

Event Categorization using Deep Neural Networks for the ttH (H→bb) Analysis at CMS

Marcel Rieger, Martin Erdmann, Yannik Rath

IML Workshop 2018

11 April 2018

Observation of ttH production

The CMS Collaboration*

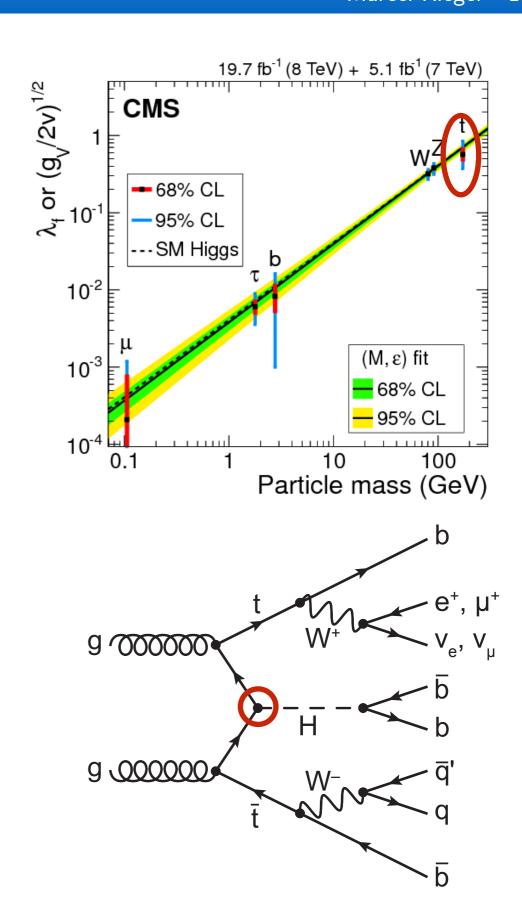
Abstract

The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of $\sqrt{s}=7$, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb⁻¹, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is $1.26^{+0.31}_{-0.26}$.

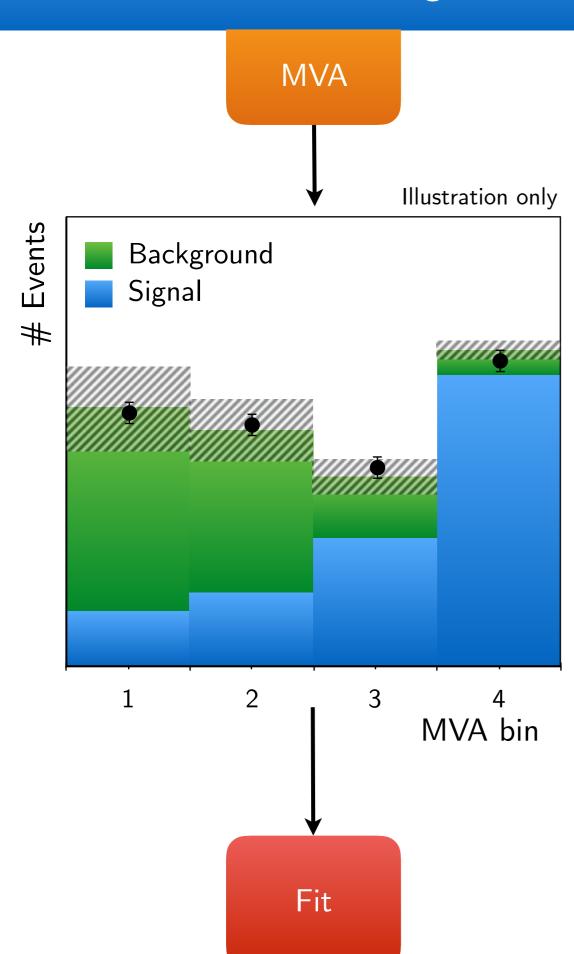
- $ttH, H \rightarrow bb$
 - Direct probe of top-Higgs coupling
 - Very rare, $\sigma_{ttH} = 0.51 \text{ pb}$
 - $H \rightarrow bb$: largest BR (0.58)
- Backgrounds from tt+jets,
 - Esp. *ttbb* irreducible
 - Relatively large cross section uncertainties
 (≥ 35%)
- Complex final state
 - High combinatorics due to many jets

No "direct" measurement via (e.g.) mass peak

→ Simultaneous fit to MVA distribution(s)



