the original model.

The equivalency of the outputs of the drone and original
model enables an analyst to treat both the original and the drone
in the same way. The creation of a drone in a standardised form
permits an analyst to use any desired machine-learning package
to isolate a decay signature, and from this create a classifier
guaranteed to be suitable for execution in the C++ real-time data
selection frameworks.

Acknowledgements

We acknowledge support from the NWO (The Netherlands) and
STFC (United Kingdom). We are indebted to the communities
behind the multiple open source software packages on which we
depend. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 676108.

References

[1] A. A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008)
S08005. doi:10.1088/1748-0221/3/08/S08005.

[2] R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015)
1530022. arXiv:1412.6352, doi:10.1142/S0217751X15300227.

[3] Z. Xu, M. Tobin, Novel real-time alignment and calibration of the LHCb
detector in Run II, Nucl. Instrum. Meth. A824 (2016) 70–71. doi:10.
1016/j.nima.2015.11.040.

[4] R. Aaij, et al., Tesla : an application for real-time data analysis in High
Energy Physics, Comput. Phys. Commun. 208 (2016) 35–42. arXiv:
1604.05596, doi:10.1016/j.cpc.2016.07.022.

[5] A. Hocker, et al., TMVA - Toolkit for Multivariate Data Analysis, PoS
ACAT (2007) 040. arXiv:physics/0703039.

[6] M. Feindt, U. Kerzel, The NeuroBayes neural network package, Nucl.
Instrum. Meth. A559 (2006) 190–194. doi:10.1016/j.nima.2005.
11.166.

[7] F. Pedregosa, et al., Scikit-learn: Machine Learning in Python, J. Machine
Learning Res. 12 (2011) 2825–2830. arXiv:1201.0490.

[8] F. Chollet, et al., Keras, https://github.com/fchollet/keras
(2015).

[9] G. Barrand, et al., GAUDI - A software architecture and framework for
building HEP data processing applications, Comput. Phys. Commun. 140
(2001) 45–55. doi:10.1016/S0010-4655(01)00254-5.

[10] V. V. Gligorov, M. Williams, E�cient, reliable and fast high-level trig-
gering using a bonsai boosted decision tree, JINST 8 (2013) P02013.
arXiv:1210.6861, doi:10.1088/1748-0221/8/02/P02013.

[11] A. Choromanska, M. Hena↵, M. Mathieu, G. B. Arous, Y. LeCun, The
loss surface of multilayer networks, CoRR abs/1412.0233. arXiv:1412.
0233.
URL http://arxiv.org/abs/1412.0233

[12] G. A. Cowan, D. C. Craik, M. D. Needham, RapidSim: an application for
the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.
214 (2017) 239–246. arXiv:1612.07489, doi:10.1016/j.cpc.2017.
01.029.

3

Figure 1: Comparison of the signal and background distributions used to train the SciKit-Learn classifier.

4. Summary

It has been demonstrated that for the case of a high energy
physics event selection application, a drone neural network is
able to accurately approximate and learn the features of a neural
network with a di↵erent structure. The proposed algorithm
design allows the drone to learn the aforementioned features
without ever having access to the training data, or indeed any
data, but only with appropriate questioning of the original model.

The equivalency of the outputs of the drone and original
model enables an analyst to treat both the original and the drone
in the same way. The creation of a drone in a standardised form
permits an analyst to use any desired machine-learning package
to isolate a decay signature, and from this create a classifier
guaranteed to be suitable for execution in the C++ real-time data
selection frameworks.

Acknowledgements

We acknowledge support from the NWO (The Netherlands) and
STFC (United Kingdom). We are indebted to the communities
behind the multiple open source software packages on which we
depend. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 676108.

References

[1] A. A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008)
S08005. doi:10.1088/1748-0221/3/08/S08005.

[2] R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015)
1530022. arXiv:1412.6352, doi:10.1142/S0217751X15300227.

[3] Z. Xu, M. Tobin, Novel real-time alignment and calibration of the LHCb
detector in Run II, Nucl. Instrum. Meth. A824 (2016) 70–71. doi:10.
1016/j.nima.2015.11.040.

[4] R. Aaij, et al., Tesla : an application for real-time data analysis in High
Energy Physics, Comput. Phys. Commun. 208 (2016) 35–42. arXiv:
1604.05596, doi:10.1016/j.cpc.2016.07.022.

