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Motivation

Processes with a variable number of intermediate/final state particles
occur in many contexts, e.g.

• Analysis of flavor anomalies

• Measurements of observables in rare decays

• Vertexing

• Jet tagging

Traditionally, encode the event information in a fixed-dimensional vector
as input to an ML algorithm, but this incurs some information loss.

Want a performant model that natively handles variable length
sequences, while being competitive with current approaches.
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Flavor Physics

Precision flavor physics

Compare precise experimental
measurements of observables in B decays
with theoretical predictions; interpret
discrepancies in terms of new physics.

• Look for indirect effects of heavy
unknown particles in low energy
observables of B mesons.

Penguin processes:

Radiative: b → qγ

Electroweak:
b → q`+`−, q = s, d

• FCNCs, forbidden at leading order →
rare + hard to observe!
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Figure 1: Radiative b → sγ (top) and

electroweak b → s`+`− (bottom) pen-
guins

Justin Tan Neural Sequence Modelling 3



Belle II

• Next generation B-physics experiment at SuperKEKB, an e+e−

collider in Japan.

• Target: 50× 109 e+e− → Υ(4S)→ BB̄ events by 2024.

• Large statistics → high precision measurements of penguin decay
observables: Bs(d)γ ,ACP.

Figure 2: Belle II e+e− collision simulation.

Figure 3: Sensitivity to ACP (red) in
b → s(d)γ decays.
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Penguin hunting
Mass distribution for 1 ab−1 of simulated e+e− collisions at Belle II.
Background: e+e− → qq̄, q = u, d , s, c + e+e− → bb̄
Signal: b → sγ
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Event Reconstruction
• Reconstruct
Bsig → Xγ from
combining the
radiative photon γ
with the hadronic
final state X

• Hadronic X is
explicitly
reconstructed in as
many final states as
possible (≈ 50)

X = K+π+π−

or (K 0
S → π+π−) π+π−

or π+(π0 → γγ)(η → γγ), etc.

How can we capture the full event information of variable-length decay
sequences?
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Neural Networks
Identify ’relevant’ degrees of freedom, iteratively integrate out ’irrelevant’
degrees of freedom.
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Natural Language

Condition on the entire sequence to infer a distribution over some
property.

Prediction p(·|Luke went to the beach and caught a)

Translation p(some English | du français)

Classification p (positive | Despite the constant negative press covfefe)

Modern approach:
Introduce a learnable projection of each word into a continuous vector
space, condition on the learnt representation, R, usually the output of
a neural network acting over the embedded words.
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Natural Language x Particle Physics see also arXiv:1702.00748

Collision event ↔ sentence, particle ↔ word
Particles are words in our ’language’, described by a vector of ’morphemes’:

xparticle = (pµ, {r , θ, φ})← kinematic + topological features

e.g. Rare decay B+ → ρ+γ, where ρ+ → π+π0 and π0 → γγ, represent event
as an ordered sequence of particle vectors

{x}input =
[
(xB , xρ, xγ , xπ+ , xπ0 , . . .)T

]
|p|-ordered

Given the observed particle sequence, how probable is this correctly
reconstructed signal?

p (positive | Despite the constant negative press covfefe)� 1

p (signal | {xB , xρ, xγ , ...}) = ?
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Natural Language x Particle Physics

Decays can be very short ,

B → K+π−γ, input:
[
(xB , xK+ , xπ− , xγ)T

]
|p|-ordered

Or very long /

B → [K 0
S → π+π−][π0 → γγ][π0 → γγ]π+π−γ

input:

[(
xB , xK 0

S
, x

K 0
S

π+ , x
K 0

S

π− , xπ0
(1)
, xπ0

(2)
, x
π0

(1)
γ1 , x

π0
(1)
γ2 , x

π0
(2)
γ1 , x

π0
(2)
γ2 , xπ+ , xπ− , xγ

)T
]
|p|-o

Challenging because of combinatorics for high-multiplicity states!

Instead of having a fixed (’global’) representation of features present in
all events, we use a variable-sized event representation to encode more
information.
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Event Representations

Classical representation

• Reliance on low-dimensional engineered features - information loss

• Can only use restrictive global event information - input is unordered
set of features common to all event types

• No a priori knowledge of intrinsic structure of collision event

Sequential representation

• Inclusion of elementary kinematic features should contain all
information needed to derive high-level features 4

• Condition network response on all particle candidates in event →
less information discarded 4

• Introduce prior over event structure (composed of discrete units with
related attributes) 4

Two approaches to sequence analysis - recurrent and convolutional.
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Recurrency arXiv:1303.5778

Recurrent models compress the entire history into a fixed-length vector,
allowing long-range correlations to be understood.