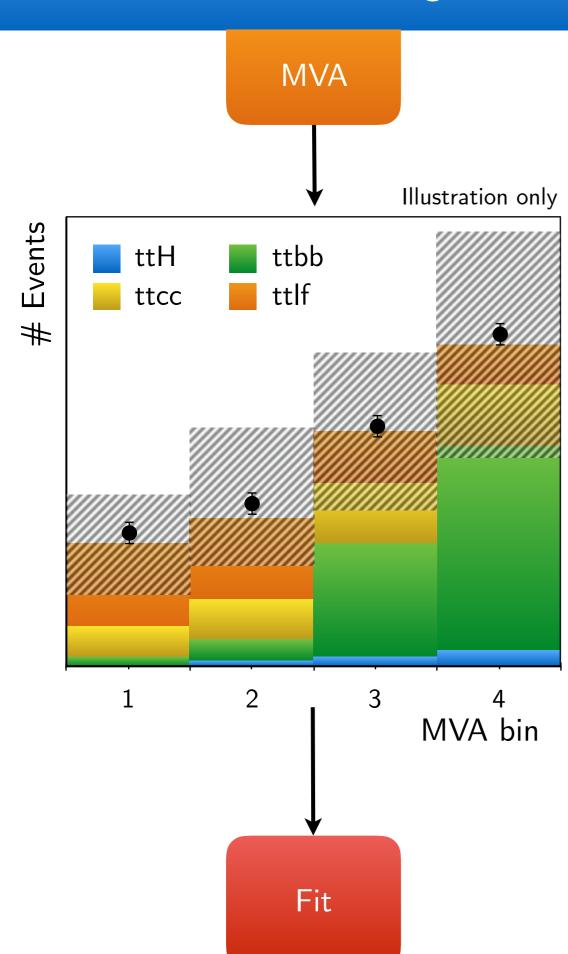
4 Simultaneous fitting



- Fit expected yields (MC) to data simultaneously in all categories / bins
 - Backgrounds vary within uncertainties,
 constrained by prior (e.g. gaussian)
 - No prior on signal

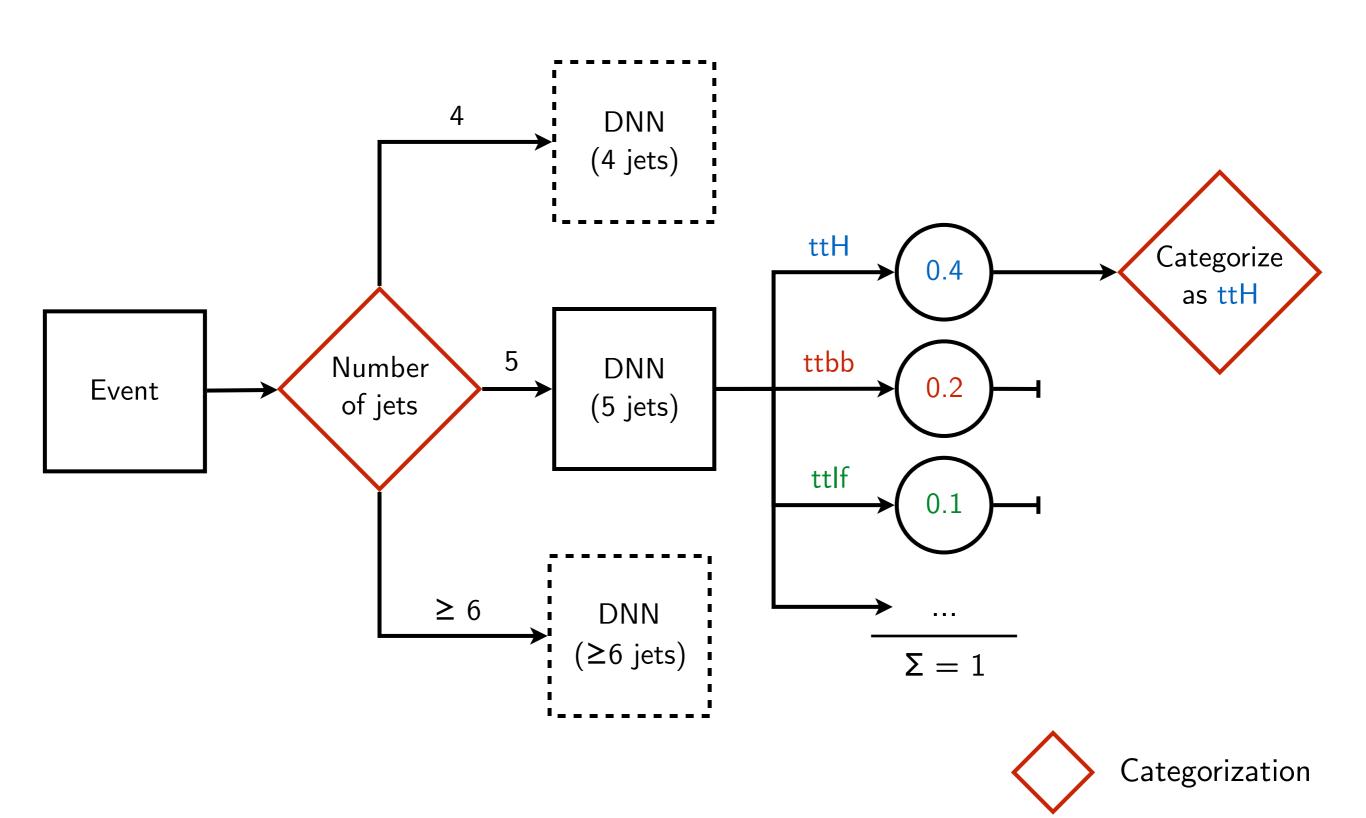
→ Signal extraction crucially depends on ability to measure backgrounds