[5] A. Hocker, et al., TMVA - Toolkit for Multivariate Data Analysis, PoS
ACAT (2007) 040. arXiv:physics/0703039.

[6] M. Feindt, U. Kerzel, The NeuroBayes neural network package, Nucl.
Instrum. Meth. A559 (2006) 190–194. doi:10.1016/j.nima.2005.
11.166.

[7] F. Pedregosa, et al., Scikit-learn: Machine Learning in Python, J. Machine
Learning Res. 12 (2011) 2825–2830. arXiv:1201.0490.

[8] F. Chollet, et al., Keras, https://github.com/fchollet/keras
(2015).

[9] G. Barrand, et al., GAUDI - A software architecture and framework for
building HEP data processing applications, Comput. Phys. Commun. 140
(2001) 45–55. doi:10.1016/S0010-4655(01)00254-5.

[10] V. V. Gligorov, M. Williams, E�cient, reliable and fast high-level trig-
gering using a bonsai boosted decision tree, JINST 8 (2013) P02013.
arXiv:1210.6861, doi:10.1088/1748-0221/8/02/P02013.

[11] A. Choromanska, M. Hena↵, M. Mathieu, G. B. Arous, Y. LeCun, The
loss surface of multilayer networks, CoRR abs/1412.0233. arXiv:1412.
0233.
URL http://arxiv.org/abs/1412.0233

[12] G. A. Cowan, D. C. Craik, M. D. Needham, RapidSim: an application for
the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.
214 (2017) 239–246. arXiv:1612.07489, doi:10.1016/j.cpc.2017.
01.029.

3

Classifier output probability
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

1000

2000

3000

4000

5000
Training signal

Test signal Probability Events

Training background Probability Events

Test background Probability Events

Figure 2: Output distributions of the signal and background training and test samples from the classifier after training.

Figure 3: Convergence of the loss function during the drone training.

Figure 4: Di↵erence in the loss function with respect to the previous iteration. The green triangles depict the epoch number in which the number of
hyperperameters was increased.

4

B decay use case -> Separate B->J/ψφ from D->ππππ

Generate signal and background
from RapidSim - arXiv:1612.07489

train with sk-Learn

Figure 1: Comparison of the signal and background distributions used to train the SciKit-Learn classifier.

4. Summary

It has been demonstrated that for the case of a high energy
physics event selection application, a drone neural network is
able to accurately approximate and learn the features of a neural
network with a di↵erent structure. The proposed algorithm
design allows the drone to learn the aforementioned features
without ever having access to the training data, or indeed any
data, but only with appropriate questioning of the original model.

The equivalency of the outputs of the drone and original
model enables an analyst to treat both the original and the drone
in the same way. The creation of a drone in a standardised form
permits an analyst to use any desired machine-learning package
to isolate a decay signature, and from this create a classifier
guaranteed to be suitable for execution in the C++ real-time data
selection frameworks.

Acknowledgements

We acknowledge support from the NWO (The Netherlands) and
STFC (United Kingdom). We are indebted to the communities
behind the multiple open source software packages on which we
depend. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 676108.

References

[1] A. A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008)
S08005. doi:10.1088/1748-0221/3/08/S08005.

[2] R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015)
1530022. arXiv:1412.6352, doi:10.1142/S0217751X15300227.

[3] Z. Xu, M. Tobin, Novel real-time alignment and calibration of the LHCb
detector in Run II, Nucl. Instrum. Meth. A824 (2016) 70–71. doi:10.
1016/j.nima.2015.11.040.

[4] R. Aaij, et al., Tesla : an application for real-time data analysis in High
Energy Physics, Comput. Phys. Commun. 208 (2016) 35–42. arXiv:
1604.05596, doi:10.1016/j.cpc.2016.07.022.

[5] A. Hocker, et al., TMVA - Toolkit for Multivariate Data Analysis, PoS
ACAT (2007) 040. arXiv:physics/0703039.

[6] M. Feindt, U. Kerzel, The NeuroBayes neural network package, Nucl.
Instrum. Meth. A559 (2006) 190–194. doi:10.1016/j.nima.2005.
11.166.