• Read input sequence X = (x1, . . . , xT )

• Accumulate information in the hidden state h = (h1, . . . ,hT )
through repeated matrix operations/nonlinearities

The hidden state hn encodes knowledge about all particles encountered
up to step n.

Figure 4: Network state factorizes into repeated application of hidden function H.
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Recurrency
The last hidden state hT is a learnable encoding of the entire event.

• Input sequence: X = (x1, . . . , xT )

• Compute hidden vector sequence h = (h1, . . . ,hT )

hn = H (V [xn ⊕ hn−1] + bh)

yn = Whn + bn, |yn| = # classes

p(c |X ) = softmax(yT ), softmax(v)i =
exp vi∑
j exp vj

Figure 5: Network state factorizes into repeated application of hidden function H.
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In practice: Recurrent networks arXiv:1409.0473

• Depth: Multiple layers increases
memory and representational capacity
with linear computational increase

• Bidirectionality: Observe ’future’ and
’past’ context at each stage

• Attention: Impractical to encode all
information about the sequence in a
fixed size vector. Focus on subsets of
information (different particles /
features in the input collision) during
prediction.

• But: Sequential operations cannot
exploit parallelization ...
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Convolutional Networks

Convolution: Capture local correlations between features in small
regions of the input.

Subsampling: Coarse-graining: Extract important features from
localalized input regions.

Stacking convolutional layers: Build high-level features from first order
local features → hierarchical feature development. Useful where local
correlations in the input are crucial to prediction of global properties (e.g.
computer vision, speech generation).
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Convolutions arXiv:1404.2188

Image: [height, width, colors]

Collision: [1, # particles, features]

• Define filters which project raw features (’colors’) into an embedding
space to capture local correlations.

• Each filter runs over n adjacent particles simultaneously, projecting
features from different particles into a common embedding space.

• Convolve filters across the input width, operating over each ’particle
n-gram’ (groups of n adjacent particles) in the sequence.

• Each filter is only aware of a local region of the input width, stack
convolutional + subsampling layers to derive higher-order
correlations/features
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Convolutions

Input: Sequence X = (x1, . . . xT ) ∈ R1×T×nfeatures

• Slide over particle n-grams with kernel k(n) ∈ R1×n×K (n)

, with K (n)

the embedding dimension, where n = {2 . . . 6}:

c(n) = (k(n) ? X ) ∈ R1×(T−n)×K (n)

• Subsample (max/avg pool) over 2nd dimension to extract important
features:

p(n) ∈ R1×1×K (n)

• Concatenate along first dimension: f = concat({p(n)}n, axis=1)

• f ∈ R1×j×K ,← stack of extracted feature maps, j = |filters|
• Subject f to further [3, 1] convolutions to understand correlations

between different feature maps, flatten + dense layer for final
classification
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Experiments

Run over simulated e+e− collisions at Belle II, with
√
s = 10.58 GeV.

Signal: Radiative penguin b → sγ (B → Xsγ)

Background: e+e− → qq̄ and e+e− → BB̄, where both B mesons
undergo non-penguin decay.

• Train: ≈ 23× 106, test fraction 0.1

• Validation: ≈ 2× 106

Represent the same events in two ways:

Fixed feature vector: Input to dense network

Variable-length sequence of vectors: Input to convolutional / recurrent nets

Recurrent architectures tend to overfit, but convolutional networks exhibit good
generalization even with no explicit regularization.
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Results

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Belle II Simulation: e+e− events -
√
s = 10.58 GeV

Convolutional (area = 0.989)

Recurrent (area = 0.985)

Dense (area = 0.958)

Justin Tan Neural Sequence Modelling 19



Convergence
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Kernel weight sharing in convolutional networks have a strong regularizing
effect.
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Convergence
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Performance

Learnable parameters

Kernel weight sharing in CNNs + parameter-less pooling layers →
reduced learnable parameters relative to recurrent/dense networks.

Computation Time

Recurrent architectures perform sequential computation → unable to
exploit the parallelization capabilities of modern GPUs.

TensorFlow 1.7 | CUDA 9.0 | 2 Tesla P100s

Architecture AUC† Training time
Conv. training time

Learnable parameters

Convolutional 0.988± 0.03 1 ≈ 4.5× 105

Recurrent 0.985± 0.04 3.9 ≈ 1.2× 106

Dense* 0.956± 0.04 0.6 ≈ 2.3× 106

*Same events, but cast in sequential representation for conv./recurrent models - on
average lower # features/event used for dense network.
†Training rerun 5 times with different random seeds
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Outlook

• Aim to serve as a modular part of analysis.
I Integration into the software framework @ Belle II

• Significant mass/energy sculpting
I Interface with adversarial training
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Figure 6: Standard neural network
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Figure 7: Adv. trained neural network
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Summary

• Draw parallels between event structure / natural language

• Represent a collision event as an ordered set of feature vectors, one
for each reconstructed particle candidate