4 Simultaneous fitting



- Fit expected yields (MC) to data simultaneously in all categories / bins
 - Backgrounds vary within uncertainties,
 constrained by prior (e.g. gaussian)
 - No prior on signal
 - → Signal extraction crucially depends on ability to measure backgrounds
- ttH situation:
 - Large backgrounds (e.g. ttlf)
 - Irreducible backgrounds (e.g. ttbb)
- Idea: Multi-classification DNN
 - → Create enriched categories for signal and each background

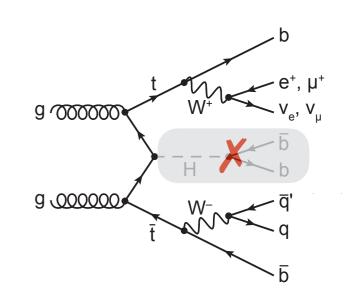
Per event



Two-staged training

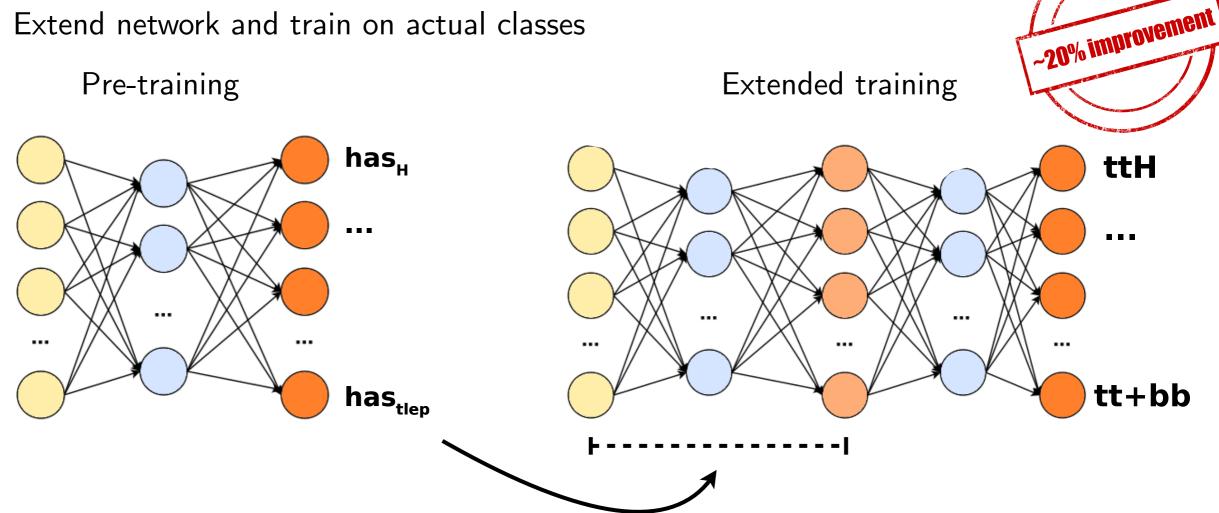
- Events of same class can have different topologies:
 - Jets out of acceptance
 - Merged jets

