
Sequence Modelling of Collision Events
with Convolutional Architectures

Justin Tan, Phillip Urquijo

2nd IML Workshop @ CERN

April 11, 2018

Justin Tan Neural Sequence Modelling 1

Motivation

Processes with a variable number of intermediate/final state particles
occur in many contexts, e.g.

• Analysis of flavor anomalies

• Measurements of observables in rare decays

• Vertexing

• Jet tagging

Traditionally, encode the event information in a fixed-dimensional vector
as input to an ML algorithm, but this incurs some information loss.

Want a performant model that natively handles variable length
sequences, while being competitive with current approaches.

Justin Tan Neural Sequence Modelling 2

Flavor Physics

Precision flavor physics

Compare precise experimental
measurements of observables in B decays
with theoretical predictions; interpret
discrepancies in terms of new physics.

• Look for indirect effects of heavy
unknown particles in low energy
observables of B mesons.

Penguin processes:

Radiative: b → qγ

Electroweak:
b → q`+`−, q = s, d

• FCNCs, forbidden at leading order →
rare + hard to observe!

W−

t

u, d

b

u, d

s

γ

b

W

t

s

l l

Figure 1: Radiative b → sγ (top) and

electroweak b → s`+`− (bottom) pen-
guins

Justin Tan Neural Sequence Modelling 3

Belle II

• Next generation B-physics experiment at SuperKEKB, an e+e−

collider in Japan.

• Target: 50× 109 e+e− → Υ(4S)→ BB̄ events by 2024.

• Large statistics → high precision measurements of penguin decay
observables: Bs(d)γ ,ACP.

Figure 2: Belle II e+e− collision simulation.

Figure 3: Sensitivity to ACP (red) in
b → s(d)γ decays.

Justin Tan Neural Sequence Modelling 4

Penguin hunting
Mass distribution for 1 ab−1 of simulated e+e− collisions at Belle II.
Background: e+e− → qq̄, q = u, d , s, c + e+e− → bb̄
Signal: b → sγ

5.2700 5.2725 5.2750 5.2775 5.2800 5.2825 5.2850 5.2875 5.2900

Mbc (GeV)

0

50000

100000

150000

200000

250000

300000

350000

E
ve

n
ts

/b
in

qq̄

BB̄

b→ sγ

Justin Tan Neural Sequence Modelling 5

Event Reconstruction
• Reconstruct
Bsig → Xγ from
combining the
radiative photon γ
with the hadronic
final state X

• Hadronic X is
explicitly
reconstructed in as
many final states as
possible (≈ 50)

X = K+π+π−

or (K 0
S → π+π−) π+π−

or π+(π0 → γγ)(η → γγ), etc.

How can we capture the full event information of variable-length decay
sequences?

Justin Tan Neural Sequence Modelling 6

Neural Networks
Identify ’relevant’ degrees of freedom, iteratively integrate out ’irrelevant’
degrees of freedom.

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

Justin Tan Neural Sequence Modelling 7

Natural Language

Condition on the entire sequence to infer a distribution over some
property.

Prediction p(·|Luke went to the beach and caught a)

Translation p(some English | du français)

Classification p (positive | Despite the constant negative press covfefe)

Modern approach:
Introduce a learnable projection of each word into a continuous vector
space, condition on the learnt representation, R, usually the output of
a neural network acting over the embedded words.

Justin Tan Neural Sequence Modelling 8

Natural Language x Particle Physics see also arXiv:1702.00748

Collision event ↔ sentence, particle ↔ word
Particles are words in our ’language’, described by a vector of ’morphemes’:

xparticle = (pµ, {r , θ, φ})← kinematic + topological features

e.g. Rare decay B+ → ρ+γ, where ρ+ → π+π0 and π0 → γγ, represent event
as an ordered sequence of particle vectors

{x}input =
[
(xB , xρ, xγ , xπ+ , xπ0 , . . .)T

]
|p|-ordered

Given the observed particle sequence, how probable is this correctly
reconstructed signal?

p (positive | Despite the constant negative press covfefe)� 1

p (signal | {xB , xρ, xγ , ...}) = ?

Justin Tan Neural Sequence Modelling 9

Natural Language x Particle Physics

Decays can be very short ,

B → K+π−γ, input:
[
(xB , xK+ , xπ− , xγ)T

]
|p|-ordered

Or very long /

B → [K 0
S → π+π−][π0 → γγ][π0 → γγ]π+π−γ

input:

[(
xB , xK 0

S
, x

K 0
S

π+ , x
K 0

S

π− , xπ0
(1)
, xπ0

(2)
, x
π0

(1)
γ1 , x

π0
(1)
γ2 , x

π0
(2)
γ1 , x

π0
(2)
γ2 , xπ+ , xπ− , xγ

)T
]
|p|-o

Challenging because of combinatorics for high-multiplicity states!

