

A Deep Learning Tool for Fast Simulation

Gulrukh Khattak, Sofia Vallecorsa, Federico Carminati

Overview

- Fast Simulation Framework
- Calorimeter Dataset
- 3D GAN
- Physics validation
- GAN optimization
- Future Plans

Generalized Simulation Framework

- Detector output treated as image:
 - Preserving Accuracy
 - Sustaining increase in detector complexity
- Generalizing the approach
 - Adjust Hyper parameters like architecture, loss function, etc.
 - Within available resources

- Proof of concept
 - Understanding performance and validating accuracy
- Implementation
 - Understand and optimize computing resources

CLIC Calorimeter Dataset

- Compact Linear Collider CLIC: Proposed linear particle accelerator
- Electromagnetic calorimeter : Array of Tungsten absorber and silicon sensors
- Event as 3D images
- 200,000 Electron events from 10 to 500 GeV simulated with Geant 4

Electromagnetic calorimeter ECAL

3DGAN

• Parametric, Physics consistency, similar Probability Distribution

Network Architecture

GENERATOR

https://github.com/svalleco/3Dgan/tree/Energy-gan

Validation and Optimization

- GAN vs GEANT Comparison for Physics Validation
 - More than 200 Plots :
 - Maximum Energy position, Energy deposited along different axis, Discriminator outputs, Total Energy Deposition, Shower moments, Hits above a threshold, etc.
- 3DGAN Optimization
 - Network Architecture:
 - Layers, filters, kernels
 - Loss:
 - Additional terms, Weights, Functions
 - Fit for Primary Energy vs. Sum of energies deposited in ECAL
 - Pre-processing:
 - Scaling of data
- Acceptable level of Physics accuracy achieved

Loss Optimization

Sampling Fraction (Ep = GeV/100)

Histogram of energies deposited in cells for 10 to 500 GeV

- Geant4 Data
- GAN
 - ECAL sum = Fixed Factor x Ep
 - 4th order polynomial fit for ECAL sum
 - Cell energies scaled by 100

Cell Energy deposition

Ecal Flat Histogram for 250 GeV

Shower Energy Deposition going along x, y and z axis for 250 GeV

Longitudinal Energy profiles along z axis with electron energies of 50, 100, 400 and 500 GeV

13

Auxiliary Energy Regression Error

- Reconstructed Primary Energy of incoming particle.
- Around 5 % error

Relative Error for Primary Energy

Shower Moments: 2nd Moment = Shower widths

GAN

Position along z axis

Distributed Training with Cray ML plugin

- Synchronous Stochastic Gradient Descent
 - Collaboration with D. Moise (Cray Inc.)

Validation of Distributed Training

Summary & Future Plans

• Hyper parameter scan

- Optimization criterion
 - Generation loss for generator:
 - May not correspond to image quality
 - Sum of absolute relative error for histograms - Not stable
 - Likelihood function
- Optimization function
 - Skopt Gaussian process minimization
 - Multi threaded version
 - Collaboration with Jean Roch Vlimant
- A 2D version for developmental phase
- Distributed training
 - Asynchronous SGD
 - Collaboration with Jean Roch Vlimant
- Digitization and Reconstruction \rightarrow Greater Speedup
- Other detectors.....

Bonus Slides

Publications

• NIPS 2017

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

• ACAT 2017

https://indico.cern.ch/event/567550/contributions/2627179/

Super Computing SC2017

http://sc17.supercomputing.org/SC17%20Archive/tech_poste r/tech_poster_pages/post159.html

Some numbers

No.	Quantity	Discription	Size
1.	Memory	Data size	25 G bytes
2.		Discriminator Weights	300 k bytes
3.		Generator Weights	3.5 M bytes
4.		Architecture	2.5 k bytes
5.	Time	Geant4 Intel Xeon Platinum 8180	17000 ms/shower
6.		GAN (batch size = 128) Intel i7 @2.8GHz	66 ms/shower
7.		GAN (batche size =) Intel Xeon Platinum 8180	7 ms/shower
8.		GAN (batch size = 128) GeForce GTX 1080	0.04 ms/shower
8.	Parameters	Discriminator	73,450
9.		Generator	3,457,012