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Particle clusters

e Points in 3 dimensional space, together
with the energy, which were presumably
generated by a particle crossing by.

e Base for particle tracks generation

e Up to 159 points per particle

e Possible values restricted by the detector
Size ~5m x 5m x 5m

e No clusters in the inner field cage
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Simulation and Reconstruction 4

e Current process relies on 5 independent modules
e The computationally most expensive module is particles
propagation through detector’'s matter

Translation to

Collision Particles clectronic

SlEle Tracking

Clusters

generator propagation

signals (digits)
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Simulation and Reconstruction 5

Generative solution for clusters simulation

Translation
Collision Particles to electronic ™ Digits to
generator - propagation s signals - Clusters
(digits)

Tracking

Generative
model

______»

*Second approach currently in development
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Motivation

e Fast particle clusters simulation
e Semi-real time anomaly detection tool for Quality Assurance

e (Generating possible clusters distribution to compare them with the real detector’s

output

Training the GAN [dentifying anomalies

Anomalies

Rt ] .

Preprocessing

Healthy data Unseen data

f
\

T. Schiegl Unsupervised Anomaly Detection with Generative Adversarial Networksto Guide Marker Discovery
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Variational Autoencoder

e Deriving from Autoencoder - re-
generates same Output as Input

e Normalisation on the first hidden
layer which forces it’s output to have
a normal distribution

e Generation by providing significant

noise on the Latent Space
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Generative Adversarial Networks -
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Generative Adversarial Networks
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Real dataset

Z[cm]

200

100

e Itis not possible (yet) to generate the full 3D
Image of the event at once
(5000 x 5000 x 5000 resolution)

x[cm]

e Our solution is to:
o Generate clusters for single particle (as 2D
table with X, y ,Z ,q, g, Values)
o Two separate flows for X, y ,z and q, g4
o Merge generated samples

e Training on the original reconstructions

x[cm]
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Convolutional Variational Autoencoder
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e Deep Convolutional Variational

Autoencoder

e 2D Convolutional/ Deconvolutional Layers

e Leaky RelLU Activation
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100x1
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“ +act D 4 Dense 5 deConv 1 deConv 2 deConv 3 Output+
inse +act +act +act +act sigmoid
act
Latent
Space
e Dropout
e Batch Normalisation
e Sigmoid activation on output
e VAE’s loss function



Deep Convolutional Generative Adversarial

Network (DCGAN)

e 2D Convolutional/ Deconvolutional

Layers

Leaky RelLU Activation
Dropout
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Dense Layers for input, and output

Sigmoid activation on output
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Progressive DCGAN

Progressive training for standard
DCGAN
e Gradually increased number of
layers
e Training on data samples with
steadily growing precision
e Constant enhancement of
generated samples resolution
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Preliminary qualitative and performance

results
Method MSE(mm) speedup
e Mean Squared Error (MSE) from the GEANT3 0.085 1
RS G Rt Random (estimated) 166.155 N/A
e Performance test conducted on the GAN-MLP 55.385 104
standalone machine with Intel Core
. . GAN-LSTM 54.395 104
17-6850K (3.60GHz) CPU (using
single core, no GPU acceleration) VAE 37.415 10*
.. : DCGAN 26.18 102
e Additional order of magnitude 0
speedup for Generative models with cVAE 13.33 10
Nvidia GTX 1080 GPU OrOGAN 0.88 30

Quality of the Generative models, and their run-time
comparing to the GEANT3 based simulation solution.
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Preliminary performance results
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Example clusters generated by different

models

x[cm]

z[cm]

19

xlem]

Original example
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Future work

e Enhancing the quality of generated samples with additional cost applied to the loss
function

e Conditional GAN for simulating particles propagation through detector based on the
initial particles momenta

e Training with additional loss function straight from the original data samples

e Semi-real-time anomaly detection with GANs
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