Particle Identification at LHCb

Miriam Lucio, on behalf of the LHCb Collaboration

IML Workshop

April 10, 2018

Outline

Introduction

- 2 Neutral ID tools
- Charged ID tools
- Resampling and transformation of simulated PID variables
- 5 Conclusions and Outlook

LHCb [Int J Mod Phys A30 (2015) 1530022]

- $\bullet\,$ Single-arm forward spectrometer, 2 $<\eta<5$
- **General purpose experiment**, initially designed to study of particles containing *b* or *c* quarks

• **Detected particles:** $e, \mu, \pi, K, p, \gamma$, ghosts (tracks that do not correspond to any real particle)

M. Lucio

PID at LHCb

- **Problem:** identify particle type associated with a track/energy deposited in the subdetectors
 - Charged: π , e, μ , K, p
 - Neutral: π^0 , γ , n
- $\bullet~$ Better PID performance $\rightarrow~$ better bkg rejection $\rightarrow~$ more precise results
- PID also used for **trigger** (in particular for upgrade): less background \rightarrow less resources (less bandwidth)
- \bullet High-level info from subdetectors + track quality info \rightarrow multi-class classification in <code>machine learning</code>

Charged ID tools

Resampling and transformation of simulated PID variables

5 Conclusions and Outlook

• **Radiative decays**: interesting area of study at LHCb (e.g. photon polarisation measurement [PRL 112, 161801 (2014)])

Problem

- $\pi^{\rm 0}$ copiously produced at LHCb , inmediate decay to $\gamma\gamma$
- \bullet high momentum $\pi^0 \to {\rm merge}$ of ECAL clusters \to huge background for radiative decays

Need for a powerful tool to discriminate signal (γ) from background ($\pi^0 \rightarrow \gamma \gamma$)

Different signatures (MC events):

ECAL clusters (3x3 cells)

Coarse granularity \rightarrow separation is not straightforward

Baseline approach [LHCb-PUB-2015-016]

- Neural Network with 2 hidden layers (TMVA MLP)
 - $\bullet\,$ Train with $B^0 \to K^{*0}\gamma$ as signal and $B^0 \to \pi^0 X$ as background
- 14 ECAL and Pre-Shower cluster parameters (grouped under **shape** and **symmetry**)
 - 4 variables that account for the size & tails, semiaxes and orientation of the ellipse in the ECAL
 - 2 variables related to the energy of the most (*seed*) and the second most energetic cells of the cluster
 - 4 variables for multiplicities of hits in the PS cells matrix in front of the seed of the electromagnetic cluster
 - 4 shape and asymmetry variables in the 3x3 PS cells

- 2x25 input features: responses in 5x5 cells cluster from ECAL and pre-shower detectors
- Train: $B \to K \pi \gamma$ and $B \to K \pi \pi^0$ MC samples (kinematically similar)
- Test: $B \to K \pi \gamma$ and $B \to K \pi \pi^0$, $B \to J/\psi K^* \pi^0$ MC samples
- \bullet Potentially misleading π^0 candidates with 2 outgoing γ sharing the same cluster are studied
- 8 TeV MC data, 120k photons, 220k π^0
- Neural Networks and BDT considered

New approach

Neural Network

- 1 or 2 hidden layers
- Width: 100, 250, 500, 800 units for ECAL + 10, 50 Preshower
- Optimizer: Adamax, Adagrad, SGD

ROC AUC = 0.89

Aggressive bacgkround suppression

• Good prospects for π^0 suppression & photon suppression for π^0 recovery

- 2 Neutral ID tools
- Charged ID tools
 - Resampling and transformation of simulated PID variables

5 Conclusions and Outlook

- **Goal:** improve PID variables for charged particles \rightarrow better background rejection
- Particles: electron, muon, pion, kaon, proton, ghosts
- Only tracks using information from the full detector considered

Baseline solution (ProbNN)

