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LHCb [Int J Mod Phys A30 (2015) 1530022]

Single-arm forward spectrometer, 2 < η < 5
General purpose experiment, initially designed to study of particles
containing b or c quarks

Detected particles: e, µ, π, K, p, γ, ghosts (tracks that do not correspond
to any real particle)
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PID at LHCb

Problem: identify particle type associated with a track/energy deposited in
the subdetectors

Charged: π, e, µ, K, p
Neutral: π0, γ, n

Better PID performance → better bkg rejection → more precise results
PID also used for trigger (in particular for upgrade): less background → less
resources (less bandwidth)
High-level info from subdetectors + track quality info → multi-class
classification in machine learning

[Int J Mod Phys A30 (2015) 1530022]
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Introduction

Radiative decays: interesting area of study at LHCb (e.g. photon
polarisation measurement [PRL 112, 161801 (2014)])

Problem

π0 copiously produced at LHCb , inmediate decay to γγ

high momentum π0 → merge of ECAL clusters → huge background for
radiative decays

Need for a powerful tool to discriminate signal (γ) from background
(π0 → γγ)
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ECAL Signatures

Different signatures (MC events):

π0 → γγ γ

ECAL clusters (3x3 cells)

Coarse granularity → separation is not straightforward
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Baseline approach [LHCb-PUB-2015-016]

Neural Network with 2 hidden layers (TMVA MLP)
Train with B0 → K∗0γ as signal and B0 → π0X as background

14 ECAL and Pre-Shower cluster parameters (grouped under shape and
symmetry)

4 variables that account for the size & tails, semiaxes and orientation of the
ellipse in the ECAL
2 variables related to the energy of the most (seed) and the second most
energetic cells of the cluster
4 variables for multiplicities of hits in the PS cells matrix in front of the seed
of the electromagnetic cluster
4 shape and asymmetry variables in the 3x3 PS cells

LHCb DataLHCb Simulation
(inner region of ECAL)
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New approach

2x25 input features: responses in 5x5 cells cluster from ECAL and
pre-shower detectors

Train: B → Kπγ and B → Kππ0 MC samples (kinematically similar)

Test: B → Kπγ and B → Kππ0, B → J/ψK∗π0 MC samples

Potentially misleading π0 candidates with 2 outgoing γ sharing the same
cluster are studied

8 TeV MC data, 120k photons, 220k π0

Neural Networks and BDT considered
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New approach

Neural Network
1 or 2 hidden layers

Width: 100, 250, 500, 800 units for ECAL + 10, 50 Preshower

Optimizer: Adamax, Adagrad, SGD

ROC AUC = 0.89

BDT
XGBoost, CatBoost, LightGBM a

ROC AUC = 0.95
ahttps://github.com/yandexdataschool/modelgym/

Big improvement, specially for moderate
efficiencies
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Comparison

(all ECAL regions)

Aggressive bacgkround suppression

Good prospects for π0 suppression & photon suppression for π0 recovery
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Introduction

Goal: improve PID variables for charged particles → better background
rejection

Particles: electron, muon, pion, kaon, proton, ghosts

Only tracks using information from the full detector considered

Baseline solution (ProbNN)
Standard MVA used for PID LHCb

Artificial neural networks with 6 binary classification models (One-versus-rest approach:
separate one type from the others)

1 hidden layer, TMVA MLP [arXiv:0703039]

Activation function: tanh, sigmoid

Training method: Back-Propagation (BP), BFGS
Algorithm (BFGS), or Genetic Algorithm (GA -
slower and worse)

Estimator: MSE (Mean Square Estimator) for
Gaussian Likelihood or CE(Cross-Entropy) for
Bernoulli Likelihood

Trained on 2015 MC
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Non-flat efficiency approach

Gradient boosting:

XGBoost [arXiv:1603.02754]
Decision train (DT)
[arogozhnikov.github.io/2015/05/22/decision-

train-classifier.html]

CatBoost [arXiv:1706.09516]

Artificial neural networks (NN)

One hidden layer
Deep neural networks

Linear combinations of features

from subdetectors

CatBoost and DNN give best results
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Flat efficiency approach

PID performace depends on particle kinematics (p,pT ,η) and Ntracks

Flat PID efficiencies:
F Good discrimination for different analyses
F Unbiased background discrimination
F Reduced systematic uncertainties

Introduce flatness term in loss function: L = LAdaLoss + αLFlat

Flat4d: LFlat4d
= LFlat P + LFlat PT + LFlat nTracks + LFlat η

Pions Kaons

Flat4d, ProbNN

→ Better PID efficiency flatness in p,pT ,η,Ntracks than baseline
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Introduction

PID information used in both trigger selection and offline data analysis

Obtain efficiency & systematic effects for the PID requirements applied

PIDCalib package [CERN-LHCb-PUB-2016-021]

Data-driven technique

Efficiency obtained using per-event weights from simulated calibration
sample

× PID variables cannot be used to train multivariate classifiers

MCResampling: PID response replaced by the one generated from
calibration PDFs

× Problematic for systematics computation
× Ignores correlation

NEW:

Resampling of PID variables: PIDGen

Transformation of PID variables: PIDCorr
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PIDGen & PIDCorr

Input Variables for PDF

PID variable, log pT , η, logNtracks

Transformed to remove narrow
peaks
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Meerkat library [2015 JINST 10
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PIDGen validation

For a given set of (log pT , η, logNtracks), generate PID variable that looks
like data using the known 4D distribution of the calibration sample in the
PID variable, log pT , η and logNtracks

Clean, high-statistics data sample: Λ0
b → Λ+

c π
−, Λ+

c → pK−π+

cΛK from ProbNNK
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sweighted data, uncorrected simulation, PIDGen-corrected

Good agreement between corrected MC and data
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PIDCorr validation

Using the obtained 4D PDF for data and MC, construct a function that
transforms simulated PID response such that it matches data

Preserves correlations between different PID responses for the same track

Resampling Transformation

 simulated
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Combinations of PID variables:

Resampling procedure fails (correlations are ignored)

Transformation of variables: better agreement
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Conclusions & Outlook

Big improvement in π0 - γ separation

Implemented PID transformation tools inside PIDCalib that preserves
correlations → betteer agreement with data

Baseline ProbNN extended with deep neural networks and gradient boosting

PID algorithms with better PID efficiency flatness studied

Stay tuned!
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Thanks for your attention!
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