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Overview — scope of this talk

Different domains (or different ML problems in a domain) — different metrics

This talk: event selection to minimize statistical errors in HEP point estimation analyses*
(not tracking — not systematic errors — not searches for new physics — not trigger)
(e.g. cross-section measurements by counting or by distribution fits; mass measurements by distribution fits)

Metrics based on Fisher information are appropriate for this specific HEP problem
- directly related to the ultimate goal, statistical errors on parameter estimates

They also meet some more general specificities of the HEP domain

- focus only on the signal and treat the background as a nuisance
- can be used in fits of differential distributions

*| discussed other domains and other HEP problems in an IML talk | gave in January (see backup slides)
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https://indico.cern.ch/event/679765/contributions/2814562

Outline

« Evaluation (for generic binary classifiers)
— ROC AUCSs vs. Fisher information metrics

* Training (for Decision Trees)
— Gini impurity and Shannon entropy vs. Fisher information metrics

The same Fisher information metrics can be used for both evaluation and training
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Binary classifier evaluation —reminder

Discrete classifiers: Scoring classifiers:
the confusion matrix ROC and PRC curves
1
true class: Positives true class: Negatives =
(HEP: signal Stot) (HEP: background Btot) E 0.8 N
S
classified as Positives True Positives (TP) ks 06 ROC |
(HEP: selected) (HEP: selected signal Ssel) [ 0al N
o
classified as Negatives True Negatives (TN) e 02l g:gz : gtgz 10 |
(HEP: rejected) (HEP: rejected bkg Brej) =S . Btot = Stot * 100
0

| | |
0 0.2 0.4 0.6 0.8 1

FPR (background efficiency)
TP TP FP FP
1l p——— s
(Suel % Sw) | (Beed \{g% (Bee) = [ ) r = T
FN TN 2 0.8 .
(Sre' (Brej) 8 Y
— .
MED: prevalence 2 0.6~ PRC ]
TP TP TN I > .
TPR= PPV=__— TNR=-_—- =1-FPR *" St + B £0.41- .
TP + FN TP + FP TN + FP o e =
a --=-+ Btot = Stot
Different domains e 0.2 Btot = Stot * 10
HEP: “efficiency” HEP: “purity” HEP: “background rejection” — Focus on different concepts o | e Btot = Stot * 100
Seel Ssel Bl — Different terminologies % 0!2 04 0[6 08 1
= — Tk 1—e=1— ) .
R P S+ B « Biot Examples from three domains: TPR (efficiency or recall)
- Medical Diagnostics (MED) . ) )
does Mr. A. have cancer? Purity can be studied using ROC
IR: “ 1’ IR: « Pt o ) . A . .
Teca precision - Ifterrien Feleve) () only if prevalence is also known
Google documents about “ROC” p= €5Stot o 1
. - - € 1—m,
MED: “sensitivity” - MED: “specificity” - HEP event selection (HEP) €sStot + €0 Biot 1+ e
select Higgs event candidates

Alternative: PN curve — TP vs FP (less used)
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Binary classifier evaluation — HEP vs. other domains

* Medical Diagnostics — maximize diagnostic accuracy

— qualitatively symmetric — all patients important, both truly ill (TP) and truly healthy (TN)
* guantitatively: prevalence may be unknown, varying in time, from very balanced to extremely unbalanced

— evaluation now based on ROC because insensitive to prevalence — now questioned for imbalanced data
+ simplest accuracy definition (ACC): “probability of correct test result” AcC = ﬁii?&m = mxTPR+(1-7,) x TNR
+ area under the ROC curve (ROC AUC): “probability that test result of randomly chosen

1 1
sick subject indicates greater suspicion than that of randomly chosen healthy subject’ |*Y¢ = A Codep =1 L évdes

* Information Retrieval (IR) —» maximize effectiveness in retrieving relevant documents
— gualitatively asymmetric — distinction between relevant and non-relevant documents
» guantitatively: large class imbalance, irrelevant documents outnumber relevant documents
— evaluation based on the PRC: precision and recall (purity and signal efficiency)
» unranked: F-measures, e.g. F1-score T
* ranked: precision at k, Mean Average Precision, area under the PRC curve (AUCPR) AUCPR = A p des

« HEP event selection — minimize measurement errors

— gualitatively asymmetric — only signal is important, background is a nuisance

* quantitatively: large class imbalance, background outnumbers signal, prevalence fixed by physics cross-sections
— IMO evaluation metrics must include purity and prevalence (as in IR): TN and AUC are irrelevant
— fits to differential distributions are largely a specificity of HEP — existing metrics do not describe them
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[FIP1] Simplest HEP example: cross-section by counting

Counting experiment: measure a single number N, ..

Well-known since decades: maximize £.*p to minimize statistical errors
— global signal efficiency and global purity (“1 single bin”)

Neas — Lepoyp 1 1 1
(O = TR | G = G Lo = g S

Relevant metric Is as*p [NB: relevant only for o, by counting, should not be misused for other cases]
— metric in [0, 1] - 1 if keep all signal and no background
— higher is better (qualitatively relevant)

— directly related to AG (numerically relevant): ratio of 1/A6? to 1/AG? if background were 0
« first example of Fisher Information Part metric: ‘FIP1’

Single “operating point” used (cut on scoring classifiers) — to compare classifiers:
— find max e,*p for each classifier — chose classifier with highest max €.*p

— from PRC: |FIP1 = maxegp

€s

— from ROC (plus prevalence): |FIPL=max ="

€s Ts
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More generally — Fisher Information Part metrics

Fit 6 from a binned multi-dimensional distribution
— expected counts y; = f(x;,0)dx = £*S;(0)+b, - depend on parameter 8 to fit

Statistical error related to Fisher informatign (Cramegr-Rao lower bound)
(207 =var®) = L where [T=3 () = [F(55) @

i=1

— binned fit - combine independent measurements in each bin, weighted by information

Compare classifier to “ideal classifier” that keeps all signal and rejects all background

m m

2 2
(ideal classifier) __ l d5S; I(real classifier) _ o l aS;
I@ = 2 S, (69 VS. 0 ;Ezpz X 5, \ 90

— ¢ and p, — local signal efficiency and local purity in the it" bin

Fisher Information Part: available information retained by the classifier

— FIP in [0,1] — 1 if keep all signal and no background s ié‘p' ) i(@_gg)g
. . .. real classifier : L S;\ 0

— higher is better - maximize FIP FIP — I{’-d ey = = —
. ~ R X o ) 1deal classiner m 1 ;

— directly related to AB: (aftes! dssiten)2 = L (Agideal lssite) 2 Zy gg (%_9)

. . 195; 1
SpeCIaI case: Cross-section measurements 9:(75 —> S.90.

— global ¢*p is the FIP (‘FIP1’) for measuring 8=0¢ in a 1-bin fit (counting experiment)

Os
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Optimal partitioning in binned fits —information inflow

m a0y 2
Information about 6 in a binned fit z, - Zyi_ (ng)
i=1 7"

Can | reduce the error AB by splitting bin y; into two separate bins? vi = wi + zi

oz dw Z
1(04)2_ 1 (O(Hfﬂrzl'))g:(w%j)s zﬁ%) >0

: 2
— i.e. is the “information inflow” positive? Mi (di) -

00 ) witz 00 w; zi (wi +2;)
— information increases (errors on parameters decrease) if L ‘9'“’* £ ia;g
Zy
1 6y1 1 681'
« Effect of background: y,=¢,S;(0)+b, = =P
- on i if o, L05w i&
information increases if Pw 550 * Py 5. 98
10
— therefore: try to partition the data into bins of equal p; — ;6'
10S; 1
« for cross-section measurements, §aa = split into bins of equal p,

Two important practical consequences:
— 1. use the scoring classifier to partition the data, not to reject events
— 2. information can be used also for training classifiers like decision trees
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Three examples — FIP1, FIP2, FIP3

» [EIP1] cross-section measurements by counting
— Global event selection/cut — discrete classifier (one single “operating point” of the scoring classifier)

— Counting experiment with one single bin — global efficiency and purity are relevant
— Cross-section: %% = ai — signal events all have the same weight, only event counts matter
l S

— In this talk: described in the previous slides

» [FIP2] cross-section measurements by fits to 1-D scoring classifier distributions
— Keep all (preselected) events — scoring classifier partitions events into bins (use all “operating points”)
— Distribution fit — local purity in each bin is relevant (local efficiency = 1, keep all events)

. 10S; 1 . .
— Cross-section: s_a_el =—— signal events all have the same weight, only event counts matter
i s

— In this talk: main focus of the following slides

« [FIP3] other parameter measurements by fits to distributions
— Keep all (preselected) events — scoring classifier partitions events into bins (use all “operating points”)
— Distribution fit — local purity in each bin is relevant (local efficiency = 1, keep all events)

— Example: mass fit %% varies bin by bin — signal events have different event-by-event weights

— In this talk: just a few comments at the end (work in progress)
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[FIP2] cross-section measurement by fitting
the 1-D scoring classifier distribution

* Information and FIP in fit for o of a (generic) binned distribution:

— If all events are kept and partitioned into bins (local efficiency in each bin = 1): vi =ni =si+b

. 1 0s; 1
— Cross-section measurement: S5, = -
. my o\ 1S 1 , m
— Information: % -3 (52)- OB DR D

— Ratio to no-background case: |rrpa - 2zt Ly b

« These formulas are valid for o fits irrespective of the variable used for binning
— If events are binned according to the scoring classifier D (FIP2): use the ROC and/or PRC!