Instead of having a fixed (’global’) representation of features present in
all events, we use a variable-sized event representation to encode more
information.

Justin Tan Neural Sequence Modelling 10

Event Representations

Classical representation

• Reliance on low-dimensional engineered features - information loss

• Can only use restrictive global event information - input is unordered
set of features common to all event types

• No a priori knowledge of intrinsic structure of collision event

Sequential representation

• Inclusion of elementary kinematic features should contain all
information needed to derive high-level features 4

• Condition network response on all particle candidates in event →
less information discarded 4

• Introduce prior over event structure (composed of discrete units with
related attributes) 4

Two approaches to sequence analysis - recurrent and convolutional.

Justin Tan Neural Sequence Modelling 11

Recurrency arXiv:1303.5778

Recurrent models compress the entire history into a fixed-length vector,
allowing long-range correlations to be understood.

• Read input sequence X = (x1, . . . , xT)

• Accumulate information in the hidden state h = (h1, . . . ,hT)
through repeated matrix operations/nonlinearities

The hidden state hn encodes knowledge about all particles encountered
up to step n.

Figure 4: Network state factorizes into repeated application of hidden function H.

Justin Tan Neural Sequence Modelling 12

Recurrency
The last hidden state hT is a learnable encoding of the entire event.

• Input sequence: X = (x1, . . . , xT)

• Compute hidden vector sequence h = (h1, . . . ,hT)

hn = H (V [xn ⊕ hn−1] + bh)

yn = Whn + bn, |yn| = # classes

p(c |X) = softmax(yT), softmax(v)i =
exp vi∑
j exp vj

Figure 5: Network state factorizes into repeated application of hidden function H.

Justin Tan Neural Sequence Modelling 13

In practice: Recurrent networks arXiv:1409.0473

• Depth: Multiple layers increases
memory and representational capacity
with linear computational increase

• Bidirectionality: Observe ’future’ and
’past’ context at each stage

• Attention: Impractical to encode all
information about the sequence in a
fixed size vector. Focus on subsets of
information (different particles /
features in the input collision) during
prediction.

• But: Sequential operations cannot
exploit parallelization ...

Justin Tan Neural Sequence Modelling 14

Convolutional Networks

Convolution: Capture local correlations between features in small
regions of the input.

Subsampling: Coarse-graining: Extract important features from
localalized input regions.

Stacking convolutional layers: Build high-level features from first order
local features → hierarchical feature development. Useful where local
correlations in the input are crucial to prediction of global properties (e.g.
computer vision, speech generation).

Justin Tan Neural Sequence Modelling 15

Convolutions arXiv:1404.2188

Image: [height, width, colors]

Collision: [1, # particles, features]

• Define filters which project raw features (’colors’) into an embedding
space to capture local correlations.

• Each filter runs over n adjacent particles simultaneously, projecting
features from different particles into a common embedding space.

• Convolve filters across the input width, operating over each ’particle
n-gram’ (groups of n adjacent particles) in the sequence.

• Each filter is only aware of a local region of the input width, stack
convolutional + subsampling layers to derive higher-order
correlations/features

Justin Tan Neural Sequence Modelling 16

Convolutions

Input: Sequence X = (x1, . . . xT) ∈ R1×T×nfeatures

• Slide over particle n-grams with kernel k(n) ∈ R1×n×K (n)

, with K (n)

the embedding dimension, where n = {2 . . . 6}:

c(n) = (k(n) ? X) ∈ R1×(T−n)×K (n)

• Subsample (max/avg pool) over 2nd dimension to extract important
features:

p(n) ∈ R1×1×K (n)

• Concatenate along first dimension: f = concat({p(n)}n, axis=1)

• f ∈ R1×j×K ,← stack of extracted feature maps, j = |filters|
• Subject f to further [3, 1] convolutions to understand correlations

between different feature maps, flatten + dense layer for final
classification

Justin Tan Neural Sequence Modelling 17

Experiments

Run over simulated e+e− collisions at Belle II, with
√
s = 10.58 GeV.

Signal: Radiative penguin b → sγ (B → Xsγ)

Background: e+e− → qq̄ and e+e− → BB̄, where both B mesons
undergo non-penguin decay.

• Train: ≈ 23× 106, test fraction 0.1

• Validation: ≈ 2× 106

Represent the same events in two ways:

Fixed feature vector: Input to dense network

Variable-length sequence of vectors: Input to convolutional / recurrent nets

Recurrent architectures tend to overfit, but convolutional networks exhibit good
generalization even with no explicit regularization.