[7] F. Pedregosa, et al., Scikit-learn: Machine Learning in Python, J. Machine
Learning Res. 12 (2011) 2825–2830. arXiv:1201.0490.

[8] F. Chollet, et al., Keras, https://github.com/fchollet/keras
(2015).

[9] G. Barrand, et al., GAUDI - A software architecture and framework for
building HEP data processing applications, Comput. Phys. Commun. 140
(2001) 45–55. doi:10.1016/S0010-4655(01)00254-5.

[10] V. V. Gligorov, M. Williams, E�cient, reliable and fast high-level trig-
gering using a bonsai boosted decision tree, JINST 8 (2013) P02013.
arXiv:1210.6861, doi:10.1088/1748-0221/8/02/P02013.

[11] A. Choromanska, M. Hena↵, M. Mathieu, G. B. Arous, Y. LeCun, The
loss surface of multilayer networks, CoRR abs/1412.0233. arXiv:1412.
0233.
URL http://arxiv.org/abs/1412.0233

[12] G. A. Cowan, D. C. Craik, M. D. Needham, RapidSim: an application for
the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.
214 (2017) 239–246. arXiv:1612.07489, doi:10.1016/j.cpc.2017.
01.029.

3

Figure 1: Comparison of the signal and background distributions used to train the SciKit-Learn classifier.

4. Summary

It has been demonstrated that for the case of a high energy
physics event selection application, a drone neural network is
able to accurately approximate and learn the features of a neural
network with a di↵erent structure. The proposed algorithm
design allows the drone to learn the aforementioned features
without ever having access to the training data, or indeed any
data, but only with appropriate questioning of the original model.

The equivalency of the outputs of the drone and original
model enables an analyst to treat both the original and the drone
in the same way. The creation of a drone in a standardised form
permits an analyst to use any desired machine-learning package
to isolate a decay signature, and from this create a classifier
guaranteed to be suitable for execution in the C++ real-time data
selection frameworks.

Acknowledgements

We acknowledge support from the NWO (The Netherlands) and
STFC (United Kingdom). We are indebted to the communities
behind the multiple open source software packages on which we
depend. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 676108.

References

[1] A. A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008)
S08005. doi:10.1088/1748-0221/3/08/S08005.

[2] R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015)
1530022. arXiv:1412.6352, doi:10.1142/S0217751X15300227.

[3] Z. Xu, M. Tobin, Novel real-time alignment and calibration of the LHCb
detector in Run II, Nucl. Instrum. Meth. A824 (2016) 70–71. doi:10.
1016/j.nima.2015.11.040.

[4] R. Aaij, et al., Tesla : an application for real-time data analysis in High
Energy Physics, Comput. Phys. Commun. 208 (2016) 35–42. arXiv:
1604.05596, doi:10.1016/j.cpc.2016.07.022.

[5] A. Hocker, et al., TMVA - Toolkit for Multivariate Data Analysis, PoS
ACAT (2007) 040. arXiv:physics/0703039.

[6] M. Feindt, U. Kerzel, The NeuroBayes neural network package, Nucl.
Instrum. Meth. A559 (2006) 190–194. doi:10.1016/j.nima.2005.
11.166.

[7] F. Pedregosa, et al., Scikit-learn: Machine Learning in Python, J. Machine
Learning Res. 12 (2011) 2825–2830. arXiv:1201.0490.

[8] F. Chollet, et al., Keras, https://github.com/fchollet/keras
(2015).

[9] G. Barrand, et al., GAUDI - A software architecture and framework for
building HEP data processing applications, Comput. Phys. Commun. 140
(2001) 45–55. doi:10.1016/S0010-4655(01)00254-5.

[10] V. V. Gligorov, M. Williams, E�cient, reliable and fast high-level trig-
gering using a bonsai boosted decision tree, JINST 8 (2013) P02013.
arXiv:1210.6861, doi:10.1088/1748-0221/8/02/P02013.

[11] A. Choromanska, M. Hena↵, M. Mathieu, G. B. Arous, Y. LeCun, The
loss surface of multilayer networks, CoRR abs/1412.0233. arXiv:1412.
0233.
URL http://arxiv.org/abs/1412.0233

[12] G. A. Cowan, D. C. Craik, M. D. Needham, RapidSim: an application for
the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun.
214 (2017) 239–246. arXiv:1612.07489, doi:10.1016/j.cpc.2017.
01.029.