— By definition, ROCs (PRCs) describe how &g, (o/€,) are related when varying the cut on D
» See details in the next slide

Accept if D<Dy,; (€5=Diny) Reject if D>Dy,, D<O0
sF T T E| -
E 10 | —— Signal (10k events) 1 T T I 1— - =
- 4f  —— Background (100k events) — = | e
S 0k Tosl D<1 S 08l |
o c i
- 10 ¢ @ g
1) —
& 10’ £osl/ ROC | 806 PRC .
n Q —
c = N
o < 04 | 204 .
w @ E]
--- Background (10k events) i’ 0l Btot = Stot Sl Btot = Stot ..
...... Background (1000k events) = a Y-4—— Btot = Stot * 10 -| > Y-4—— Btot = Stot * 10 .
| | E L RETPIPY Btot = Stot * 100 [-oi EIEIEY Btot = Stot * 100
0.6 0.8 1.0 0 | | | L 0 L L | e
Discriminating variable D 0 0.2 0.4 0.6 N 0.8 0 0.2 0.'4' 0.6 0.8
D < 0 FPR (background efficiency) TPR (efficiency or recall) D < 1

simple example: D distribution flat for signal
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FIP2 from the ROC (+prevalence) or from the PRC

* From the previous slide:

* FIP2 from the ROC (+prevalence -.-

Ssel = Shot €5
Bsel = Biot €

s; = dSse1 = Stot des

[—
b; = dBsc1 = Biot dep

 FIP2 from the PRC:

Ssel = Shot €5

8; = dSsel = Stot des

e
FIP2 = Lfnl Pisi
2oi—15i

Stot

_ 1

- Biot @
L+ g a.

" Sior + B ) -

—

FIP2: integrals on ROC and PRC,
more relevant to HEP than AUC or AUCPR!
(well-defined meaning for distribution fits)

1
FIPsz
0o l+

des

1—m. dey

s des

Bsel = Ssel ( B 1) bi = dBgse) = Spot [dfs (_ - 1) - fs_g] 1
P P p

Compare FIP2(ROC) to AUC

1 1
AUC:/esdeb = lf/ebdes
0 0

pdes

T
FIPQ:/W
01—"35

T
AUCPR:fpdes
0

 Easier calculation and interpretation from ROC (+prevalence) than from PRC

— region of constant ROC slope* = region of constant signal purity

— decreasing ROC slope = decreasing purity
» technicality (my Python code): convert ROC to convex hull** first

1.0 1.0
—_ c
> o T
0 | de = | |
5 0.8 * de,: proportional 3 0.8 dp
iv] dsb to #signal events o des
£ 0.6 in bin 2.0.6
o S
© de/de,: related =
c 0.4 s b e 204
o to purity in bin =
2 ROC ] PRC
o 0.2 4 02— prevalence N=0.5
[ 2 (Btot=Stot)
= o
o
0.0 T | | T 0.0 | | T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

FPR (background efficiency)

TPR (efficiency or recall)

1.0

0.0 T T T
*Convert ROC to convex hull 00 02 04 06
- ensure decreasing slope

Compare FIP2(PRC) to AUCPR

1.0
5
£ 0.8 [
3 . ROC
£ 06—
7]
g
S 0.4
o |
& 0.2+ *e original ROC
= ‘ —— ROC convex hull

I
0.8 1.0

FPR (background efficiency)

- avoid staircase effect that would artificially inflate FIP2
(bins of 100% purity: only signal or only background)

*ROC slopes are also discussed in medical literature
in relation to diagnostic likelihood ratios [Choi 1998],
but their use does not seem to be widespread(?)
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10°
101

Events per 0.01 bin

107
10°
10°
104

10°

Events per 0.01 bin

10?
10!

Events per 0.01 bin

FIP2=0.6683

o
(=]

It 5.=0.9987+0.0122 fb
ected error from FIP2: 0.012
Il FExpecte
H Expected background (N=30000)
4 Observed (N=39769)

Sanity check

 Three random forests

(on the same 2-D pdf)
— reasonable
— undertrained

0.8
Classifier output D

FIP2=0.5223

o
=]

0.2

T 5.=1.0026+0.0137 fb \>
ected error from FIP2: 0.013

BN Expecte
Hl Expected background (N=30000)
H  Observed (N=39769) .

— overtrained

it o, from the distribution

of the classifier output
Errors consistent with FIP2

R . 1 » .
‘ I Ag(real classifier)\2 _ Ag(ldeal classifier)\2

0.4 0.6 0.8 1.0 ( ) FIP( )
Classifier output D

FIP2=0.5870

ol vl 1

0.0 0.2

A. Valassi —

5.=0.9988+0.0130 fb
ected error from FIP2: 0.013
BN Expecte
H Expected background (N=30000)
4  Observed (N=39769)

My development environment: SciPy ecosystem,
0.4 0.6 o8 1.0 iminuit and bits of rootpy, on SWAN at CERN.
Classifier output D Thanks to all involved in these projects!
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...... 55 (TRAINING Lui=1000) TMID_K - LinearDiscrimmantanalysis

* Prepared a model just to show that AUC is misleading
— pdf with two useful features and a third random one o
— two classifiers, each trained only one useful feature
— two prevalence scenarios: S/B=5 and S/B=1/5

ROC

X2 (out of 3)
o
TPR (signal efficiency)

= AUC=0.7998, F1P2~0.8656 (classifer validation)
* AUC=0.8000, FIP2=0.8667 (TRUE PDF UM m
T

« Same AUC (0.80) in all four cases ,
— it is well known that AUC is insensitive to prevalence e h .
— ROC curves of the two classifiers cross : ‘ '

* Low prevalence: FIP2 favors classifier #1 (0.63 > 0.33)

X1 (out of 3)

» High prevalence: FIP2 favors classifier #2 (0.87 < 0.93)

- Signal (5000 events)

» Do not choose the best classifier based on AUC
— not for a cross-section fit on the classifier output, nor in general!

= AUIC=0.0000, FIP2=0.0245 (classifer ion)
* AUC=0.8000, FIP2=0.9259 (TRUE POF uMm
T

N
IS

0.2 o]
X2 (out of 3) FPR (ba(kgvo ind effc iency)

PSSR IR St A
High prevalence é’;ﬁ R

e ,;h *g
««a" h'
0 J&r.-r LA V

=
s —
S o ™
g
K] =
=3
Low prevalence 3
o Rh ) i -27
| 3 sl
-4-1" + Signal (1000 events) — AUC=0.8021, FIP2=0.6271 (classifer %
i Background (5000 events) * AUC=0.8000, FIP2=0.6296 (TRUE pur un Vy &
| e - T 1 —
-4 0 02 08 10 - -4
Xo (out of 3) FPR (background emcuency)
«  Signal (5000 events)
: i o0 s Background (1000 events)
PR % 5 i N T B L B A S B S S BRI 3
om0 -6 T T 1 T
5 -4 -2 0 2 4 6
g Xo (out of 3)
= X =27
S
s
S
X = .
—4—
- Signal (1000 events) FI P 2 VS Al “
Background (5000 events)
+  Signal (1000 events) AUC=0.7995, FIP2=0.3273 (clas: jon) =6
* AUC=0.8000, FIP2=0.3333 IVRUE PDF I.Mm T T T T

Background (5000 events)
B T ey =
-4 -2 o 2 4 0.2 s
X2 (out of 3) FPR (backgvound e"lc iency)

-4 =2 0 2 4 6
Xo (out of 3)
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FIP2 for training decision trees

Decision tree — recursively partition the training set into nodes of different purities

Given a node (n,s) with n total events and s signal events:
— (if 1 do decide to splitit) how do | best split node (n,s) into two nodes (n,,s,) + (N,Sg)?
— choose the Left/Right splitting that maximizes the gain in a appropriate figure of merit

Two criteria are most often used (e.g. in sklearn):
— Gini impurity — “Gini diversity index” in CART algorithm (Breiman et al. 1984)
« derived from a metric for economic inequality, adapted for ecological diversity (Simpson-Gini index)
— Shannon information (Shannon entropy) — a concept from information theory
— Maximize loss of impurity or entropy at each split

Fisher information metrics (e.g. FIP2) can also be used for training decision trees
— Maximize the total information (about signal event cross-section) in the whole system
— Advantage: use the same metric for evaluation and training
— Advantage: train the classifier to minimize measurement errors on physics parameters
— Advantage: total sum over all bins is a well defined meaningful concept

Note a conceptual difference setting HEP apart (again): qualitative class asymmetry
— Gini and Shannon impurity/diversity/entropy indices consider all classes as equal
— Fisher information (about a property of the signal) focuses only on the signal
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Training decision trees: FIP2 vs Gini vs entropy

1.0

 Information or negative impurity in one node (higher is better): 0-5_Wmmabm%@oeg:a\
— negative Gini impurity —  —mH(p) = nix[-2pi(1 = p3)] £ oor ?\5‘(\9‘\2’2“«\86
— negative Shannon entropy — —niH(pi) = nix[pilogy pi + (1 — pi) logy(1 — p;)] ~05- o
— Fisher information about 6, — —niH(p) = nix [f] 10 N,

0.0 0.2 0.4 0.6 0.8 1.0
13

* The best split (n,s)=(n,,s,)+(ng,Sg) Maximizes information gain (impurity loss):
— information gain (higher is better) — A= —-niH(pr) —nrH(pr) +nH(p)

» The shapes of the impurity functions look very different, but...
— ...Information gain is the same for Gini and Fisher! (modulo a constant factor)

