Warsaw University of Technology

Generative Models for Fast Cluster Simulations in the TPC for the ALICE Experiment

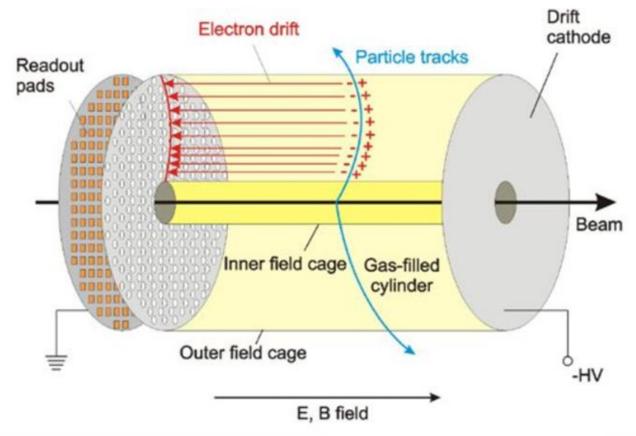
Kamil Deja and Tomasz Trzciński for the ALICE Collaboration

Outline

- 1. Particle clusters simulation problem description
- 2. Generative Models
 - a. Variational Autoencoder (VAE)
 - b. Generative Adversarial Networks (GAN)
- 3. Clusters simulation with Generative Models
 - a. VAE
 - b. DCGAN
 - c. Progressive GAN
- 4. Results
- 5. Future work

Particle clusters

- Points in 3 dimensional space, together with the energy, which were presumably generated by a particle crossing by.
- Base for particle tracks generation
- Up to 159 points per particle
- Possible values restricted by the detector
 size ~ 5m x 5m x 5m
- No clusters in the inner field cage



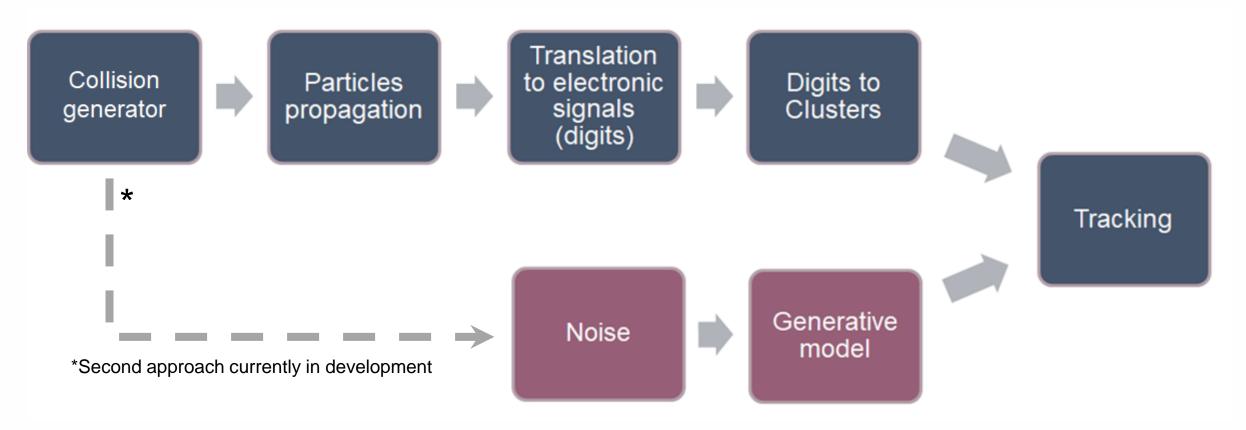
I. Konorov, Front-end electronics for Time Projection chamber

Simulation and Reconstruction

- Current process relies on 5 independent modules
- The computationally most expensive module is particles propagation through detector's matter

