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2. Generative Models
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b. Generative Adversarial Networks (GAN)

3. Clusters simulation with Generative Models

a. VAE
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c. Progressive GAN
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5. Future work



3Particle clusters 

● Points in 3 dimensional space, together 

with the energy, which were presumably 

generated by a particle crossing by.

● Base for particle tracks generation

● Up to 159 points per particle

● Possible values restricted by the detector 

size ~ 5m x 5m x 5m

● No clusters in the inner field cage



4Simulation and Reconstruction

● Current process relies on 5 independent modules

● The computationally most expensive module is particles 

propagation through detector’s matter



5Simulation and Reconstruction

*Second approach currently in development

*

Generative solution for clusters simulation



6Motivation

● Fast particle clusters simulation

● Semi-real time anomaly detection tool for Quality Assurance

● Generating possible clusters distribution to compare them with the real detector’s 

output



Generative Models



8Variational Autoencoder

● Deriving from Autoencoder - re-

generates same Output as Input

● Normalisation on the first hidden 

layer which forces it’s output to have 

a normal distribution

● Generation by providing significant 

noise on the Latent Space

Hidden Layer 1

Hidden Layer 2



9Generative Adversarial Networks - introduction



10Generative Adversarial Networks
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Clusters simulation with 

Generative Models



12Real dataset

● It is not possible (yet) to generate the full 3D 

image of the event at once

(5000 x 5000 x 5000 resolution)

● Our solution is to:

○ Generate clusters for single particle (as 2D 

table with x, y ,z ,q, qmax values)

○ Two separate flows for x, y ,z and q, qmax

○ Merge generated samples

● Training on the original reconstructions



1313Convolutional Variational Autoencoder

● Deep Convolutional Variational 

Autoencoder

● 2D Convolutional/ Deconvolutional Layers

● Leaky ReLU Activation

● Dropout

● Batch Normalisation

● Sigmoid activation on output

● VAE’s loss function



14Deep Convolutional Generative Adversarial 

Network (DCGAN)

● 2D Convolutional/ Deconvolutional 

Layers

● Dense Layers for input, and output

● Leaky ReLU Activation

● Dropout

● Sigmoid activation on output

Generator

Discriminator



15Progressive DCGAN

Progressive training for standard 

DCGAN

● Gradually increased number of 

layers

● Training on data samples with 

steadily growing precision

● Constant enhancement of 

generated samples resolution

Generator

Discriminator



Results



17Preliminary qualitative and performance 

results

Method MSE(mm) speedup

GEANT3 0.085 1

Random (estimated) 166.155 N/A

GAN-MLP 55.385 104

GAN-LSTM 54.395 104

VAE 37.415 104

DCGAN 26.18 102

cVAE 13.33 10

proGAN 0.88 30

Quality of the Generative models, and their run-time 

comparing to the GEANT3 based simulation solution. 

● Mean Squared Error (MSE) from the 

ideal helix as a quality measure

● Performance test conducted on the 

standalone machine with Intel Core 

i7-6850K (3.60GHz) CPU (using 

single core, no GPU acceleration)

● Additional order of magnitude 

speedup for Generative models with 

Nvidia GTX 1080 GPU



18Preliminary performance results



19Example clusters generated by different 

models

Original example

VAE DCGAN

cVAE proGAN



20Future work

● Enhancing the quality of generated samples with additional cost applied to the loss 

function

● Conditional GAN for simulating particles propagation through detector based on the 

initial particles momenta

● Training with additional loss function straight from the original data samples

● Semi-real-time anomaly detection with GANs
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