2 2 2 _ 2 Acis
s s 51+ sk SIL.MR — SRNL G SL SR SL+ SR

AFisher =L + R _ ( ) = ( ) o= —sr,|1——)—sgp[1—— +(SL+SR) 1-— = AFisher
ny  ng ng +ng npng(ng +ng) 2 nr, ng nr +ng

— the interpretation is clearer for Fisher: extra reduction in measurement error on o,
« unless this is overtraining (briefly discussed in the next slide)

Technicality: user-defined criteria for DecisionTree’s will only be available in the next sklearn release
— | implemented a DecisionTree from scratch, heavily reusing the excellent iCSC notebooks by Thomas Keck (many thanks!)
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https://github.com/thomaskeck/MultivariateClassificationLecture

FIP2: same metric for evaluation and training

TM2D03 - FIM_ RandomForest TMZDO3 - FIM_RandomForest TM2D03 - FIM_RandomForest

10
AUC (limit=0.9107) FIP2 (limit=0.6830)
50~ mmm 0.9711 mean (0.0106 std) 50| T 0.8198 mean (0.0364 std) . .
o8 § [min, max] = [0.942, 0.991) 5 [min, max] = [0.731, 0.902] ° U S I n g th e Sam e m etrIC for
>
g 3 407 3 ’ . .
o 5 15— :
oc |5 T TN evaluation and training eases
@ 7 :
= " o :
5 2 2 § . .
the interpretation of results
= TRAINING TRAINING : TRAINING
- 0.2 100 training sets 10| 100 training sets 5 100 training sets
training set size: training set size H training set size:
100 sig, 300 bkg 100 sig, 300 bkg : 100 sig, 300 bkg i . .
Y 0.2 04 06 08 1o %o 02 04 06 08 . 10 Oo‘o\ 2 04 06 . 0.8 ] * Exa‘m ple: Ove rtral n I ng
FPR (background efficiency) AUC ) FIP2 . .. .
10 TM2003 - FIM_RandomForest TM2DO3 - FIM_RandomForest TM2003 - FIM_RandomForest — F I P 2 fro m tral n I n g IS
0 AUC (limit=0.9107) 50 FIP2 (limit=0.6830)
0.8743 0.0087 std 0.6324 0.0133 std .

oo oo T (min, max) = (0840, 0.851) g | Gin man - (0352, 0.660) systemati cal |y above the
= o < 40 . . .
theoretical limit of the pdf
£ g 40 g 30
— you may trace back every
e i & 20 . . ..

; VALIDATION “ 0. VAUDATION “ VALIDATION Increase In FI P2 from tral ni ng
. 0.2 100 training sets 100 training sets 10 100 training sets R .
e S T e , to one node split in the tree

" o0 0-FZPF( (bagll‘;ruundU;Sﬁciencg-)a e 00-0 0!2 D-‘4 :L:?: ’ 00 . o2 0.‘4 Folfz D!B e ¢ Spl Ittl ng a nOde (n ’S) g ives I n

 RPRCII Ly " TM2003 - FIM_RandomForest o TM2D03 - FIM_RandomForest ave rage an |nf0rmat|0n gal n :

....... 40| ™= 0.0968 mean (0.0149 std) 50| W 0.1875 mean (0.0383 std)

0.8 . .% [min, max] = [0.061, 0.131] ,_g [min, max] = [0.088, 0.277] A in, s S(TL — S)
= = e expecte ( s ) = m
oc | x (n—=1)
éu.a— :..220_ gm—

E 100 training sets 100 training sets
02 107 15059 300 bk 59 1o Soobeg
‘ig%da'imn set S\ZE: ;Sgﬂat[mn set SIZtE:
== AUC=0.9107, FIP2=0.6830 (TRUE PDF LIMIT) x training se X training sel .
00 : | | -l . — Note: what really matters is that FIP2 from

0.0

T T T
0.2 0.4 0.6 0.8 1.0

FPR (background efficiency)

-1.0 -0.5 0.0 0.5

AAUC (VALIDATION - TRAINING)

T
-1.0 -0.5 0.0 0.5 1.0

AFIP2 (VALIDATION - TRAINING)

OVERTRAINING example — random forests with min_samples_leaf=1

CERN

2
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validation is as close as possible to the limit
» some overtraining (a value of FIP2 from
training higher than the limit) is necessary
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[FIP3] other parameter fits — just a few ideas

The general ideas for o, fits apply to fits for other parameters 6, e.g. mass fits

The difference is that different events have different event-by-event sensitivities to 6
— for instance, should compute 13 65‘9“ = A,lig 5'2;‘3 from the MC generator for each event a
» this can be positive or negative (e.g. left and right of a mass peak)
— remember, partition the data into bins of equal p; (1 9s;
a6 1 ds; s; 1 Os; 1 Z %

« for unweighted MC events s= > w=>_1 and this is equal to PO = mis 00— m

T = .
acbini achini acbini

For instance, perform a 2-D fit for 6 on the distributions of (1@) and pi

— train a regression tree for (——) to partition signal events in blns of (

— train a classification tree for p; to partltlon signal and background events in bins of p, (— aS‘)

In summary: the distinction between classification and regression blurs even further
— not simply “select signal, reject background”
— keep all events, in different partitions according to signal purity and sensitivity to 6
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Conclusions

Different domains (or different ML problems in a domain) need different metrics

| discussed some general properties of HEP event selection — two, in particular:
— signal is relevant, background is a nuisance: use asymmetric metrics, TN and AUC are irrelevant
— we use distribution fits: need (the right) integrals over all operating points of scoring classifiers, e.g. FIP2

| discussed Fisher information metrics relevant to statistical errors in HEP point estimation
— qualitatively (higher is better) and numerically (related to parameter errors) relevant — unlike AUC
— can be used both for evaluation and training

Distribution fits are a specialty of HEP — decision trees are their natural ML companions
— we could probably gain by developing and using the right metrics for evaluating and training them

More generally, it would be useful IMO to do more research on ML fundamentals for HEP
— define the ultimate quantitative goals first, then choose metrics for evaluation, and possibly training too
— which relevant ML metrics should be used for searches, for systematic errors, for event reconstruction...

| am preparing a paper on this, thank you for your feedback on this presentation!
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Backup slides
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Backup — statistical error in binned fits

« Data: observed event counts n; in m bins of a (multi-D) distribution f(x)
—expected event counts y, = f(x;,0)dx depend on a parameter 8 that we want to fit
—[NB here f is a differential cross section, it is not normalized to 1 like a pdf]

« Fitting 8 is like combining the independent measurements in the m bins

—expected error on n; in bin x;is An; = \/y; =/f(xi,8) dx
—expected error on f(x;,0) in bin x; is Af = f * An/n, = Vf / dx

. ~ . . 1 af\? 1 8f2\/cﬂz of\? dz
—expected error on estimated 6; in bin x;Is 57:— = (%) N (—9) (Tf) = (@) =
2

(bin dx)

— expected error on estimated 8 by combining the m bins is (ﬁ) /% (ﬁ)Qdm

* A bit more formally, joint probability for observing the n;is P(:¢) = ][ —-
— Fisher information on 6 from the data available is then =

m

olog Pns0)]” & N~ L (am T l(af)
Ig_E[ % } l.e. I@—Eyé((?g) _ff o

— The minimum variance achievable (Cramer-Rao lower bound) is (a6 = var(d) >

6
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Slides from the
January IML talk

https://indico.cern.ch/event/679765/contributions/2814562
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IML

ROC curves, AUC’s and alternatives
INn HEP event selection
and in other domains

Andrea Valassi (IT-DI-LCG)
Inter-Experimental LHC Machine Learning WG — 26" January 2018

Disclaimer: | last did physics analyses more than 15 years ago
(mainly statistically-limited precision measurements and combinations — e.g. no searches)
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Why and when | got interested in this topic

1.0,

T. Blake at al., Flavours of Physics: the machine learning
challenge for the search of v — ppp decays at LHCH
(2015, unpublished). https://kaggle2.blob.core.windows.net/
I competitions/kaggle /4488 fmedia/lhcb_description_official.

pdf (accessed 15 January 2018)
Weight=0.5

f ---------------------------------------------------- ALY, The 2015 LHCb Kaggle ML Challenge
= ' - Event selection in search for t>pup
Q° """"""""""""""""""""""""""" IS - Classifier wins if it maximises a weighted ROC AUC

o
)

Y - Simplified for Kaggle — real analysis uses CLs

0772002222207

085 0.2 1.0
False positive rate (FPR)

Figure 3: Weights assigned to the different segments of the ROC curve for
the purpose of submission evaluation. The z axis is the False Positive Rate
(FPR), while the y axis is True Positive Rate (TPR).

 First time | saw an Area Under the Roc Curve (AUC)

« My reaction: what is this? is this relevant in HEP?
—try to understand why the AUC was introduced in other scientific domains
—review common knowledge for optimizing several types of HEP analyses

Questions for you — How extensively are AUC’s used in HEP, patrticularly in event selection?
Are there specific HEP problems where it can be shown that AUC’s are relevant?
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Spoiler! —What | will argue in this talk

« Different disciplines / problems — different challenges — different metrics
—Tools from other domains — assess their relevance before using them in HEP

* Most relevant metrics in HEP event selection: purity p and signal efficiency &,
—“Precision and Recall” — HEP closer to Information Retrieval than to Medicine

—“True Negatives”, ROCs and AUCs irrelevant in HEP event selection”
* AUCs — Higher not always better. Numerically, no relevant interpretation.