3

mother pT max pT

min pT min η

Putting it into action - B decay separation

�19

Train drone from sk-Learn classifier

Classifier output probability
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

1000

2000

3000

4000

5000
Training signal

Test signal Probability Events

Training background Probability Events

Test background Probability Events

Figure 2: Output distributions of the signal and background training and test samples from the classifier after training.

Figure 3: Convergence of the loss function during the drone training.

Figure 4: Di↵erence in the loss function with respect to the previous iteration. The green triangles depict the epoch number in which the number of
hyperperameters was increased.

4

300 epochs
alpha (learning rate): 0.05
layer extension threshold: 0.05

Figure 5: Di↵erence between the output response of the drone model with respect to the original classifier for data points in the test sample.

5

Result is a drone that for each data
point, gives the same value as the
original

Putting it into action - Jet separation

�20

Generate jets using Pythia + FastJet
Signal: Jets produced in association with W
Background: QCD jets

No real change to the drone creation
procedure

Train sk-Learn MLP:
relu activation, 3 hidden layers

Classifier output probability
0 0.2 0.4 0.6 0.8 1

Ev
en

ts

0

100

200

300

400

500

600

700

800
Training signal

Test signal Probability Events

Training background Probability Events

Test background Probability Events

Performance in detail

�21

True measure of performance is found from the ROC curve: Signal eff. vs. background
rejection

Shown are the ROC curves of the
original sk-learn classifier (red) vs:

• drone 100 epochs
• drone 500 epochs
• drone 1000 epochs
• drone 1500 epochs

Conclusion: we can train an
approximation network with same
performance but simpler structure
than the original network

Testing further: Convolutional NN

�22

Take our B and D data before.
Make a more advanced Keras network:

Make Keras model
model = Sequential()
6 inputs mean either 20 combinations of 3
classes
model.add(LocallyConnected1D(filters = 20,
kernel_size = 3, activation = 'sigmoid',
input_shape = (6, 1)))
model.add(GlobalMaxPooling1D())
match filter output number of conv layer
model.add(Dense(30, activation = 'sigmoid'))
project onto 1 output
model.add(Dense(1, activation = 'sigmoid'))
compile model
model.compile(optimizer = 'adam', loss =
'binary_crossentropy', metrics = ['accuracy'])

Single hidden layer drone,
same algorithm as previously

described

ROC curves show identical
performance

Remarks

�23

Drone never sees any data or labels, only asks the original model
what it thought of a point in the parameter space

=> Learns from other models, not from the data

Analysts have complete freedom to design original networks,
standardisation means all can be ported to the low latency
environment

No need to re-invent the wheel:
• Keras already provides the C++ to use in production environments
• LWTNN gives convenient saving and loading
• ONNX conversion makes life even easier.

�24

Standard HEP filtering:

Single algorithm, multiple classification, ubiquitous
(dreaming)

Common
particles

di-jet/
B-candidate

di-jet/
B-candidate

di-jet/
B-candidate

di-jet/
B-candidate

Distinct
signal

Distinct
signal

Distinct
signal

Distinct
signal

�25

Single algorithm, multiple classification, ubiquitous
(dreaming)

single drone
/ multiple outputs

�26

Our dream:

Single algorithm, multiple classification, ubiquitous
(dreaming)

Common
particles

di-jet/
B-candidate

Distinct
signal

Distinct
signal

Distinct
signal

Distinct
signal

Single classifying
algorithm

Repo/docs & final remarks

Networks presented here are available in the GitHub repo:
HEPDrone, in addition to:
• Standard drone model
• Converter from original NN to drone
• JSON storage, for loading with LWTNN
Principle explained in: arXiv:1712.09114

Low latency environments face challenges which potentially restrict the freedom

We have demonstrated the approximation principle that allows our networks to
learn the features of others with no access to the data

Such an extension can be used to not only speed-up the networks of different
packages for use in low latency environments, but also makes use the ability of
networks to provide more than one output classification.

• With an analyst able to provide a network for their particular signature of
interest.

https://github.com/Tevien/HEPDrone
https://arxiv.org/abs/1712.09114

