Sequence Modelling of Collision Events with Convolutional Architectures

Justin Tan, Phillip Urquijo

2nd IML Workshop @ CERN

April 11, 2018

Motivation

Processes with a variable number of intermediate/final state particles occur in many contexts, e.g.

- Analysis of flavor anomalies
- Measurements of observables in rare decays
- Vertexing
- Jet tagging

Traditionally, encode the event information in a fixed-dimensional vector as input to an ML algorithm, but this incurs some information loss.

Want a performant model that natively handles variable length sequences, while being competitive with current approaches.

Flavor Physics

Precision flavor physics

Compare precise experimental measurements of observables in *B* decays with theoretical predictions; interpret discrepancies in terms of new physics.

• Look for indirect effects of heavy unknown particles in low energy observables of *B* mesons.

Penguin processes:

Radiative: $b \rightarrow q\gamma$ Electroweak: $b \rightarrow q\ell^+\ell^-, \quad q = s, d$

• FCNCs, forbidden at leading order \rightarrow rare + hard to observe!

Figure 1: Radiative $b \rightarrow s\gamma$ (top) and electroweak $b \rightarrow s\ell^+\ell^-$ (bottom) penguins

Belle II

- Next generation *B*-physics experiment at SuperKEKB, an e^+e^- collider in Japan.
- Target: $50 \times 10^9 \ e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ events by 2024.
- Large statistics → high precision measurements of penguin decay observables: B_{s(d)γ}, A_{CP}.

Figure 2: Belle II e^+e^- collision simulation.

Penguin hunting

Mass distribution for 1 ab⁻¹ of simulated e^+e^- collisions at Belle II. Background: $e^+e^- \rightarrow q\bar{q}$, $q = u, d, s, c + e^+e^- \rightarrow b\bar{b}$ Signal: $b \rightarrow s\gamma$

Event Reconstruction

- Reconstruct $B_{\mathrm{sig}} \rightarrow X\gamma$ from combining the radiative photon γ with the hadronic final state X
- Hadronic X is explicitly reconstructed in as many final states as possible (\approx 50)

$$\begin{split} X &= \mathcal{K}^+ \pi^+ \pi^- \\ \text{or } (\mathcal{K}^0_S \to \pi^+ \pi^-) \ \pi^+ \pi^- \\ \text{or } \pi^+ (\pi^0 \to \gamma \gamma) (\eta \to \gamma \gamma), \text{etc} \end{split}$$

How can we capture the full event information of variable-length decay sequences?

Neural Networks

Identify 'relevant' degrees of freedom, iteratively integrate out 'irrelevant' degrees of freedom.

Natural Language

Condition on the entire sequence to infer a distribution over some property.

Prediction $p(\cdot|\text{Luke went to the beach and caught a})$

Translation *p*(some English | du français)

Classification p (positive | Despite the constant negative press covfefe)

Modern approach:

Introduce a learnable projection of each word into a continuous vector space, condition on the **learnt representation**, \mathcal{R} , usually the output of a neural network acting over the embedded words.

12K

Donald J. Trump Oreal OrealDonaldTrump · 38m Despite the constant negative press covfefe

25K

13 20K

$\mathsf{Collision} \; \mathsf{event} \; \leftrightarrow \; \mathsf{sentence}, \; \mathsf{particle} \; \leftrightarrow \; \mathsf{word}$

Particles are words in our 'language', described by a vector of 'morphemes':

 $\mathbf{x}_{particle} = (p^{\mu}, \{r, \theta, \phi\}) \leftarrow \text{kinematic} + \text{topological features}$

e.g. Rare decay $B^+ \to \rho^+ \gamma$, where $\rho^+ \to \pi^+ \pi^0$ and $\pi^0 \to \gamma \gamma$, represent event as an ordered sequence of particle vectors

$$\{\mathbf{x}\}_{\mathsf{input}} = \left[\left(\mathbf{x}_{\mathcal{B}}, \mathbf{x}_{\rho}, \mathbf{x}_{\gamma}, \mathbf{x}_{\pi^{+}}, \mathbf{x}_{\pi^{0}}, \ldots \right)^{T} \right]_{|\mathbf{p}| \text{-ordered}}$$

Given the observed particle sequence, how probable is this correctly reconstructed signal?