« HEP specificity: fits of differential distributions — binning / partitioning of data
—local efficiency and purity in each bin — more relevant than global averages of p,g,

— scoring classifiers — more useful for partitioning data than for imposing cuts
- optimize statistical errors on parameter estimates — metrics based on local p*eg;

« optimal partitioning: split into bins of uniform purity p; and sensitivity Si%

* ROCs are relevant in particle-ID — but this is largely beyond the scope of this talk
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Outline

Introduction to binary classifiers: the confusion matrix, ROCs, AUCs, PRCs

Binary classifier evaluation: domain-specific challenges and solutions
— Overview of Diagnostic Medicine and Information Retrieval
— A systematic analysis and summary of optimizations in HEP event selection

Statistical error optimization in HEP parameter estimation problems
— Information metrics and the effect of local efficiency and purity in binned fits
— Optimal binning and the relevance of local purity

Conclusions
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Binary classifiers: the “«confusion matrix”

« Data sample containing instances of two classes: Ntot = Stot + Btot
— HEP: signal Stot = Ssel + Srej
— HEP: background Btot = Bsel + Brej

 Discrete binary classifiers assign each instance to one of the two classes
— HEP: classified as signal and selected Nsel = Ssel + Bsel
— HEP: classified as background and rejected Nrej = Brej + Srej

true class: Positives + true class: Negatives -

(HEP: signal) (HEP: background)
. . .. T. Fawcett, Introduction to ROC analysis, Pattern
classified as: positives True Positives (TP) Recogaition Letters 27 (2006) 861 dot10.1016/
j.patrec. .10.01
(HEP: selected) (HEP: selected signal Ssel) -

classified as: negatives True Negatives (TN)
(HEP: rejected) (HEP: rejected bkg Bre))

| will not discuss multi-class classifiers (useful in HEP particle-ID)
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The confusion matrix about the confusion matrix...

Different domains — focus on different concepts — different terminologies

| will cover three domains:

TP TP | FP FP
(Ssel (Sse) | (Bsel

B - Medical Diagnostics (MED)

does Mr. A. have cancer?
FN TN
(Srej) (Brej)

- Information Retrieval (IR)
Google documents about “ROC”

TP

- HEP event selection (HEP)
TP TN lect Hi didat
TPR = PPV = TNR. = —1_-FPR select 199S event candidates
TP + FN TP + FP TN + FP
HEP: “efficiency” HEP: “purity” HEP: “background rejection”
Ssel Ssel 1 1 Bsel
€g — = — € = —
Stot r Ssel + Bsel ’ Btot
MED: prevalence
IR: “recall” IR: “precision” g
T, = tot
Stot + Brot
MED: “sensitivity”

MED: “specificity”

A. Valassi — Fisher information metrics

2"d IML Workshop — 11t April 2018 27/18




Discrete vs. Scoring classifiers — ROC curves

Reject if D<Dy,, Accept if D>Dthr (e<=1-Dy,) )
[ 4
._g 105 .......... —— Signal (10k events) s =
= 104 ________________________ —— Background (100k events) % § 0.8
S 10oEell e el 1 S
o L0 e e, £ 0.6
2 .- o ol o o 3]
T of e o
g GF T T T ity e . € 0.4
e s . i P o
10 . -
-1f ---- Background (10k events) 3 e 0.2
10 k... Background (1000k events) Dth “--|5 =
—2 | | | | ]
10 55 0.2 0.4t 0.6 0.8 Lo 0

Discriminating variable D

ROC

---- Btot = Stot

—=—— Btot = Stot * 10

------ Btot = Stot * 100

AUC=0.900

\ | | |
0.2 0.4 0.6 0.8
FPR (background efficiency)

 Discrete classifiers — either select or reject — confusion matrix

« Scoring classifiers — assign score D to each event (e.g. BDT)
—ideally related to likelihood that event is signal or background (Neyman-Pearson)
— from scoring to discrete: choose a threshold — classify as signal if D>Dthr

1

* ROC curves describe how FPR(g,) and TPR(g,) are related when varying Dthr
—used initially in radar signal detection and psychophysics (1940-50’5)

A. Valassi —

Fisher information metrics

W. W. Peterson, T. G. Birdsall, W. C. Fox, The the-
ory of signal detectability, Transactions of the IRE Pro-

J. A Swets, Is Ther S y Threshold?, Science 134

fessional Group on Information Theory 4 (1954) 171. (1961) 168. doi:10. 112‘3/ CCCCCCC 134 3473.168

doi:10.1109/TIT.1954.1057460
‘W. P. Tanner, J. A. Swets, A decision-making theo

SES 1N
of visual detection, Psxchologlcal Review 61 (1954), 401 dOl 10.1037 /1 0040 4

doi:10.1037 /h005 8700

JASV\L V\ P. Tanner, T. G. Birdsall, Dec:

n pro-
eption, Psychological Review 68 (1961) 301
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ROC and PRC (precision-recall) curves

- Different choice of ratios in the confusion matrix: g, €, (ROC) or p,e; (PRC)

« When Btot/Stot (“prevalence”) varies - PRC changes, ROC does not

Reject if D<Dy,, | Accept if D>Dy, (e,=1-Dy,,)
I

T
—— Signal (10k events)

[
ﬁ —— Background (100k events) E
o E
o
)
o
I s -
c o  Tt=-L_ T veta, . e
]
>
w E
_1F ---- Background (10k events)
10 ... Background (1000k events) D
-2 | I th ! .
10 00 0.2 0.4 r 0.6 08 1.0

Discriminating variable D

1 1m == 3
3 5 |
g 08 AUC=0.900 { 2 0.8 .
] 0
S o
£ o06f ROC - sos- PRC o
— o
© >
504} - 204 N
2 | ---. Btot = Stot a | --- Btot = Stot
& 0.2 —— Btot = Stot * 10 | = 02— Btot = Stot * 10
e R Btot = Stot * 100 T |- Btot = Stot * 100
| | | | | | | LT
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
FPR (background efficiency) TPR (efficiency or recall)
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Understanding domain-specific challenges

« Many domain-specific details — but also general cross-domain questions:

—1. Qualitative imbalance?
* Are the two classes equally relevant?
— 2. Quantitative imbalance?
* Is the prevalence of one class much higher?

— 3. Prevalence known? Time invariance?
* Is relative prevalence known in advance? Does it vary over time?

- 4. DI m en S i O n al ity? Scal e i nva” an Ce? M. Sokolova, G. Lapalme, A Systematic Analysis of

Performance Measures for Classification Tasks, Infor-
mation Processing and Management 45 (2009) 427.

* Are all 4 elements of the confusion matrix needed? & o/ i 500003002
* Is the problem invariant under changes of some of these elements?

—5. Ranking? Binning?
« Are all selected instances equally useful? Are they partitioned into subgroups?

 Point out properties of MED and IR, attempt a systematic analysis of HEP
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- Medical Diagnostics (MED)
does Mr. A. have cancer?

Medical diagnostics (1) =

X. H. Zhou, D. K. McClish, N. A. ()I chowski, Sta-

and ML researCh tistical Methods in Diagnostic Medicine (Wiley, 2002).

doi:10.1002/9780470317082

 Binary classifier optimisation goal: maximise “diagnostic accuracy”
— patient / physician / society have different goals — many possible definitions

« Most popular metric: “accuracy”, or “probability of correct test result”:

TP + TN TP (correctly
ACC = = 1o xTPR+(1—7,)x TNR diagnosed as ill
TP + TN + FP + FN Tl % (1=ms)x TN (correctly

diagnosed as healthy)

— Symmetric — all patients important, both truly ill (TP) and truly healthy (TN)
—Also “by far the most commonly used metric” in ML research in the 1990s

! ” i, J. A. Swets, Measuring the yofﬂfimg c system

Science 210 (1988) 1285. doi 10 1126/ 328 7615

e Since the 903 — shift from ACC to ROC In t'he MJED and ML fields

F. J. Provost, T. Fawcett, R. Kohavi, The Case against

stimatios j r Comparin, g[ d ctio «Hg thms,

—TPR (sensitivity) and TNR (specificity) studied separately 9;%;;:*‘“ N eyt “C“a
* solves ACC limitations (imbalanced or unknown prevalence — rare dlseases, epidemics)

— Evaluation often AUC-based — two perceived advantages for MED and ML fields

» AUC interpretation: “probability that test result of randomly chosen sick subject
indicates greater suspicion than that of randomly chosen healthy subject”

* ROC comparison without prior D, choice (prevalence-dependent D, choice)

APBadl-Thu of the area d the ROC J. A. Hanley BJM\IlThmsangd fhea

n the evaluation of machine learn algorithms, under a recei. T operati ng cl characteristic (ROC) e, Ra-
Pa tt 0 Rec gnltl 3'3 (1997) 1145. doi 10 1016/’50031 diology 143 (1982) 29. doi:10. 1143/ adiology.143.1. rOBS 4T
3203(96)00142 2
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Medical diagnostics (2)

and ML research

« ROC and AUC metrics — currently widely used in the MED and ML fields
— Remember: moved because ROC better than ACC with imbalanced data sets

 Limitation: evidence that ROC not so good for highly imbalanced data sets
— may provide an overly optimistic view of performance

— PRC may provide a more informative assessment of performance in this case
* PRC-based reanalysis of some data sets in life sciences has been performed

» Very active area of research — other options proposed (CROC, cost models)
— Take-away message: ROC and AUC not always the appropriate solutions

S. I Swamidass, C.-A. Azencott, K. Daily, P. Baldi, A

J. Davis, M. Goadrich, The relationship between Precision- CROC stronger than ROC: measuring, visualizing and

Recall and ROC curves, Proc. 23rd Int. Conf. on Ma-

chine Learning (ICML °06), Pittsburgh, USA (2006).

doi:10.1145/1143844.1143874
C. Drummond, R. C. Holte, Ezplicitly representing expected

cost: an alternative to ROC representation, Proc. 6th Int.