Justin Tan Neural Sequence Modelling 18

Results

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Belle II Simulation: e+e− events -
√
s = 10.58 GeV

Convolutional (area = 0.989)

Recurrent (area = 0.985)

Dense (area = 0.958)

Justin Tan Neural Sequence Modelling 19

Convergence

0 200 400 600 800 1000

Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

ss
-e

nt
ro

py

Recurrent train

Recurrent test

Conv. train

Conv. test

0 200 400 600 800 1000

Iterations

10−1

C
ro

ss
-e

nt
ro

py

Recurrent train

Recurrent test

Conv. train

Conv. test

Kernel weight sharing in convolutional networks have a strong regularizing
effect.

Justin Tan Neural Sequence Modelling 20

Convergence

0 200 400 600 800 1000

Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

ss
-e

nt
ro

py

Recurrent test

Conv. test

0 200 400 600 800 1000

Iterations

10−1

100

C
ro

ss
-e

nt
ro

py

Recurrent test

Conv. test

Dense test

Justin Tan Neural Sequence Modelling 21

Performance

Learnable parameters

Kernel weight sharing in CNNs + parameter-less pooling layers →
reduced learnable parameters relative to recurrent/dense networks.

Computation Time

Recurrent architectures perform sequential computation → unable to
exploit the parallelization capabilities of modern GPUs.

TensorFlow 1.7 | CUDA 9.0 | 2 Tesla P100s

Architecture AUC† Training time
Conv. training time

Learnable parameters

Convolutional 0.988± 0.03 1 ≈ 4.5× 105

Recurrent 0.985± 0.04 3.9 ≈ 1.2× 106

Dense* 0.956± 0.04 0.6 ≈ 2.3× 106

*Same events, but cast in sequential representation for conv./recurrent models - on
average lower # features/event used for dense network.
†Training rerun 5 times with different random seeds

Justin Tan Neural Sequence Modelling 22

Outlook

• Aim to serve as a modular part of analysis.
I Integration into the software framework @ Belle II

• Significant mass/energy sculpting
I Interface with adversarial training

−0.3 −0.2 −0.1 0.0 0.1 0.2

∆E (GeV)

0

1

2

3

4

5

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 6: Standard neural network

−0.3 −0.2 −0.1 0.0 0.1 0.2

∆E (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 7: Adv. trained neural network

Justin Tan Neural Sequence Modelling 23

Summary

• Draw parallels between event structure / natural language

• Represent a collision event as an ordered set of feature vectors, one
for each reconstructed particle candidate

I Capture more complete picture of event than classical approaches

• Convolutional architectures permit sequential event representation
I Capture local interactions between particle candidates through

convolution + subsampling
I Long-range / global relations can be understood by stacking

convolutional layers → increase in receptive field

• Why convolutions?
I Fast! Exploits parallelization, unlike recurrent approaches
I Outperforms recurrent/dense approaches

Improved background rejection → better sensitivity to new physics.

Justin Tan Neural Sequence Modelling 24

Thanks for listening

Code + Docs

github.com/Justin-Tan/particle2seq

justin.tan@coepp.org.au

Justin Tan Neural Sequence Modelling 25

https://github.com/Justin-Tan/particle2seq
mailto:justin.tan@coepp.org.au

Backup

Implementation

I Data collection: ROOT
I To Python: uproot
I Preprocessing: Spark/Pandas

• Workflow scalable to O(100) GB worth
of training data.

• TensorFlow:
I Open-source: No black boxes. 4
I Fine-grained control over entire

architecture. 4

• Train:
I 64 epochs, scheduled annealing
I SGD + Nesterov momentum

Justin Tan Neural Sequence Modelling 27

Motivation

• Non-SM contributions enter through hypothetical new TeV-scale
particles running within the loop → interference with known
amplitudes.

• Strong constraints on NP by measurement of inclusive/exclusive BR,
CP asymmetries

W−

t

u, d

b

u, d

s

γ

Figure 8: Example of SM radiative pen-
guin decay for b → sγ [2]

χ−
1

t̃

u, d

b

u, d

s

γ

Figure 9: Example of hypothetical SUSY
contribution to radiative decay [2]

Justin Tan Neural Sequence Modelling 28

Words as Vectors
Distributional Hypothesis: Words that occur in the same context share
semantic meaning.
• Represent words in a continuous vector space to group semantically

similar words.
I Learned vectors explicitly encode linguistic regularities and patterns:
~v(Madrid)− ~v(Spain) + ~v(France) ≈ ~v(Paris)

I Inability to represent idiomatic phrases
~v(California) 6= ~v(Golden) + ~v(State) - overcome with phrase based
models.