I Capture more complete picture of event than classical approaches

• Convolutional architectures permit sequential event representation
I Capture local interactions between particle candidates through

convolution + subsampling
I Long-range / global relations can be understood by stacking

convolutional layers → increase in receptive field

• Why convolutions?
I Fast! Exploits parallelization, unlike recurrent approaches
I Outperforms recurrent/dense approaches

Improved background rejection → better sensitivity to new physics.
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Thanks for listening

Code + Docs

github.com/Justin-Tan/particle2seq

justin.tan@coepp.org.au
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Implementation

I Data collection: ROOT
I To Python: uproot
I Preprocessing: Spark/Pandas

• Workflow scalable to O(100) GB worth
of training data.

• TensorFlow:
I Open-source: No black boxes. 4
I Fine-grained control over entire

architecture. 4

• Train:
I 64 epochs, scheduled annealing
I SGD + Nesterov momentum
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Motivation

• Non-SM contributions enter through hypothetical new TeV-scale
particles running within the loop → interference with known
amplitudes.

• Strong constraints on NP by measurement of inclusive/exclusive BR,
CP asymmetries
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Figure 8: Example of SM radiative pen-
guin decay for b → sγ [2]
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Figure 9: Example of hypothetical SUSY
contribution to radiative decay [2]
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Words as Vectors
Distributional Hypothesis: Words that occur in the same context share
semantic meaning.
• Represent words in a continuous vector space to group semantically

similar words.
I Learned vectors explicitly encode linguistic regularities and patterns:
~v(Madrid)− ~v(Spain) + ~v(France) ≈ ~v(Paris)

I Inability to represent idiomatic phrases
~v(California) 6= ~v(Golden) + ~v(State) - overcome with phrase based
models.

Takeaway: Encode semantic relationships in directions in induced vector
space.

Figure 10: Semantic relationships as approximate linear relations (projected into 3D)
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Stacking Recurrent Layers

A Deep RNN increases memory and representational capacity with linear
scaling.

• The output sequence of one layer forms the input sequence for the
next

h
(n)
t = H

(
V (n)

[
h

(n−1)
t ⊕ h

(n)
t−1

]
+ b

(n)
h

)

Figure 11: Hidden state of layer n accepts hidden state of layer n − 1 as input [5]
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Signal Identification

• Identify signal peak in:
I ∆E = Ebeam − EB

I Mbc =
√

E 2
beam − |~pB |2

• Background processes not fully captured
by simulation

• Rely on interpolation of smooth
background spectrum from sidebands
beneath signal peak 5.22 5.24 5.26 5.28 5.3
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Learning algorithms preferentially select signal-like events → background
spectrum distortion → uncontrollable systematic uncertainties
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Background Sculpting

Classifier output f (X ; θf ) ∼ p(signal|data). Only accept events above a
given posterior probability.
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Figure 12: Continuum Mbc before (green) and
after (blue) suppression
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Figure 13: Signal Mbc before (green) and after
(blue) suppression

Background looks like signal post-selection.
Tension between optimal discrimination and reduced systematics!
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Controlling Systematics

• Physics variables of interest: z ∈ Z (e.g. ∆E ,Minv )

• Classification function: f (X ; θf ) gives probabilities of data X being
signal events.

• f (X ; θf ) and z should be independent random variables

p(f (X ; θf ) = s|z) = p(f (X ; θf ) = s|z ′)

Q: How can we enforce independence of f (X ; θf ) and Z?

A: Set up a game between two competing players, f and r . Independence
arises at the Nash equilibrium.

Train f and r simultaneously by minimax optimization of

θ̂f , θ̂r = arg min
θf

(
max
θr

(Lf (θf )− Lr (θr ))

)
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Adversarial Neural Networks

Adversary r attempts to infer z from p(signal|data) emitted by the
classifer f , increasing the loss function E = Lf (θf )− Lr (θr ).

f circumvents penalization by decorrelating p(signal|data) with z .
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Adversarial Neural Networks
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Figure 14: Standard neural network
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Figure 15: Adv. trained neural network

• Enforce 95% BG rejection

• Signal: b → sγ

• Background: e+e− → qq̄

Smooth interpolation from sideband 4
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Adversarial Neural Networks
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Figure 16: Standard neural network
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Figure 17: Adv. trained neural network

• Enforce 95% BG rejection on 1 ab−1 of simulated e+e− collisions at
Belle II

• Signal: b → sγ

• Background: e+e− → qq̄

Smooth interpolation from sideband 4
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No Free Lunch
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Figure 18: Posterior p(signal|data) versus ∆E
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Figure 19: Competition reduces separation
power

• Posterior probabilities relatively uniform 4

• Tradeoff between optimal discrimination and reduced systematic
error. 7
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