- Standard MVA used for PID LHCb
- Artificial neural networks with 6 binary classification models (One-versus-rest approach: separate one type from the others)
- 1 hidden layer, TMVA MLP [arXiv:0703039]
- Activation function: tanh, sigmoid
- Training method: Back-Propagation (BP), BFGS Algorithm (BFGS), or Genetic Algorithm (GA slower and worse)
- Estimator: MSE (Mean Square Estimator) for Gaussian Likelihood or CE(Cross-Entropy) for Bernoulli Likelihood
- Trained on 2015 MC

Non-flat efficiency approach

- Gradient boosting:
 - XGBoost [arXiv:1603.02754]
 - Decision train (DT) [arogozhnikov.github.io/2015/05/22/decisiontrain-classifier.html]
 - CatBoost [arXiv:1706.09516]

- Artificial neural networks (NN)
 - One hidden layer
 - Deep neural networks
 - Linear combinations of features from subdetectors

CatBoost and DNN give best results

Flat efficiency approach

- PID performace depends on particle kinematics (p, p_T, η) and N_{tracks}
- Flat PID efficiencies:
 - ★ Good discrimination for different analyses
 - ★ Unbiased background discrimination
 - ★ Reduced systematic uncertainties

Introduce flatness term in loss function: $\mathcal{L} = \mathcal{L}_{AdaLoss} + \alpha \mathcal{L}_{Flat}$

• Flat4d: $\mathcal{L}_{Flat_{4d}} = \mathcal{L}_{Flat_P} + \mathcal{L}_{Flat_PT} + \mathcal{L}_{Flat_nTracks} + \mathcal{L}_{Flat_{-\eta}}$

- 2 Neutral ID tools
- Charged ID tools
- Resampling and transformation of simulated PID variables

5 Conclusions and Outlook

- PID information used in both trigger selection and offline data analysis
- Obtain efficiency & systematic effects for the PID requirements applied

PIDCalib package [CERN-LHCb-PUB-2016-021]

- Data-driven technique
- Efficiency obtained using per-event weights from simulated calibration sample
 - $\times~$ PID variables cannot be used to train multivariate classifiers
- MCResampling: PID response replaced by the one generated from calibration PDFs
 - \times Problematic for systematics computation
 - \times Ignores correlation

NEW:

- Resampling of PID variables: **PIDGen**
- Transformation of PID variables: PIDCorr

PIDGen & PIDCorr

Input Variables for PDF

- PID variable, $\log p_T$, η , $\log N_{tracks}$
 - Transformed to remove narrow peaks

PDF computation

- Four-dimensional kernel density estimation
- Meerkat library [2015 JINST 10 P02011]

M. Lucio

PIDGen validation

• For a given set of $(\log p_T, \eta, \log N_{tracks})$, generate PID variable that looks like data using the known 4D distribution of the calibration sample in the PID variable, $\log p_T$, η and $\log N_{tracks}$

• Clean, high-statistics data sample: $\Lambda^0_b o \Lambda^+_c \pi^-$, $\Lambda^+_c o p K^- \pi^+$

sweighted data, uncorrected simulation, PIDGen-corrected

Good agreement between corrected MC and data

PIDCorr validation

- Using the obtained 4D PDF for data and MC, construct a function that transforms simulated PID response such that it matches data
- Preserves correlations between different PID responses for the same track

sweighted data, uncorrected simulation, PIDGen-corrected (center), PIDCorr-corrected (right)

Combinations of PID variables:

- Resampling procedure fails (correlations are ignored)
- Transformation of variables: better agreement

M. Lucio

Particle Identification at LHCb

- 2 Neutral ID tools
- 3 Charged ID tools

Resampling and transformation of simulated PID variables

5 Conclusions and Outlook

- $\bullet\,$ Big improvement in π^{0} γ separation
- \bullet Implemented PID transformation tools inside <code>PIDCalib</code> that preserves correlations \to betteer agreement with data
- Baseline ProbNN extended with deep neural networks and gradient boosting
- PID algorithms with better PID efficiency flatness studied

Stay tuned!

Thanks for your attention!

M. Lucio