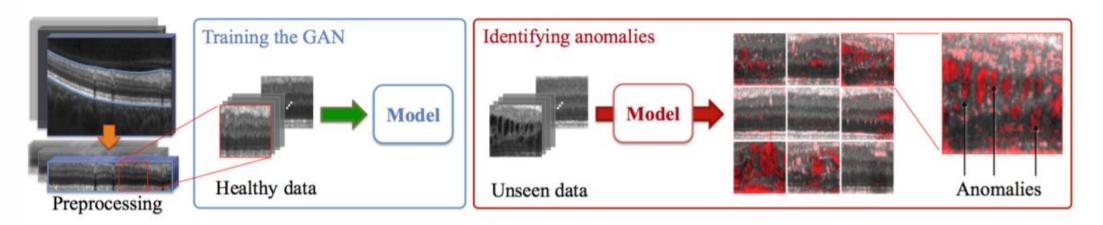
Simulation and Reconstruction

Generative solution for clusters simulation



Motivation

- Fast particle clusters simulation
- Semi-real time anomaly detection tool for Quality Assurance
- Generating possible clusters distribution to compare them with the real detector's output



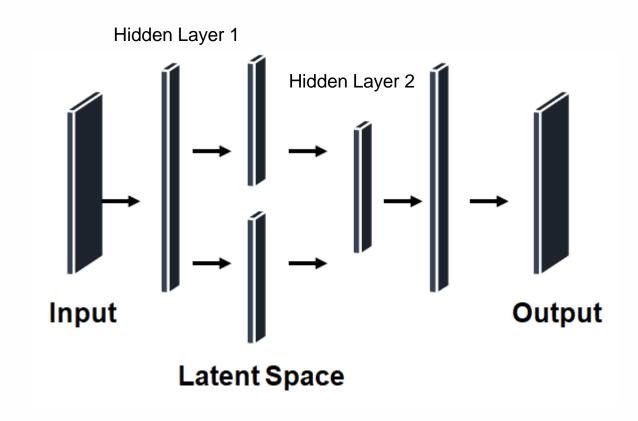
T. Schleg I Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

Warsaw University of Technology

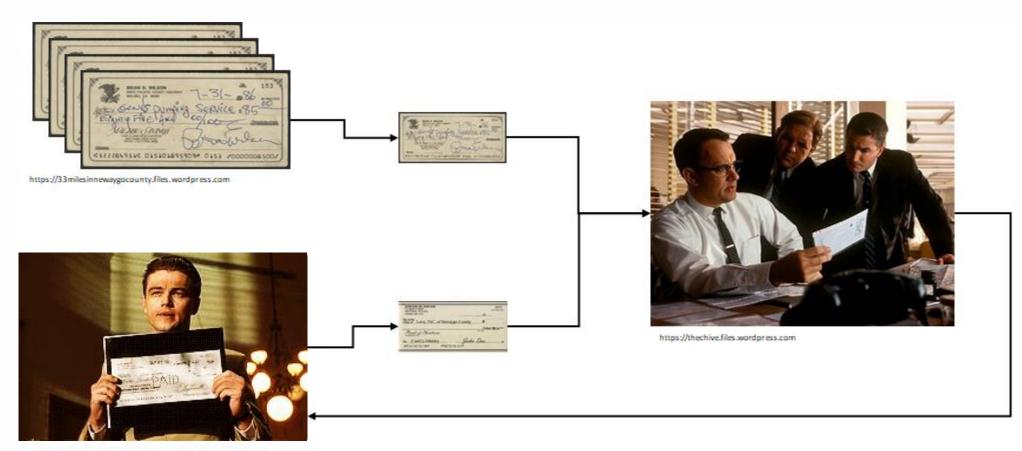
Generative Models

Variational Autoencoder

- Deriving from Autoencoder regenerates same Output as Input
- Normalisation on the first hidden layer which forces it's output to have a normal distribution
- Generation by providing significant noise on the Latent Space