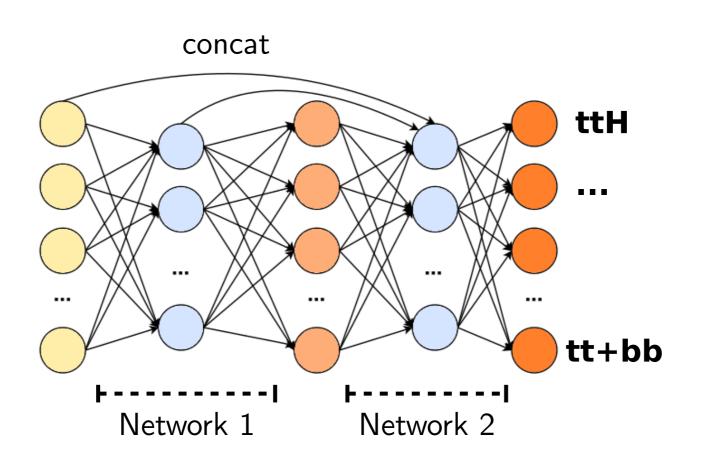
 - → Just training on bare event classes will confuse the network



• Idea:

- 1. Pre-training on event content from generator (has_H , has_{bH} , has_{blep} , ...)
- 2. Extend network and train on actual classes



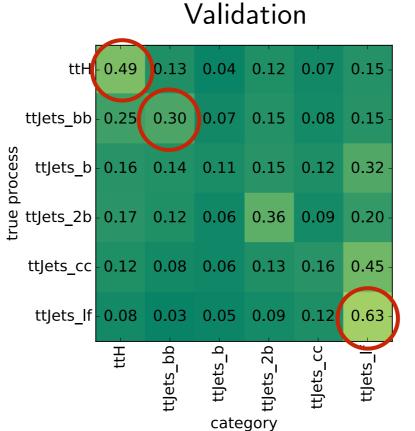


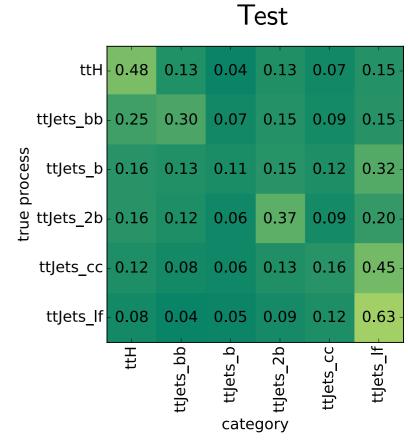
Network architecture (≥ 6 jets):

Network 1	Network 2	Activation	L2	Dropout (keep prob.)	Learning rate (ADAM)
100,100	100,100	ELU	10-5	0.7	10-4

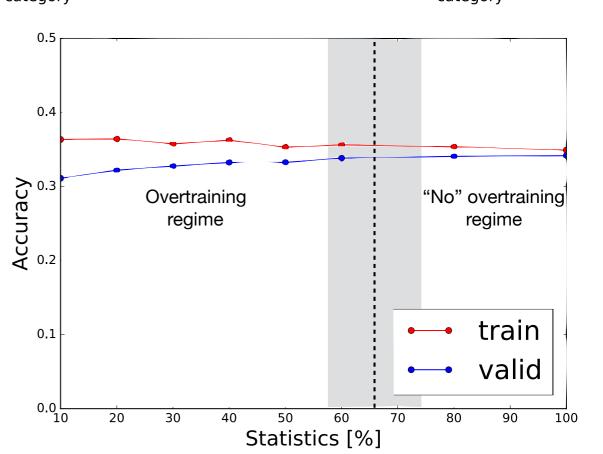
- Implementation using plain TensorFlow
- Training time ~20min on 980 Ti