 $p(positive \mid Despite the constant negative press covfefe) \ll 1$

$$p(signal \mid {\mathbf{x}_B, \mathbf{x}_{\rho}, \mathbf{x}_{\gamma}, ...}) = ?$$

Natural Language x Particle Physics

Decays can be very short $\ensuremath{\textcircled{\sc b}}$

$$B \to \mathcal{K}^+ \pi^- \gamma, \quad \text{input:} \left[\left(\mathbf{x}_B, \mathbf{x}_{\mathcal{K}^+}, \mathbf{x}_{\pi^-}, \mathbf{x}_{\gamma} \right)^T \right]_{|\mathbf{p}| \text{-ordered}}$$

Or very long $\ensuremath{\textcircled{}}$

$$B \to [\mathcal{K}^0_S \to \pi^+ \pi^-][\pi^0 \to \gamma\gamma][\pi^0 \to \gamma\gamma]\pi^+ \pi^- \gamma$$

$$\mathsf{input:} \left[\left(\mathbf{x}_B, \mathbf{x}_{K_S^0}, \mathbf{x}_{\pi^+}^{K_S^0}, \mathbf{x}_{\pi^-}^{K_S^0}, \mathbf{x}_{\pi_{(1)}^0}^{0}, \mathbf{x}_{\pi_{(2)}^0}^{0}, \mathbf{x}_{\gamma_1}^{\pi_{(1)}^0}, \mathbf{x}_{\gamma_2}^{\pi_{(2)}^0}, \mathbf{x}_{\gamma_1}^{\pi_{(2)}^0}, \mathbf{x}_{\gamma_2}^{\pi_{(2)}^0}, \mathbf{x}_{\pi^+}, \mathbf{x}_{\pi^-}, \mathbf{x}_{\gamma} \right)^T \right]_{|\mathbf{p}| - \mathbf{o}}$$

Challenging because of combinatorics for high-multiplicity states!

Instead of having a fixed ('global') representation of features present in all events, we use a variable-sized event representation to encode more information.

Event Representations

Classical representation

- Reliance on low-dimensional engineered features information loss
- Can only use restrictive global event information input is unordered set of features common to all event types
- No a priori knowledge of intrinsic structure of collision event

Sequential representation

- Inclusion of elementary kinematic features should contain all information needed to derive high-level features
- Condition network response on all particle candidates in event \rightarrow less information discarded \checkmark
- Introduce prior over event structure (composed of discrete units with related attributes) ✓

Two approaches to sequence analysis - recurrent and convolutional.

Recurrency

Recurrent models compress the entire history into a fixed-length vector, allowing long-range correlations to be understood.

- Read input sequence $X = (\mathbf{x}_1, \dots, \mathbf{x}_T)$
- Accumulate information in the hidden state h = (h₁,..., h_T) through repeated matrix operations/nonlinearities

The **hidden state** h_n encodes knowledge about all particles encountered up to step n.

Figure 4: Network state factorizes into repeated application of hidden function \mathcal{H} .

Recurrency

The last hidden state h_T is a learnable encoding of the entire event.

- Input sequence: $X = (\mathbf{x}_1, \dots, \mathbf{x}_T)$
- Compute hidden vector sequence $h = (\mathbf{h}_1, \dots, \mathbf{h}_T)$

$$h_n = \mathcal{H} \left(V \left[x_n \oplus h_{n-1} \right] + b_h \right)$$

$$y_n = Wh_n + b_n, \quad |y_n| = \# \text{ classes}$$

$$p(c|X) = \operatorname{softmax}(y_T), \quad \operatorname{softmax}(v)_i = \frac{\exp v_i}{\sum_j \exp v_j}$$

Figure 5: Network state factorizes into repeated application of hidden function \mathcal{H} .

In practice: Recurrent networks

arXiv:1409.0473

- Depth: Multiple layers increases memory and representational capacity with linear computational increase
- Bidirectionality: Observe 'future' and 'past' context at each stage
- Attention: Impractical to encode all information about the sequence in a fixed size vector. Focus on subsets of information (different particles / features in the input collision) during prediction.
- But: Sequential operations cannot exploit parallelization ...

Convolutional Networks

Convolution: Capture local correlations between features in small regions of the input.

Subsampling: Coarse-graining: Extract important features from localalized input regions.

Stacking convolutional layers: Build high-level features from first order local features \rightarrow hierarchical feature development. Useful where local correlations in the input are crucial to prediction of global properties (e.g. computer vision, speech generation).