Conf. on Knowledge Discovery and Data Mining (KDD-00),
Boston, USA (2000). doi:10.1145/347090.347126

D. J. Hand, Measuring classifier performance: a coherent
alternative to the area under the ROC curve, Mach Learn

(2009) 77: 103. doi:10.1007/510994-009-5119-5
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optimizing early retrieval, Bioinformatics 26 (2010) 1348.
doi:10.1093 /bioinformatics/btq140

D. Berrar, P. Flach, Caveats and pitfalls of ROC analysis in
clinical microarray research (and how to avoid them), Brief-
ings in Bioinformatics 13 (2012) 83. doi:10.1093/bib/bbr008
H. He, E. A. Garcia, Learning from Imbalanced Data,
IEEE Trans. Knowl. Data Eng. 21 (2009) 1263.
doi:10.1109/TKDE.2008.239

T. Saito, M. Rehmsmeier, The Precision-Recall Plot Is More
Informative than the ROC Plot When FEvaluating Binary
Classifiers on Imbalanced Datasets, PLoS One 10 (2015)
e0118432. doi:10.1371/journal.pone.0118432
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- Information Retrieval (IR)

I N fo 'Mm at | on R et I | ev al Google documents about “ROC”

* Qualitative distinction between “relevant” and “non-relevant” documents
—also a very large guantitative imbalance

 Binary classifier optimisation goal: make users happy in web searches
— minimise # relevant documents not retrieved — maximise “recall” i.e. efficiency
— minimise # of irrelevant documents retrieved — maximise “precision” i.e. purity
—retrieve the more relevant documents first — ranking very important
—maximise speed of retrieval

* IR-specific metrics to evaluate classifiers based on the PRC (i.e. on g, p)

—unranked evaluation — e.g. F-measures F_= ole +(11 D/p
+(1-

* a €[0,1] tradeoff between recall and precision — equal weight gives F1=

280

E+p

—ranked evaluation — precision at k documents, mean average precision (MAP), ...
* MAP approximated by the Area Under the PRC curve (AUCPR)

C. D. Manning, P. Raghavan, H. Schiitze, Introduction to
Information Retrieval (Cambridge University Press, 2008).
https:/ /nlp.stanford.edu/IR-book NB: Many different of meanings of “Information”!
IR (web documents), HEP (Fisher), Information Theory (Shannon)...
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- HEP event selection (HEP)

Fl rSt (S| m p | est) H EP exam p I - select Higgs event candidates

« Measurement of a total cross-section o, in a counting experiment

* To minimize statistical errors: maximise £.,*p (well-known since decades)
— global efficiency .=S_./S,,; and global purity p=S_./(S¢+Bse) — 1 single bin”

(Aoy) o o 8 TV i Ewe —
5 5 8 Stot=0.50%(Stot+Btot)
—— ToyMod MAX=0.684
===+ SigDet MAX=0.500
08-.... BkgDet MAX=0.666 N

- RANDOM MAX=0.500

* To compare classifiers (red, green, blue, black):
—in each classifier — vary Dthr cut — vary €,and p
— find maximum of €,*p (choose “operating point”)
— chose classifier with maximum of € *p out of the four

o
o
I
|

-
. -
~a . a0
TmmE e .

TPR*PPV (efficiency*purity)
-
T
|

o
]
I

|

EffPur

o \ \ \ \
0 0.2 0.4 0.6 0.8 1

« £.*p: metric between 0 and 1 2 e
— qualitatively relevant: the higher, the better
—numerically: fraction of Fisher information (1/error?) available after selecting
— correct metric only for o, by counting! — table with more cases on a next slide
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Examples of issues with AUCs — crossing ROCs

» Choice of classifier easy if one ROC “dominates” another (higher TPR VFPR)
— PRC “dominates” too, then — and of course AUC is higher, too

* Choice is less obvious if ROCs cross!

« Example: cross-section by counting
— maximise product e,p — i.e. minimise the statistical error Ac?
—depending on S,,/B,;, a different classifier (green, red, blue) should be chosen
—in two out of three scenarios, the classifier with the highest AUC is not the best

« AUC is qualitatively irrelevant (higher is not always better)
» AUC is quantitatively irrelevant (0.75, 0.90, so what? — g.,p instead means 1/Ac?...)

1 T T
0.8 1 T T T 1 T T T 1 T T
£ Stot=0.95%(Stot+Btot) . Stot=0.50*(Stot+Btot) Stot=0.05%(Stot+Btot)
3 . —— ToyMod MAX=0.950 —— ToyMod MAX=0.684 —— ToyMod MAX=0.400
g et : _ --- SigDet MAX=0.950 — 0| ~7"" SiaDet MAX=0.500 _ ---- SigDet MAX=0.499
806 - RED: 5081 BkgDet MAX=0.974 < 308 BkgDet MAX=0.666 1 208 BkgDet MAX=0.095
5 . il ROC = RANDOM MAX=0.950 g RANDOM MAX=0.500 s RANDOM MAX=0.050
& : g 2 o B
5 04 + HIGHEST o6 4 goer- RED: N gosi BLUE: -
o N ’ g o 5
g ~AUC g y £ |LOWEST . . & |LOWEST . EfftPur
£ o2} —— ToyMod AUC=0.900 | £0.47 GREEN: 5:'0.47 ERROR e e | §0,47 ERROR. .~ — .
-- SigDet AUC=0.750 z JIE 1
R RN BkgDet AUC=0.750 E LOWEST g - : % p H
L mwomalcsosoo | ERROR | foo Co E oo ]
0 0.2 0.4 0.6 0.8 1 T *
FPR (1 - background rejection or 1 - specificity) Eff*Pur o Eff*Pur | |
g . . . e A TrEmmmmes
05 02 0d 0% 08 % 0.2 04 0.6 08 O 0.2 0.4 06 8 }

TPR (efficiency) TPR (efficiency) TPR (efficiency)
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- HEP event selection (HEP)

Binary ClaSSIflerS in HEP select Higgs event candidates
Binary classifier optimisation goal: maximise physics reach at a given budget

Tracking and particle-ID (event reconstruction) — e.g. fake track rejection
— maximise identification of particles (all particles within each event are important)

Instances: tracks within one event, created by earlier reconstruction stage.

— P =real tracks, N = fake tracks (ghosts) — goal: keep real tracks, reject ghosts
— TN = fake tracks identified as such and rejected: TN are relevant (llUC...)
[Optimisation: should translate tracking metrics into measurement errors in physics analyses]

Trigger — maximise signal event throughput, within the computing budget — e.g. HLT

Instances: events, from the earlier trigger stage (e.g. LO hardware trigger)

— P = signal events, N = background events [per unit time: trigger rates]

— goal: maximise retained signal efficiency TP/(TP+FN) at a given trigger rate FP (as TP « FP)
— TN = background events identified as such and rejected: TN are irrelevant

- — constraint: max HLT rate (from HLT throughput), whatever the input LO rate is: TN are ill-defined

EVENT SELECTION = I WILL FOCUS ON THIS IN THIS TALK

Physics analyses — maximise the physics reach, given the available data sets

Instances: events, from pre-selected data sets

— P = signal events, N = background events

— goal: minimise measurement errors or maximise significance in searches
— TN = background events identified as such and rejected: TN are irrelevant
— physics results independent of pre-selection or MC cuts: TN are ill-defined
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Domain

Property

Qualitative class
imbalance

Quantitative class
Imbalance

Varying
or unknown
prevalence 1

Medical diagnostics

NO. Healthy and ill
people have “equal rights”.
TN are relevant.

Information retrieval

YES. “Non-relevant”
documents are a nuisance.
TN are irrelevant.

HEP event selection

YES. Background
events are a nuisance.
TN are irrelevant.

From small to extreme.
From common flu
to very rare disease.

Generally very high.
Only very few documents
In a repository are relevant.

Generally extreme.
Signal events are swamped
in background events.

Varying and unknown.
Epidemics may spread.

Varying and unknown
in general (e.g. WWW).

Constant in time
(Quantum cross-sections).
Unknown for searches.
Known for precision
measurements.

Dimensionality
and invariances

apalme, A Systematic Analysis of|
ification Tasks, Infor-

3 ratios €., €., I + scale.

New metrics under study
because ROC ignores T.
Costs scale with N,

2 ratios g, p + scale.
€, P enough in many cases.
Costs and speed scale with N,

TN are irrelevant.

Show only N docs in one page.

2ratios €., p + scale.

€, P enough in many cases.

Lumi is needed for: trigger,

syst. vs stat., searches.
TN are irrelevant.

Different use of
selected instances

Binning = NO.
Ranking — YES?
Treat with higher priority
patients who are

Binning — NO.
Ranking — YES.
Precision at k, R-precision, MAP
all involve global precision-recall

more likely to be ill?