Classification accuracies



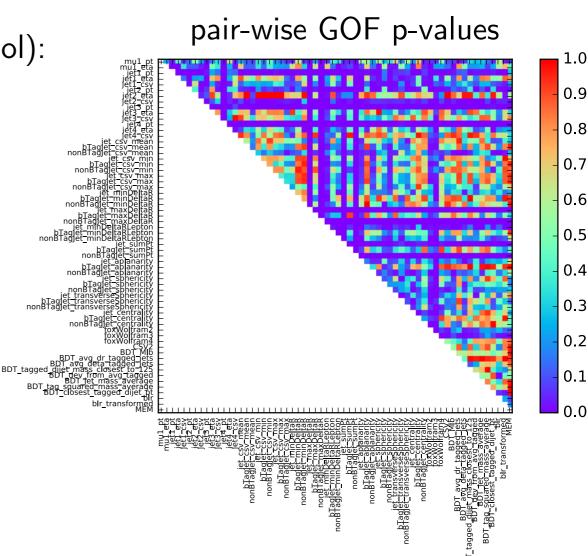


- Common trade-off:
 - → Network size **vs.** amount of data
- Artificially force overtraining by reducing statistics
 - → Results stable down to ~3⁄3 of events



- Check of agreement between data and MC necessary, but 1D not sufficient
 - → MVA techniques exploit deep correlations
 - → Need to prove agreement of correlations in addition to 1D shapes
- Compare 2D correlation coefficients
 - → Mix low- and high-level variables to cover even deeper correlations
- Recipe using GoodnessOfFit test (CMS combine tool):
 - 1. Create TH2F's for all pairs of input variables
 - 2. Unroll to 1D histograms
 - 3. Determine p-value for data MC agreement (using combine and frequentist toys)
 - 4. Remove variables that yield a bad correlation agreement with other variables, criterion:

p-value < 0.3 for $\ge 50\%$ of variables



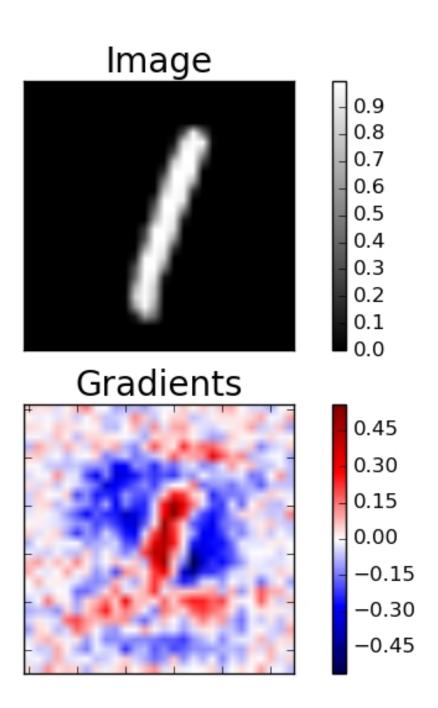
- Used in CMS ttH(bb) leptonic analysis (CMS-HIG-PAS-17-026)
 - Results shown at Moriond 2018
 - Two methods:
 - ▷ DNN (with MEM as input variable)
 - Combination of BDT + MEM

Channel & Analysis	$\mu \pm \text{tot} (\pm \text{stat} \pm \text{syst})$		
single lepton 2D BDT+MEM	$0.35_{-0.62}^{+0.62} \left(\begin{array}{c} +0.27 & +0.55 \\ -0.27 & -0.55 \end{array} \right)$ $0.84_{-0.50}^{+0.52} \left(\begin{array}{c} +0.27 & +0.44 \\ -0.26 & -0.43 \end{array} \right)$		
single lepton DNN	$0.84_{-0.50}^{+0.52} \left(^{+0.27}_{-0.26} \right. ^{+0.44}_{-0.43} \right)$		
primary result	$0.72_{-0.45}^{+0.45} \left(^{+0.24}_{-0.24} \right. ^{+0.38}_{-0.38})$		

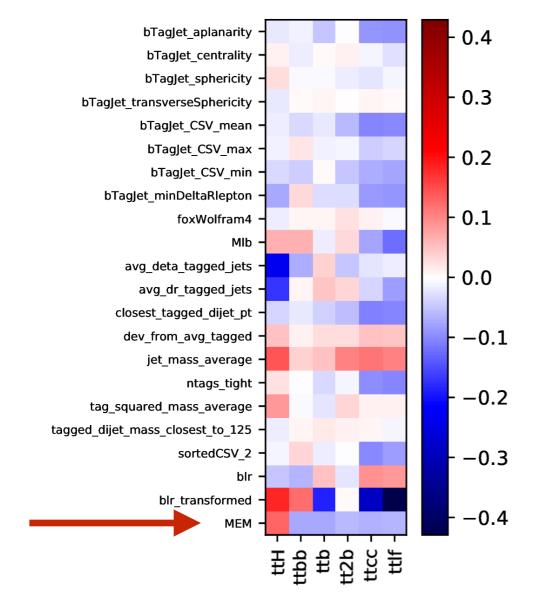
(excerpt)