Convolutions

```
Image: [height, width, colors]
Collision: [1, # particles, features]
```

- Define filters which project raw features ('colors') into an embedding space to capture local correlations.
- Each filter runs over *n* adjacent particles simultaneously, projecting features from different particles into a common embedding space.
- Convolve filters across the input width, operating over each 'particle *n*-gram' (groups of *n* adjacent particles) in the sequence.
- Each filter is only aware of a local region of the input width, stack convolutional + subsampling layers to derive higher-order correlations/features

Convolutions

Input: Sequence $X = (\mathbf{x}_1, \dots \mathbf{x}_T) \in \mathbb{R}^{1 imes T imes n_{features}}$

Slide over particle *n*-grams with kernel k⁽ⁿ⁾ ∈ ℝ^{1×n×K⁽ⁿ⁾}, with K⁽ⁿ⁾ the embedding dimension, where n = {2...6}:

$$\mathbf{c}^{(n)} = (\mathbf{k}^{(n)} \star X) \in \mathbb{R}^{1 \times (T-n) \times K^{(n)}}$$

• Subsample (max/avg pool) over 2nd dimension to extract important features:

$$\mathbf{p}^{(n)} \in \mathbb{R}^{1 imes 1 imes K^{(n)}}$$

- Concatenate along first dimension: $f = concat(\{p^{(n)}\}_n, axis=1)$
- $\mathbf{f} \in \mathbb{R}^{1 \times j \times K}$, \leftarrow stack of extracted feature maps, $j = |\mathsf{filters}|$
- Subject ${\bf f}$ to further [3,1] convolutions to understand correlations between different feature maps, flatten + dense layer for final classification

Experiments

Run over simulated e^+e^- collisions at Belle II, with $\sqrt{s} = 10.58$ GeV. Signal: Radiative penguin $b \to s\gamma$ $(B \to X_s\gamma)$ Background: $e^+e^- \to q\bar{q}$ and $e^+e^- \to B\bar{B}$, where both B mesons undergo non-penguin decay.

- Train: $\approx 23 \times 10^6,$ test fraction 0.1
- Validation: $\approx 2\times 10^6$

Represent the same events in two ways:

Fixed feature vector: Input to dense network

Variable-length sequence of vectors: Input to convolutional / recurrent nets

Recurrent architectures tend to overfit, but convolutional networks exhibit good generalization even with no explicit regularization.

Results

Convergence

Kernel weight sharing in convolutional networks have a strong regularizing effect.

Convergence

Performance

Learnable parameters

Kernel weight sharing in CNNs + parameter-less pooling layers \rightarrow reduced learnable parameters relative to recurrent/dense networks.

Computation Time

Recurrent architectures perform sequential computation \rightarrow unable to exploit the parallelization capabilities of modern GPUs.

Architecture	AUC [†]	Training time Conv. training time	Learnable parameters
Convolutional	0.988 ± 0.03	1	$\approx 4.5 \times 10^5$
Recurrent	0.985 ± 0.04	3.9	$pprox 1.2 imes 10^6$
Dense*	0.956 ± 0.04	0.6	$pprox 2.3 imes 10^6$

TensorFlow 1.7 | CUDA 9.0 | 2 Tesla P100s

*Same events, but cast in sequential representation for conv./recurrent models - on average lower # features/event used for dense network.

[†]Training rerun 5 times with different random seeds

Outlook

- Aim to serve as a modular part of analysis.
 - Integration into the software framework @ Belle II
- Significant mass/energy sculpting
 - Interface with adversarial training

Figure 7: Adv. trained neural network

Figure 6: Standard neural network

Summary

- Draw parallels between event structure / natural language
- Represent a collision event as an ordered set of feature vectors, one for each reconstructed particle candidate
 - ► Capture more complete picture of event than classical approaches
- Convolutional architectures permit sequential event representation
 - Capture local interactions between particle candidates through convolution + subsampling
 - \blacktriangleright Long-range / global relations can be understood by stacking convolutional layers \rightarrow increase in receptive field
- Why convolutions?
 - ► Fast! Exploits parallelization, unlike recurrent approaches
 - Outperforms recurrent/dense approaches

Improved background rejection \rightarrow better sensitivity to new physics.