(“top N documents retrieved)

Binning — YES.
Fits to distributions:
local €., p in each bin
rather than global ¢, p.
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Different HEP problems — Different metrics

Binary classifiers for HEP event selection (signal-background discrimination)

Cross-section (1-bin counting)

2 variables: global €, p (given S,,)

Maximise S,.;*¢.*p (at any S,y)

Statistical Searches (1-bin counting )

error
minimization

Simple and CCGV - 2 variables:
global S, B, (or equivalently €, p)

.. S, .
Maximise W (|.e. WIStot*ss*p)

Maximise Jz«sgel +Bsel) g 1+ 52) — Ssel)
B,

HiggsML — 2 variables: global Sy, B,

Maximise [2((s.,, + Bsel + K) log (1 + %) — ssel)

S
B_ +K

Punzi — 2 variables: global €, B,

.. €
s
Maximise Y

(or statistical

Cross-section (binned fits)
significance

maximization) Parameter estimation

(binned fits)

2 variables:
local €5; and p; in each bin
(given s,y ; in each bin)

Maximise ¥; s i€ *P;
Partition in bins of equal p,

imi 1 0Siut
MaximiSey; i *€s +0; * (g——52k)>
tot,i

Partition in bins of equal p,« (2t
tot,i

Searches (binned fits)

3 variables: local s, S, Se IN €aCh
bin (2 counts or ratios enough?)

Maximise a sum? *

Statistical + Systematic error
minimization

3 variables: g, p, lumi
(lumi: tradeoff stat. vs. syst.)

No universal recipe *
(may use local Sy, B, in side band bins)

Trigger optimization

Only 2 or 3 global/local variables — TN, AUC irrelevant

2 variables: global B, /time, global €

Maximise g at given trigger rate

Binary classifiers for HEP problems other than event selection

Tracking and Particle-ID optimizations

All 4 variables? * (NB: TN is relevant)

ROC relevant — is AUC relevant? *

Other? *

2 %

2 *
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Predict and optimize statistical errors in binned fits

Fit © from a binned multi-dimensional distribution
—expected counts y; = f(x;,0)dx = g*s,(0)+b, - depend on parameter 0 to fit

A A 1
Statistical error related to Fisher information [4?" =) = | (Cramer-Rao)

— binned fit - combine measurements in each bin, weighed by information

Easy to show (backup slides) that Fisher information in the fit is:
Fireal classifien) _ Zlﬁ ik L (%_LZ ) (ideal classifir) _ i 5% (%5'9@)2

—¢& and p; — local signal efficiency and purity in the it bin

Define a binary classifier metric as information fraction to ideal classifier:
—in [0,1] — 1 if keep all signal and reject all backgrounds
— higher is better - maximise IF 0 55)

: : : S
_ Interpretatlon: (AQ( cal classifier )) IF(AB( eal ¢ lasmﬁer))Q — l—( eal classifier) — (09

(d al classifier)
T as;
9 Z_}E(%)

NB: global e*p is the IF for measuring 6=a, in a 1-bin fit (counting experiment)!
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Numerical tests with a toy model

* | used a simple toy model to make some numerical tests
— Verify that my formulas are correct — and also illustrate them graphically
— Two-dimensional distribution (m,D) — signal Gaussian, background exponential

 TwWOo measurements:

—total cross-section measurement by counting and 1-D or 2-D fit
—mass measurement by 1-D or 2-D fits

 Detalls in the backup slides

100k signal and 1M background events
T L I

80 C il Mg
8'0 ' _0'4 . ,0'6 , , 1.0 Using scipy / matplotlib / numpy
Discriminating variable D and iminuit in Python from SWAN
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M by 1D fit to m — optimizing the classifier

» Choose operating point D, optimizing information fraction for 8=M in m-fit
— NB: different to operating point maximising €*p (IF for 8=0 in a 1-bin fit)

: 10s . :
« To compute IF as sum over bins — need average ;% In each bin

— proof-of-concept — integrate by toy MC with event-by-event weight derivatives
1 a|.7v[|2

*in a real MC, could save —
M2 90

for the matrix element squared |M|?

:.Jnits of :‘(m': evelnts per “‘Gev b'"l 1.2 Selection cut on D: accept D > 1—¢,
. I I I I
1000 -2 information fraction about M
[ 1.0 (fit for M from m distribution)
1 global efficiency_ * global purity 7
500 —1 E JE. (total cross section measurement) )
g s o3 £
- 0 7 s % —0 E '-6 0.6 Max=0.62 at ,=0.78 |
= = S Y Max=0.46 at &,=0.58 ...
-500|- ° < 5
H-13 2 0.4 —
— h(m) =
~1000| dh/dM (m) 0.2| .
—_— l/h(dh/dM) (m) —-2 :
800 850 900 950 1000 1050 1100 1150 1200 0_8 | | | |
m / GeV .0 0.2 0.4 0.6 0.8 1.0
signal efficiency &,

A. Valassi — Fisher information metrics 2nd IML Workshop — 11" April 2018 41/18




M by 1D fit to m — visual interpretation

* Information after cuts: };; Sl

oM

o0si 2

* €, P; — show the 3 terms in each bin |

—fit = combine N different measurements in N bins — local g; p, relevant!
— important thing is: maximise purity, efficiency in bins with highest sensitivity!

Prediction

Fit results

00

o 900
3 16 . -
@ 2.0 £ Signal efficiency=1.00 mmm Expected signal (N=10000.0)
. Q . : 800 P 9
Ideal case - yellow histogram |= 1.4 ;ﬁlfndh{f(hg);oocev)ﬂ dh Efficiency*Purity = 1.00 . 2 200 purity=1.00 M Expected background (N=0.0)
L . (] =1/(0. p H A n
(after cuts) coincides with and 0 1.2 eftepur*Lh(ch/amy? H Information fraction = 1.00 1_5,; § .t eff.pur=1.00 o+ E?Tom sample (N79263))
. . —— Fit (M=999.962+0.200 Ge
covers red histogram (ideal) | SUM=1/(0.200GeV)? L | 2 % s00 *
2 08 1.0 ; :Ann
=06 Signal efficienc:
Loall ™ A\?G=1,00 Y IDEAL CASE,
2 Signal purity
§ 02/ ave-100 NO BACKGROUND
504 v |
= 00 850 900 95i 1000 50 1100 1150 1200
m/GeV  [bin width: 4 GeV] 805 830 00 1100 Py
Invariant mass m/GeV
%16 - T
) ] L. " 2.0 g Signal efficiency=1.00 Emm Expected signal (N=10000.0)
. 214 L/h(dh/dM) Efficiency*Purity = 0.09 urity=0.09 = Expected background (N=100000.0)
. 2 - 2 > purity
Y12 SUM=1/(0.200GeV) Information fraction = 0.47 |, ¢ 2 8 s000 eff.pur=0,09 #+ Random sample (N=110094)
i n fo rm atl o n er b | n = 10 effpur*1/h(dh/dM)? - a —— Fit (M=1000.046+0.293 GeV)
P y Eh SUM=1/(0.292GeV)? >
2 @08 108
. - g
. 1 [/0si = 06 Signal efficiency 3
ideal case — o £ o4f| — Ave-100 0sE
S. 2 Signal purity
i S 021~ AVG=0.09
<0, 0
5 %8 850 500 950 1000 1050 1100 1150 204 B50 500 1100 Ti5e
| I i I | m/GeV  [bin width: 4 GeV] Invariant mass m/GeV
Blue line: loca s m— :
. ) ) z 1 Tiaan: — ] 2.0 £ 700 Signal efficiency=0.78 - Expe(tad ;lgna\ (N=Z’8crtdc:01)1376 )
urity in the bin z SUM= GeV)? Efficiency*Purity = 0.32 S oo purity=0.41 mmm Expected background (N= )
p y ’ pi 12 UM=1/(0.200GeV) Information fraction = 0.62 | o 2 ] eff.pur=0.32 + Random sample (N=18965)
2 | ol| e effpurlnianiamy =g < 500 —— Fit (M=999.920+0,254 GeV)
g2~ SUM=1/(0.255GeV)? = 2
L 0B
Green line: local o = MAXIMUM INFORMATION,
A . . 504 -
effICIenC in the bln € 2 Signal purity MINIMUM ERROR
y 1S 5 02(|7 AVG=0.41 | B
=
5 oo 850 500 950 1000 1050 1100[b 1dl|510 1]21?00 850 900 1160 1150 12
m/ GeV in width: 4 GeV Invariant mass m/GeV
% 16 2.0 g Signal efficiency=0.58 W Expected signal (N=5800.0)
14 L/h(dh/dM)® , Efficiency*Purity = 0.46 > purity=0.80 W Expected background (N=1495.0)
12 SUM=1/(0.200GeVY Information fraction = 0.54 |, o & o eff-pur=0.46 't Random sample (N=7140)
% 10 eff*pur*1/h(dh/dM)? =y ‘: —— Fit (M=1000.215+0.277 GeV)
2 SUM=1/(0.273GeV)? = S
0Bl 103 )
- = £
1 /dsi 2 % 06/[  signal efficiency £ g
gxpix—(— oaf| ™ AVe-05s o5& @
1 1 ignal purity
s. \oM E 02— AvG=0.80

850

1000

1100 1150 12(5100
m/ GeV [bin width: 4 GeV]
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Optimal partitioning — information inflow

 Information about 0 in a binned fit > =iyi (C;fé)

1=1

» Do I gain anything by splitting bin y, into two separate bins? v: = w; + z;
—_ i.e_ iS the “information inﬂOW”* pOSitive? *A. van den Bos, Parameter Estimation for Scientists and

LEngineers (Wiley, 2007).

e Ao\ 2
w; \ 06 z; \ 06 w;+z; o0 wizi(urt——f—zi) -

. . . 1 OJw; 1 0z
—information increases (errors on parameters decrease) if -7 7 2 7

. . o . 10 10
— effect of the classifier — information increases if pws—% + 0, S—%
w Z