"primary result": single lepton DNN & dilepton BDT+MEM

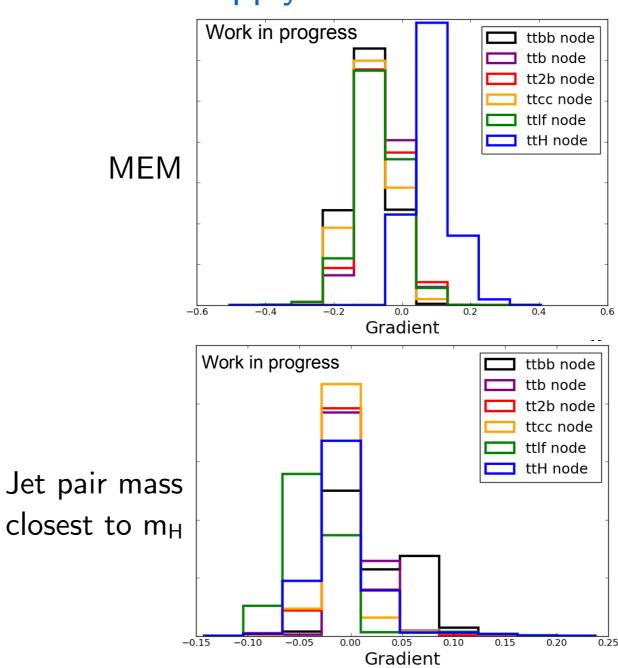
- Methods to interpret NN predictions, inspired by image recognition
- Define sensitivity via gradient of output w.r.t. inputs
 - → "If input is varied, how does the output change?"
 - Determine derivative via tf.gradient()
- Other approaches possible (e.g layer-wise relevance propagation)



Apply per event (here: ttH)



Apply to all events

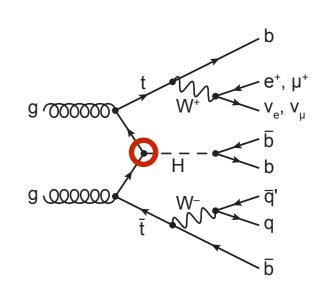


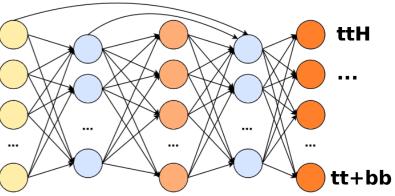
- Method to open the network "black box"
- Possible to check impact of 2D correlations with 2nd derivatives
- Sensitivity can be used for variable ranking (e.g. "rank = mean(abs(sensitivity))")

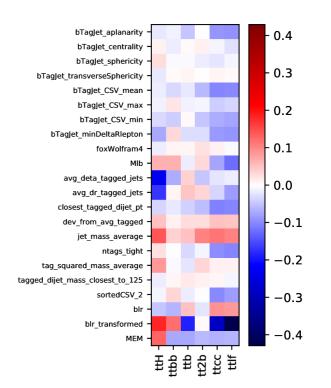
 Measurement of top-Higgs coupling provides a direct probe of the SM and BSM models

- Categorization of events into underlying physics processes using multi-classification DNNs
 - → Dedicated categories per background
 - → Improved sensitivity by ~20%

- Interpretation of network results using sensitivity analysis
 - Impact of variables consistent with physics expectation
 - Allows ranking of input variables