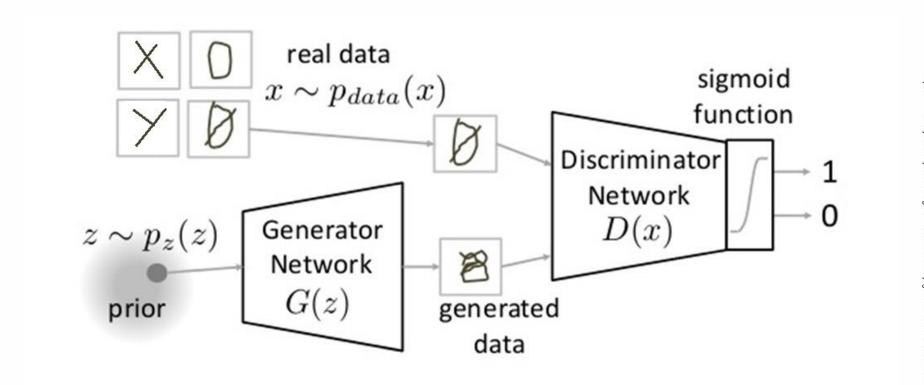


Generative Adversarial Networks - introduction



https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-Sleocharacters-t1h4nnWEWKfn2

Generative Adversarial Networks



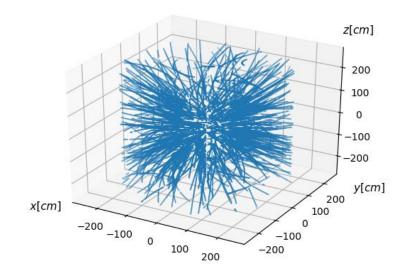
$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

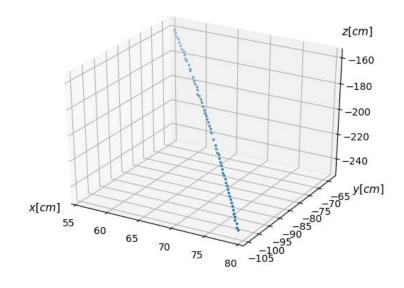
Warsaw University of Technology

Clusters simulation with Generative Models

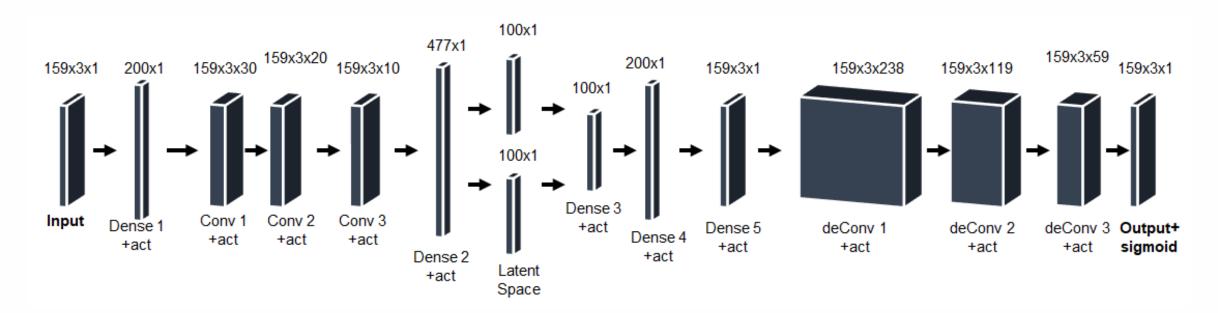
Real dataset

- It is not possible (yet) to generate the full 3D image of the event at once
 (5000 x 5000 x 5000 resolution)
- Our solution is to:
 - Generate clusters for single particle (as 2D table with x, y ,z ,q, q_{max} values)
 - Two separate flows for x, y ,z and q, q_{max}
 - Merge generated samples
- Training on the original reconstructions