* In summary: try to partition the data into bins of equal p, Sl%

— for cross-section measurements (and searches?): split into bins of equal p,
* “use the scoring classifier D to partition the data, not to reject events”
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Optimal partitioning — optimal variables

* The previous slide implies that q = p—— Is an optimal variable to fit for ©

— proof of concept — 1-D fit of q has the same precision on M as 2-D f|t of (m D)
—closely related to the “optimal observables” technique e e

:!)!)tll(ll \l

‘(
()p[ wal  obse

T T I 1 E I and
7000 m Expected signal (N=10000) g - Expected signal (N= 10000) . Phys. 3. C40 (2005) 407,
Expected background (N=100000) £ 1% BN Expected background (N=100000)
i< 6000 %+ Random sample (N=110208) 4 - 5% — Fit (M 999,854 +0.236 fb) e
i M d by 1D(m) fit to M 3 10F =
) - - Measured by m) fit to HENG] F .
Q 5000 (M=999.714 +0.293 fb) Y 'L Ideal case: + 0.200
2_4000 —— Measured by 2D(m,D) fit to M o E 1D flt(m), no CUt(D): + 0.292
(M=999.688 +0.233 fb) o 30 . .
L ’ & 10 1D fit(m), optimal cut(D): + 0.254
(0] | ) E 4 .
& 3000 £ 107k 2D fit(m,D), no cuts: +0.233
> = o
200 Ja f 1D fit(q): +0.236
1000 — 100; |
\ \ | 10-1:
0 900 1000 1100 1200 1300 1400 . . 0.0 0.1 0.2
Invariant mass m/GeV (Phio.xs0) (1) (;T;IMO) ] GeV-!

10s
* In practice: train one ML variable to reproduce —%’?

—not needed for cross-sections or searches (this is constant)
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Conclusion and outlook

Different disciplines / problems — different challenges — different metrics
—there is no universal magic solution — and the AUC definitely is not one
— | proposed a systematic analysis of many problems in HEP event selection only

True Negatives, ROCs & AUCs are irrelevant in HEP event selection
— PRC approach (like IR, unlike MED) more appropriate — purity p, efficiency €,

Binning in HEP analyses — global averages of p, €, irrelevant in that case
— FOM integrals that are relevant to HEP use local p, € in each bin
—AUC is an integral of global p, ¢, —» one more reason why it is irrelevant
— optimal partitioning exists to minimise statistical errors on fits

What am | proposing about ROCs and AUCs, essentially?
— stop using AUCs and ROCs in HEP event selection
* ROCs confusing — they make you think in terms of the wrong metrics

— identify the metrics most appropriate to your specific problem
| summarized many metrics that exist for some problems in event selection
» more research needed in other problems (e.g. pID, systematics in event selection...)

| am preparing a paper on this — thank you for your feedback in this meeting!
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Backup slides
of the January IML talk
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Systematic errors

. - 1 .
« Statistical errors « N systematics become more relevant as N grows

— Minimise statistical errors at low N — only depends on g, p

— Minimise stat+syst errors at high N — also depends on luminosity scale (S,
* i.e. need all three numbers TP, FP, FN — but TN remains irrelevant

« Simple example — measure o, by counting, 1% relative uncertainty in g,
— systematic error is lower than statistical error if (1 —,o) c 1
\/ﬁ o v €sStot ﬂbeJb
— optimizing total systematic + statistical error is a tradeoff involving €, p, S

« Complex problem, no universal recipe — interesting problem to work on!
—more in-depth discussion is beyond the scope of this talk
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Maximise & at 4 kHz

LHCb 2015 Trigger Diagram

]

ot ROCS for events \ I r I g g e r 40 MHz bunch crossing rate EQ =

. . . r . . =3

—  rnadel ' ' 283

== rate: 4 kHz H H o g EE

ach| -- rabe: 2.5 kHz ] LO Hardware Trigger : 1 MHz £EES

o ! readout, high Er/Pr signatures Eg°

=]

g Jr v ) ] 450kHz  400kHz 150 kHz TE g

E o 4 ' T. Likhomanenko et al., LHCh Topological Trigger Reop- h* A u/up A e/y 5 % g
al ' ' timization, Proc. CHEP 2015, J. Phys. Conf. Series 664 Sl
“n —"’—_'_l_li4 ' : (2015) 082025, doi-10.1088/1742-6506/664/8/082025 g T N . E.iz
[~ i i . Software High Level Trigger : =8 B
2oas ' ' . . =7 2=
E E E ngre 2_ T'l'igg(l]' events R{:}C' [ .Partial event recons_truction, s:-elect ] . : g L.Us E
= H H _ displaced tracks/vertices and dimuons S %95
E ! ! curve,  An output rate of 2.5 ) : g gé 85
By i i };H;:I_ corresponds  to -.1:_] FPR of — “UC, 4kHz is Buffer events to disk, perform online gaé g
o 0.25%. 4 kHz 0.4%. Thus ( ) 0 detector calibration and alignment SERE
o X . _— = He L
F o to find the signal efficlency for €p FPR 0.4% EE
- - Full offline-like event selection, mixture 2,22
il .‘2_'-_'!‘ kHz [:I'I'lt]'.'lilt Ti"lt.[': we take Of 1 M HZ LO hW rate of inclusive and exclusive triggers ‘-g E ; 5
. 0.25% background efficiency  and AnEE
N TR R T R L e L LT GECID GO0K oM find the ]_]Ui]lt on the ROOC curve 12.5 kHz (0.6 GB/s) to storage mEaT

FPR, background events efficiency that corresponds to this FPR.

 Different meaning of absolute numbers in the confusion matrix
— Trigger — events per unit time i.e. trigger rates
— (Physics analyses — total event sample sizes i.e. total integrated luminosities)

 Binary classifier optimisation goal: maximise g for a given B per unit time
—i.e. maximise TP/(TP+FN) for a given FP — TN irrelevant

* Relevant plot —» g.vs. B, per unit time (i.e. TPR vs FP)
—ROC curve (TPRvs. FPR) confusing and irrelevant
—e.g. maximise g for 4 kHz trigger rate, whether LO rate is 1 MHz or 2MHz
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Event selection in HEP searches

« Statistical error in searches by counting experiment — “significance”
— several metrics — but optimization always involves €, p alone — TN irrelevant

C. Adam-Bourdarios et al., The Higgs Machine
Learning Challenge, Proc. NIPS 2014 Workshop

on High-Energy Physics and Machine Learning
g Ssel Z )2 — g . Z, — Not recommended? (confuses search (HEPML2014), Montreal, Canada, PMLR 42 (2015)
0 m 0 = Otot€sp with measuring O-S once Signal established) 19. http://proceedings.mlr.press/v42/cowal4.html

Z, — Most appropriate? (also used
as “AMS2” in Higgs ML challenge)

1 1 2
(Z2)? = 2S01es (,0 10%(@) - 1) = Shot€sp (1 + 37 + @(Pz))

sel

S,
ZQ = -\/2 ((Ssel + Bsel) log(l + BSEI) - Ssel) —

B Z5 (FAMS3” in Higgs ML) — Most widely used, but strictly valid
Ty = %]1 = |(Z3)% = Stotesl f ; = Sioresp (1 +p+ 0(p2)) only as an approximation of Z, as an expansion in Sy /Bg, << 1?

R. D. Cousins, J. T. Linnemann, J. Tucker, Evalua-

_ _ 2
B, -1 p(1+p+0(p%)

Expansionin p <« 1 ?—use
the expression for Z, if anything

G. Punzi, Sensitivity of searches for new signals and its
optimization, Proc. PhyStat2003, Stanford, USA (2003).
arXiv:physics/0308063v2 [physics.data-an]

G. Cowan, E. Gross, Discovery significance with statistical
uncertainty in the background estimate, ATLAS Statistics Fo-
rum (2008, unpublished). http://www.pp.rhul.ac.uk/~cowan/
stat /notes/SigCaleNote.pdf (accessed 15 January 2018)

tion of three methods for calculating statistical signifi-
cance when incorporating a systematic uncertainty into
a test of the background-only hypothesis for a Poisson
process, Nucl. Instr. Meth. Phys. Res. A 595 (2008) 480.
d0i:10.1016/j.nima.2008.07.086

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic
formulae for likelihood-based tests of new physics, Eur. Phys.
J.C 71 (2011) 15. doi:10.1140/epjc/s10052-011-1554-0

« Several other interesting open guestions — beyond the scope of this talk
— optimization of systematics? — e.g. see AMS1 in Higgs ML challenge
— predict significance in a binned fit? — integral over Z? (=sum of log likelihoods)?
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Tracking and particle-ID

ROCs irrelevant in event selection — but relevant in other HEP problems

Event reconstruction and particle identification
— Binary classifiers on a set of components of one event — not on a set of events

Example: fake track rejection in LHCDb

— data set within one event: “track” objects created by the tracking software
 True Positives: tracks that correspond to a charged particle trajectory in MC truth
» True Negatives: tracks with no MC truth counterpart — relevant and well defined

Binary classifier evaluation: €, and ¢, both relevant — ROC curve relevant
—is AUC relevant? maximise physics performance? what if ROC curves cross?
—these questions are beyond the scope of this talk

=}

10!

fake reject

0.7m

0.4F

0.6

05F

LHCb -

M. De Cian, S. Farry, P. Seyfert, S. Stahl, Fast neural-
net based fake track rejection in the LHCb reconstruc-
tion, LHCb Public Note LHCb-PUB-2017-011 (2017).
https://eds.cern.ch/record /2255039
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Using scipy / matplotlib / numpy
and iminuit in Python from SWAN