Thanks for listening

Code + Docs

github.com/Justin-Tan/particle2seq

justin.tan@coepp.org.au

Backup

Implementation

- Data collection: ROOT
- ▶ To Python: uproot
- Preprocessing: Spark/Pandas
- Workflow scalable to $\mathcal{O}(100)$ GB worth of training data.
- TensorFlow:
 - Open-source: No black boxes.
 - ► Fine-grained control over entire architecture. ✓
- Train:
 - 64 epochs, scheduled annealing
 - SGD + Nesterov momentum

Motivation

- Non-SM contributions enter through hypothetical new TeV-scale particles running within the loop \rightarrow interference with known amplitudes.
- Strong constraints on NP by measurement of inclusive/exclusive BR, CP asymmetries

Figure 8: Example of SM radiative penguin decay for $b \rightarrow s\gamma$ [2]

Figure 9: Example of hypothetical SUSY contribution to radiative decay [2]

Words as Vectors

Distributional Hypothesis: Words that occur in the same context share semantic meaning.

- Represent words in a continuous vector space to group semantically similar words.
 - Learned vectors explicitly encode linguistic regularities and patterns: $\vec{v}(Madrid) - \vec{v}(Spain) + \vec{v}(France) \approx \vec{v}(Paris)$
 - Inability to represent idiomatic phrases v(*California*) ≠ v(*Golden*) + v(*State*) - overcome with phrase based models.

Takeaway: Encode semantic relationships in directions in induced vector space.

Figure 10: Semantic relationships as approximate linear relations (projected into 3D)

Stacking Recurrent Layers

A Deep RNN increases memory and representational capacity with linear scaling.

• The output sequence of one layer forms the input sequence for the next

$$h_t^{(n)} = \mathcal{H}\left(V^{(n)}\left[h_t^{(n-1)} \oplus h_{t-1}^{(n)}\right] + b_h^{(n)}\right)$$

Figure 11: Hidden state of layer n accepts hidden state of layer n - 1 as input [5]

Signal Identification

• Identify signal peak in:

•
$$\Delta E = E_{beam} - E_B$$

• $M_{bc} = \sqrt{E_{beam}^2 - |\vec{p}_B|^2}$

- Background processes not fully captured by simulation
- Rely on interpolation of smooth background spectrum from sidebands beneath signal peak

Learning algorithms preferentially select signal-like events \rightarrow background spectrum distortion \rightarrow uncontrollable systematic uncertainties

Background Sculpting

Classifier output $f(X; \theta_f) \sim p(\text{signal}|\text{data})$. Only accept events above a given posterior probability.

Figure 12: Continuum M_{bc} before (green) and after (blue) suppression

Figure 13: Signal Mbc before (green) and after (blue) suppression

Background looks like signal post-selection.

Tension between optimal discrimination and reduced systematics!

5.290

Controlling Systematics

- Physics variables of interest: $z \in \mathcal{Z}$ (e.g. $\Delta E, M_{inv}$)
- Classification function: $f(X; \theta_f)$ gives probabilities of data X being signal events.
- $f(X; \theta_f)$ and z should be independent random variables

$$p(f(X;\theta_f) = s|z) = p(f(X;\theta_f) = s|z')$$

Q: How can we enforce independence of $f(X; \theta_f)$ and Z?

A: Set up a game between two competing players, f and r. Independence arises at the Nash equilibrium.

Train f and r simultaneously by minimax optimization of

$$\hat{ heta_f}, \hat{ heta_r} = rg\min_{ heta_f} \left(\max_{ heta_r} \left(\mathcal{L}_f(heta_f) - \mathcal{L}_r(heta_r)
ight)
ight)$$

Adversarial Neural Networks

Adversary *r* attempts to infer *z* from p(signal|data) emitted by the classifier *f*, increasing the loss function $E = \mathcal{L}_f(\theta_f) - \mathcal{L}_r(\theta_r)$.

f circumvents penalization by decorrelating p(signal|data) with z.

Adversarial Neural Networks

Figure 14: Standard neural network

- Enforce 95% BG rejection
- Signal: $b \rightarrow s\gamma$
- Background: $e^+e^-
 ightarrow qar q$

Smooth interpolation from sideband \checkmark

Figure 15: Adv. trained neural network

Adversarial Neural Networks

Figure 16: Standard neural network

Figure 17: Adv. trained neural network

- Enforce 95% BG rejection on 1 ab^{-1} of simulated e^+e^- collisions at Belle II
- Signal: $b \rightarrow s\gamma$
- Background: $e^+e^-
 ightarrow qar q$

Smooth interpolation from sideband \checkmark

No Free Lunch

Figure 18: Posterior p(signal|data) versus ΔE

- Posterior probabilities relatively uniform
- Tradeoff between optimal discrimination and reduced systematic error. X