Convolutional Variational Autoencoder

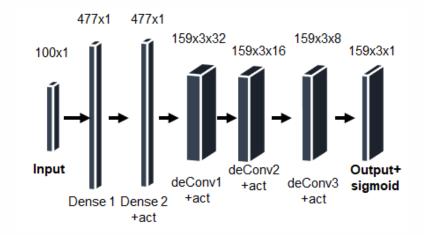


- Deep Convolutional Variational Autoencoder
- 2D Convolutional/ Deconvolutional Layers
- Leaky ReLU Activation

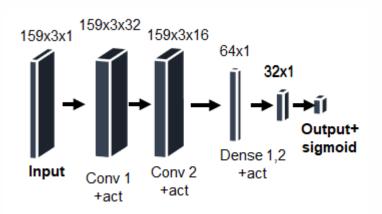
- Dropout
- Batch Normalisation
- Sigmoid activation on output
- VAE's loss function

Deep Convolutional Generative Adversarial Network (DCGAN)

- 2D Convolutional/ Deconvolutional Layers
- Dense Layers for input, and output
- Leaky ReLU Activation
- Dropout
- Sigmoid activation on output



Generator

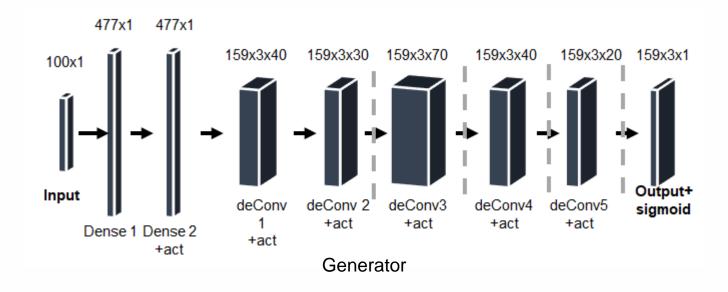


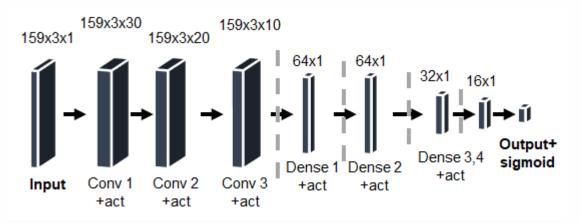
Discriminator

Progressive DCGAN

Progressive training for standard DCGAN

- Gradually increased number of layers
- Training on data samples with steadily growing precision
- Constant enhancement of generated samples resolution





Discriminator

Warsaw University of Technology

Results

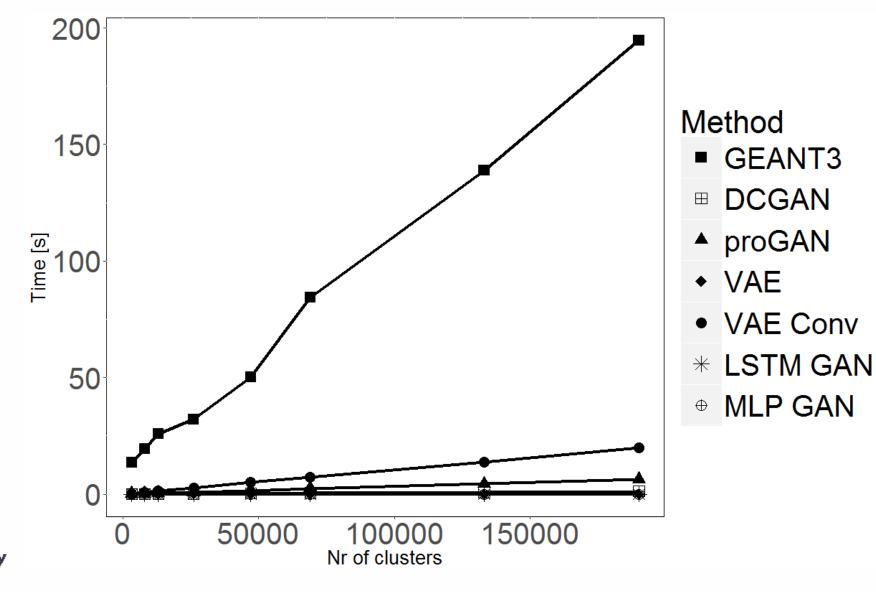
Preliminary qualitative and performance results