Simple toy model

« Two independent observables — f(m,D)=g(D)*h(m)
— discriminating variable D — scoring classifier
—invariant mass m — used to fit signal mass M

._.
o
Events per (0.01 x 4GeV) bin

04 06 08 1o 10
Discriminating variable D
100Kk si | t
1200 : signal events

Signal (xs=100fb): Gaussian peak in m, flat in D
—mass M=1000 GeV, width W=20 GeV
—flatin D —» £,=1-D,,, if accept events with D>D,,

1150 |- -
1100| . . 1o
1050 s pEc e
1000
950 e A I A
900/ B R "
850 |- -

| | | | 0
8080 02 04 06 08 1o 10

Background (xs=1000 fb): exponential in both m and D
— cross-section 1000 fb — B, =100k

Invariant mass m/GeV

._.
o
Events per (0.01 x 4GeV) bin

& e o8 To Two measurements (lumi=100 fol — S, =10k, B,,,=100k)
1200 gt stareund cvens_ —mass fit - estimate M (assuming XS, W)

3 % — cross section fit —» estimate XS (assuming M, W)
E 3 —counting, 1D and 2D fits, with/without cuts on D
£ S
g« Compare binary classifier to ideal case (ho bkg):
= et | S —ideal case —» AM = W//S,,, = 0.200 GeV

"% Discrimingting variable D —ideal case — AXS = XSS, = 1.00 fb

\W A. Valassi — Fisher information metrics 2nd IML Workshop — 11" April 2018 51/18

~7 -




M by 1D fit to m — optimizing the classifier

o Goal: fit true mass M from invariant mass m distribution after a cut on D

—Vary £.=1-Dy, by varying cut D;,, - compute information fraction on M for ¢, —

maximum of information fraction: IF=0.62 (AM=0. 254—3ﬂ) at €.=0.78

 Different measurements — different metrics — different optimizations
—maximum of information for fit to M — IF=0.62 (Al\7[:O.254—0 200) at €.=0.78

—maximum of information for XS by counting — £.,*p=0.46 at €= 0.58

: 1 0h . :
« To compute IF as sum over bins — need average Pyl each bin
— proof-of-concept — integrate by toy MC with event-by-event weight derivatives

Units of h(m): events per 4GeV bin 12 SFIECtion CUJ‘E on b: aCCTPt D>1-e
f ‘ f ‘ f 2 information fraction about M
o (fit for M from m distribution)
1000 1.0 global efficiency * global purity o
) (total cross section measurement)
500 1T e g 0.8 —
£ = £
€ 0 7 \ e %5 0.6 Max=0.62 at e,=0.78 .-~
= T = 0] Max=0.46 at e,=0.58 ..
s Z 5 0.4
-500 145 o2
=
A 0.2
~1000 dh/dM (m) -
S llh(dh/dM) (m) -2 ' :
0. | | | |
800 850 900 950 1000 1050 1100 1150 1200 8.0 0.2 0.4 0.6 0.8 1.0
m/ GeV signal efficiency e,
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M by 1D fit to m — cross-check

« Cross-check fit error returned by iminuit — repeat fit on 10k samples
— check this only at the point of max information — £.=0.78 and AM=0.254

%16 : ‘ : ( ‘ p ) : ‘

T ' 2.0 c Si ciency— | -

1G] 2 . . £ 200 ignal efficiency=0.78 mmm Expected signal (N=7800.0) o
< L4 ;thfﬂcﬂ’]{ihggﬂﬂG vy Ef‘fICIency*Purlty = 0.32 = b purity=0.41 W Expected background (N=11076.2)
812 =0, € Information fraction = 0.62 |, . z eff-pur=0.32 =+ Random sample (N=18965) b
3 10| &Mpurt - 73 ' — Fit (=099 52070057 GeV) |

s : SUM=140.255GeV)? N

D 0.8f o — LN J1.03T N
- . c

= 0.6 Signal efficiency z N
£ 04|| 7 AvG-078 U 0.53}—:

= Signal purity )

B 02— avG=0.41 n
= Il n

— 0. 00 850 900 950 1000 1050 1150 12(90 1100 1150 1200

m/ GeV wwidth: 4 GeV] Invariant mass m/GeV

OK! AM=0.254 consistently

Fit results (10k fits on 10k sa;rgles)

10k samples (100k signal apl 1M background events each) 10k samples (100K\signal and 1M background events each)
\

[

-_g ‘@4 Mean = 1000,662 +- 0.003 | 3 3 Mean M'lo-ooooz
= 500~ Std = -0.002 | = 600+ Std = 0.00170 +- 0.00001 —
(] L
O O 500} —
LN 400 - E Signal efficiency=0.78 | S Signal efficiency=0.78
(]
o S 400 |
S 300} S
= « 300 —
2 00| 8
0 « 200 |
-~ Q
g— 100 — g. 100 |
A ol | A 0 |

999 1000 1001 0.250 0.255 0.260

Fit result for M in each sample / GeV Fit error on M in each sample / GeV
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i.e. the common

Cross-section by 1D fitto D practice of ‘BDT fits”

» Cross-section fits analogous to mass fits but simpler
— Differential cross-section proportional to total cross-section
1 0si 1

] 1 (0s, 2 —
_;£=—|sconstant—>2i;(£) * €L P = 2 Si.&. P

* special case : for a single bin (counting experiment) S, exp — maximise global exp

» For simplicity show only fit in D (could fit m, or m and D) and no cuts
— binning improves precision, also without cuts on D
— use the scoring classifier D to partition data, not to reject events — next slides

Prediction Fit results

0.018 1.8 10

0016 1/h{dh/dXS)? 16 Global signal efficiency=1.00 = EXPEE:E: ;igﬂka' (N=(110(?¢0060é)
O fficiency*Purity = 1. J Global signal purity=1.00 xpected background (N=0.
&8 01 SUM=1/(1.000fb)? Efficie c?r u \ty. 1.00 . - ‘g p : Y T oo somp (Vo390
=i eff*pur*1/h(dh/dXs)? Information fraction = 1.00 4 5 10 Slobal signel effpun=1.00 —— Measured by 1D fit to D (X5 =99.639:+0,998 fb) |
S 0.012 SUM=1/(1.000fb)? 128 e P o Measured by counting  (X5=99.640+0,998 fb)
) E S ]
Z 0010 102 g
= o £
. 0.008 Hose I
2 G &
S 0.006 Ho6g
< Signal efficiency o
T 0.004 —— AVG=1.00 0.4
- |l Signal purity

0.002 T AVG=1.00 0.2

...........................
U'Uog.ﬂ 0.2 0.4 0.6 0.8 1‘8'U
D [bin width: 0.01]
0.018 1.8 :
0.016 1/h(dh/dXS)? 16 5 Global signal efficiency=1.00 = Expec:eg ilgnkal (N=¢1101210°i?>)0000 5
. i *PUrity = . Global signal purity=0.09 xpected background (N=

.23 SUM=1/(1.000fb)? Efficiency*Purity = 0.09 - 10 ‘9 purity: =+ Random sample (N=110276)
‘S- 0.014 eff*purt1/h(dh/dXS) Information fraction = 0.53 14 o f ex%l;?__l[;gre\rl leasured by 1D fit to D (X5=100.8571.365 fb)
%" 0.012 SUM=1/(1.368fb)* 128 g
g 2 5
3 0.010 102 2
2 7 2
. 0.008 Ho.8c H
n u 3
3 0.006 06
= Signal efficiency v
Z 0.004 T AVG=1.00 0.4
=1 Signal purity

0.002 T AVG=0.09 02

...........................
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M by 2D fit — use classifier to partition, not to cut

« Showed a fit for M on m, after a cut on D — can also fit in 2-D with no cuts
—again, use the scoring classifier D to partition data, not to reject events

* Why is binning so important, especially using a discriminating variable?
—next slide...

Prediction Prediction :
12 T T T T T 1.2 T T T T T 2000 ‘ Fit result:s ‘ ‘
1D fit for M in m distribution 2D fit for M in m,D distribution = Eiﬁiiiié’ ;Iggfglr(oNungio(DN(fl)ooooo;
LOp s LD < 6000 4 Random sample (N=110208) |
Ne)
E 0.8l N 5 0.8l E 5000 - - - Measured by 1D(m) fit to M B
] . 4 . (M=999.714 +0.293 fb)
(@) (@] <
E E - g 4000 —__ Measured by 2D(m,D) fit to M
S 0.6 | 506 a (M=999.688 +0.233 fb)
3 = g 3000 Ideal case: +0.200
> . L
g o4l " TRTIgRaT Svents ] g 04l (AM for 10k signal events) it} 1D f|t(m)’ no CUt(D): + 0.292
= S bine: o008 () = ; et 0001 (6.015) 2000 1D fit(m), optimal cut(D): = 0.254(|
5 bins: 0.019 (1.435) 5 x ins: ©.112 (©.598) )
13 bins: 6.3 (6:31) 3% 15 bins; 0837 (0,239 2D fit(m,D), no cuts: +0.233
0.2 1oL bine: oo4ey (5:200) - 021 101 x 101 bine: 072y (0,003 | 1000 |
1001 bins: 0.469 (0.292) 1001 x 1001 bins: 0.729 (0.234)
0 0 | | ‘Target: 1.600| (0.200) | 0 0 | | | Target‘: 1.000 (0.20‘6) 8 | | |
05 5040 ) 80100 05 5040 0 80100 00 900 1000 1100 1200 1300 1400
#bins in m distribution #bins in m and D distributions Invariant mass m/GeV
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