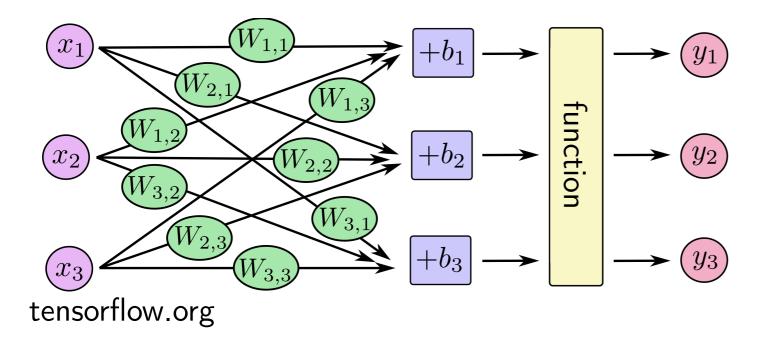
Backup

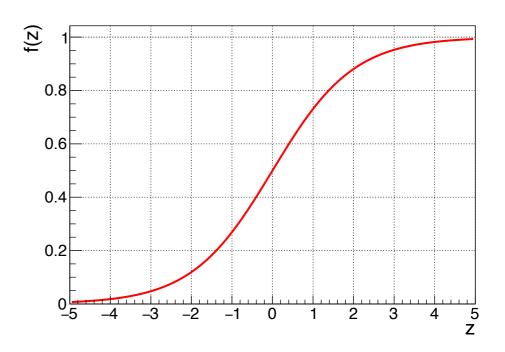
16 Deep Neural Networks (1)

- Map input variables x to outputs y: $\vec{x} \to \vec{y} = \vec{D}(\vec{x}; \boldsymbol{W}, \vec{b}) \in \mathbb{R}^n$
 - D is the model which has to be defined
 - W and b are parameters, or weights, to be learned
 - n is the output dimension, BDT: 1, DNN: ≥ 1
- One layer network with logistic function f:

$$\vec{y} = f(\boldsymbol{W} \cdot \vec{x} + \vec{b})$$
 with

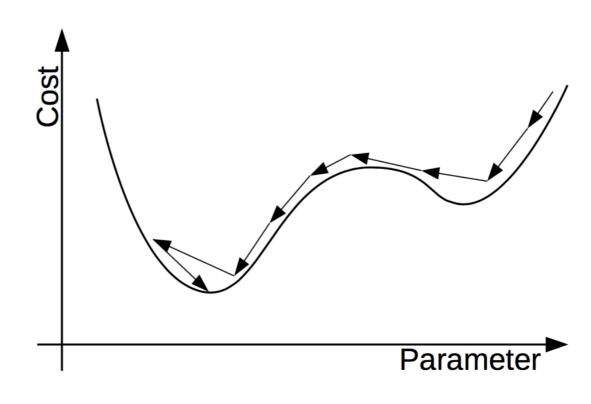
$$f(z) = \frac{1}{1 + e^{-z}}$$





17 Deep Neural Networks (2)

- Plug y into cost function, compares to expected outputs y_{exp} (e.g. χ^2)
- Minimize costs using gradient descent algorithms
 Direction of minimization ≜ current slope
 Give feedback to weights
 - \rightarrow But: computational too expensive to evaluate all derivations of cost function w.r.t. all weights $(O(10^5))$
 - → Back-propagation: change of weights ∝ costs
- Combine layers to build deep networks:
 - \blacksquare 2 layers: $\vec{y} = f(\boldsymbol{W_2} \cdot \vec{y_1} + \vec{b_2})$
 - $\qquad \text{n layers:} \quad \vec{y} = (f_1 \circ f_2 \circ \ldots \circ f_n) (\boldsymbol{W} \cdot \vec{x} + \vec{b})$
- Many matrix and vector operations
 - → GPUs are mandatory!



18 Deep Neural Networks (3)

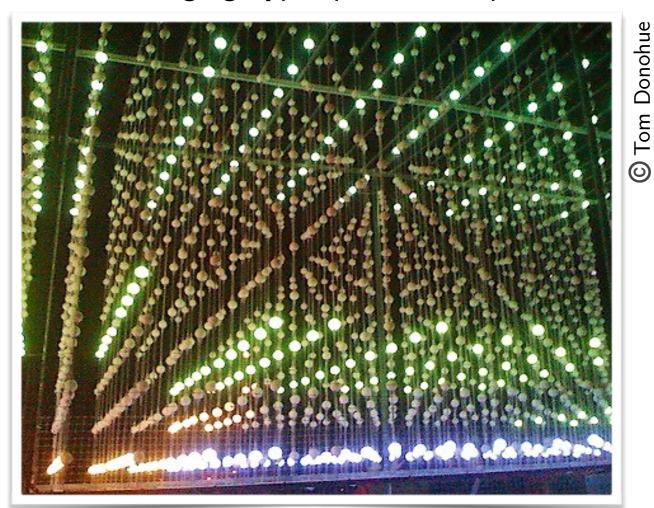
RWTHAACHEN UNIVERSITY

Marcel Rieger - 11.4.18

- Network architecture
- Layer activations
- Optimization algorithm
- Overtraining suppression:
 - L2 normalization
 - Random unit dropout
- Event weights
- Feature scaling

• ...