Takeaway: Encode semantic relationships in directions in induced vector
space.

Figure 10: Semantic relationships as approximate linear relations (projected into 3D)

Justin Tan Neural Sequence Modelling 29

Stacking Recurrent Layers

A Deep RNN increases memory and representational capacity with linear
scaling.

• The output sequence of one layer forms the input sequence for the
next

h
(n)
t = H

(
V (n)

[
h

(n−1)
t ⊕ h

(n)
t−1

]
+ b

(n)
h

)

Figure 11: Hidden state of layer n accepts hidden state of layer n − 1 as input [5]

Justin Tan Neural Sequence Modelling 30

Signal Identification

• Identify signal peak in:
I ∆E = Ebeam − EB

I Mbc =
√

E 2
beam − |~pB |2

• Background processes not fully captured
by simulation

• Rely on interpolation of smooth
background spectrum from sidebands
beneath signal peak 5.22 5.24 5.26 5.28 5.3

Ev
en

ts
 /

(0
.0

08
 G

eV
)

0

10

20

30

40

50

60

70

80

(GeV)bcM

!"#$%&'# !"('&)

Learning algorithms preferentially select signal-like events → background
spectrum distortion → uncontrollable systematic uncertainties

Justin Tan Neural Sequence Modelling 31

Background Sculpting

Classifier output f (X ; θf) ∼ p(signal|data). Only accept events above a
given posterior probability.

5.270 5.275 5.280 5.285 5.290
Mbc (GeV)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background post-cut

BG

Figure 12: Continuum Mbc before (green) and
after (blue) suppression

5.270 5.275 5.280 5.285 5.290
Mbc (GeV)

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

ev
en

ts
/b

in

Signal post-cut

Signal

Figure 13: Signal Mbc before (green) and after
(blue) suppression

Background looks like signal post-selection.
Tension between optimal discrimination and reduced systematics!

Justin Tan Neural Sequence Modelling 32

Controlling Systematics

• Physics variables of interest: z ∈ Z (e.g. ∆E ,Minv)

• Classification function: f (X ; θf) gives probabilities of data X being
signal events.

• f (X ; θf) and z should be independent random variables

p(f (X ; θf) = s|z) = p(f (X ; θf) = s|z ′)

Q: How can we enforce independence of f (X ; θf) and Z?

A: Set up a game between two competing players, f and r . Independence
arises at the Nash equilibrium.

Train f and r simultaneously by minimax optimization of

θ̂f , θ̂r = arg min
θf

(
max
θr

(Lf (θf)− Lr (θr))

)

Justin Tan Neural Sequence Modelling 33

Adversarial Neural Networks

Adversary r attempts to infer z from p(signal|data) emitted by the
classifer f , increasing the loss function E = Lf (θf)− Lr (θr).

f circumvents penalization by decorrelating p(signal|data) with z .

Justin Tan Neural Sequence Modelling 34

Adversarial Neural Networks

−0.3 −0.2 −0.1 0.0 0.1 0.2

∆E (GeV)

0

1

2

3

4

5

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 14: Standard neural network

−0.3 −0.2 −0.1 0.0 0.1 0.2

∆E (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 15: Adv. trained neural network

• Enforce 95% BG rejection

• Signal: b → sγ

• Background: e+e− → qq̄

Smooth interpolation from sideband 4

Justin Tan Neural Sequence Modelling 35

Adversarial Neural Networks

5.270 5.275 5.280 5.285 5.290
Mbc (GeV)

0

20

40

60

80

100

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 16: Standard neural network

5.270 5.275 5.280 5.285 5.290
Mbc (GeV)

0

10

20

30

40

50

60

70

N
or

m
al

iz
ed

ev
en

ts
/b

in

Background - 0.95 BG rejection

Background

Figure 17: Adv. trained neural network

• Enforce 95% BG rejection on 1 ab−1 of simulated e+e− collisions at
Belle II

• Signal: b → sγ

• Background: e+e− → qq̄

Smooth interpolation from sideband 4

Justin Tan Neural Sequence Modelling 36

No Free Lunch

−0.2 −0.1 0.0 0.1 0.2

∆E (GeV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
N

P
os

te
ri

or

Traditional NN

Adversary NN

Figure 18: Posterior p(signal|data) versus ∆E

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.75

0.80

0.85

0.90

0.95

1.00

1.05

T
ru

e
P

os
it

iv
e

R
at

e

Standard Deep (auc = 0.991)

Adversarially Trained (auc = 0.979)

Figure 19: Competition reduces separation
power

• Posterior probabilities relatively uniform 4

• Tradeoff between optimal discrimination and reduced systematic
error. 7

Justin Tan Neural Sequence Modelling 37