- Mean Squared Error (MSE) from the ideal helix as a quality measure
- Performance test conducted on the standalone machine with Intel Core i7-6850K (3.60GHz) CPU (using single core, no GPU acceleration)
- Additional order of magnitude speedup for Generative models with Nvidia GTX 1080 GPU

Method	MSE(mm)	speedup
GEANT3	0.085	1
Random (estimated)	166.155	N/A
GAN-MLP	55.385	104
GAN-LSTM	54.395	104
VAE	37.415	104
DCGAN	26.18	10 ²
cVAE	13.33	10
proGAN	0.88	30

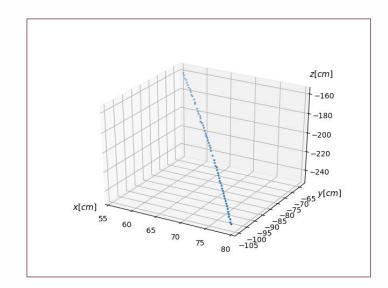
Quality of the Generative models, and their run-time comparing to the GEANT3 based simulation solution.

Preliminary performance results

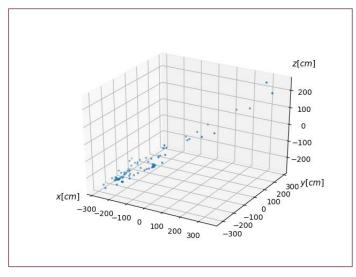


Example clusters generated by different

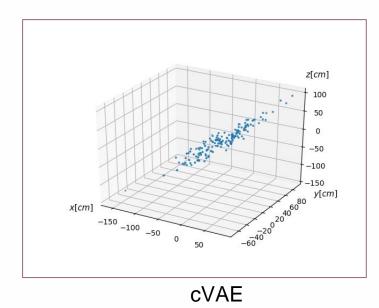
models

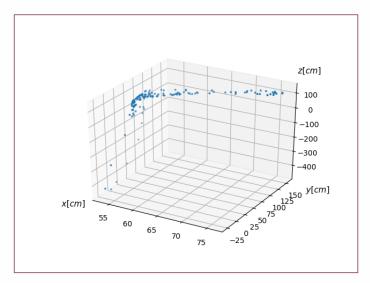


Original example

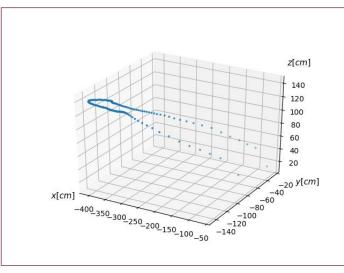


VAE





DCGAN



proGAN

Future work

- Enhancing the quality of generated samples with additional cost applied to the loss function
- Conditional GAN for simulating particles propagation through detector based on the initial particles momenta
- Training with additional loss function straight from the original data samples
- Semi-real-time anomaly detection with GANs

References

- R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, "GEANT Detector Description and Simulation Tool," CERNW5013, CERN-W-5013, W5013, W-5013, 1994.
- 2. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in NIPS, 2014.
- 3. D. P. Kingma and M. Welling, "Auto-encoding variational bayes," CoRR, vol. abs/1312.6114, 2013.
- 4. A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks," CoRR, vol. abs/1511.06434, 2015.
- 5. T. Karras, T. Aila, S. Laine, and J. Lehtinen, "Progressive growing of gans for improved quality, stability, and variation," CoRR, vol. abs/1710.10196, 2017.
- 6. F. Chollet et al., "Keras." https://github.com/fchollet/keras, 2015.
- 7. T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery," in International Conference on Information Processing in Medical Imaging, pp. 146–157, Springer, 2017.