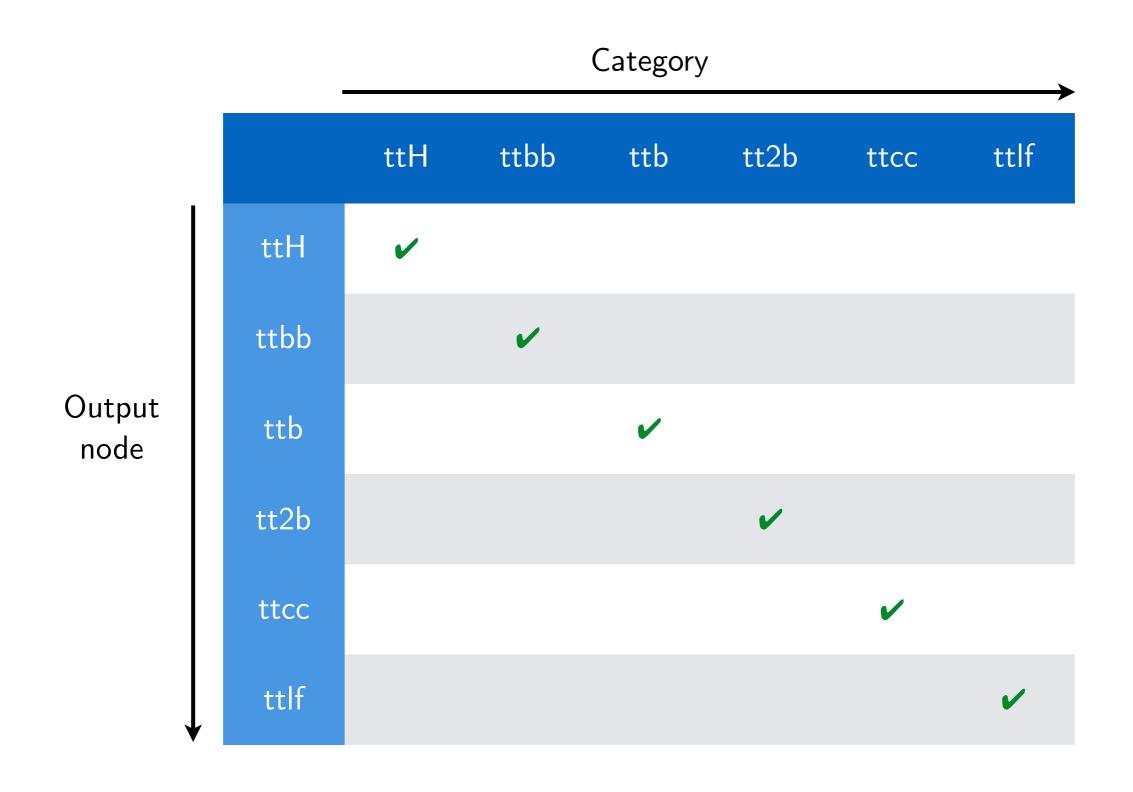
Challenging hyper-parameter space



→ Many hyper-parameter combinations but only a few appear to work

- Challenge: "No separation in output distribution. Reason?"
 - BDT: Unfortunate variable selection
 - DNN: Unfortunate variable selection or

network architecture not optimal (more likely)



20 DL: BDT+MEM 2D method

- Well established method in previous Run II analyses (HIG-16-038, HIG-16-004)
- Jet b-tag categorization: (≥4j,3t), (≥4j,≥4t)
 - (≥4j,3t): use BDT output as discriminant
 - (≥4j,≥4t): combine strengths of BDT and MEM
 - ▷ BDTs trained to discriminate ttH(bb) vs. inclusive tt+jets
 - Matrix element discriminants constructed to separate ttH(bb) and tt+bb
 - → Split events at median of signal BDT output
 - → In each *category*, use MEM as discriminant
- 3 categories in total

