
Calorimeter Fast Simulation
Using ML Approaches

2nd IML Workshop
10/04/2018

speaker: Egor Zakharov, on behalf of the team

1

NRU Higher School of Economics,
Skolkovo Institute of Science and Technology



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

2



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

2

➢ *IDEAL* ML problem formulation (fully observed model):



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

➢ *IDEAL* ML problem formulation (fully observed model):

input
K variables: 
px, py, pz, …
particle type, etc

 

2



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

input
K variables: 
px, py, pz, …
particle type, etc

 

Function
(ex. some DNN)

➢ *IDEAL* ML problem formulation (fully observed model):

2



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

 

HxW matrix
energy response
in cells 

targetinput
K variables: 
px, py, pz, …
particle type, etc

 

Function
(ex. some DNN)

➢ *IDEAL* ML problem formulation (fully observed model):

2



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

 

HxW matrix
energy response
in cells 

targetinput
K variables: 
px, py, pz, …
particle type, etc

 

Function
(ex. some DNN)

➢ *IDEAL* ML problem formulation (fully observed model):

2



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

3

➢ Our ML problem formulation (hidden variables model):

input
K variables: 
px, py, pz, …
particle type, etc

 



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

➢ Our ML problem formulation (hidden variables model):

input
K variables: 
px, py, pz, …
particle type, etc

 

noise
L variables:
“hidden variables”

 

3



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

 

➢ Our ML problem formulation (hidden variables model):

input
K variables: 
px, py, pz, …
particle type, etc

 

noise
L variables:
“hidden variables”

 

3



Problem

➢ We want to speed up calorimeter simulation (calorimeter showers) while keeping reasonable simulation 
accuracy (correctly reproducing simulation behavior)

○ consider LHCb ECAL as a practical goal

 input
K variables: 
px, py, pz, …
particle type, etc

 

noise
L variables:
“hidden variables”

 

 

HxW matrix
energy response
in cells 

target

➢ Our ML problem formulation (hidden variables model):

3



Goal

➢ For the particle of a given type with given momentum and position on the face of 
the calorimeter generate reasonable response in calorimeter cells

4

 

HxW matrix
energy response
in cells 

target

➢ Metrics we desire to match between simulated data and our samples:

○ cluster mean energy and shape

○ total energy resolution

○ cluster shape fluctuation

○ correlations between different cells of the cluster



Data

 

5



Approach

 

GAN: WGAN:

6



input
5x1: 

px, py, pz, ...

noise
Nx1

Conditional WGAN

 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

noise
Nx1

concat

Conditional WGAN

 

fake 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

noise
Nx1

FC + reshape

concat

Conditional WGAN

 

fake 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Upsampling 2x + Conv + BN + ReLU

CxHxW output tensor size (w/o batch size)

noise
Nx1

FC + reshape

concat

Conditional WGAN

 

fake 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

score
1x1

Upsampling 2x + Conv + BN + ReLU

CxHxW output tensor size (w/o batch size)

noise
Nx1

FC + reshape

concat

Conditional WGAN

 

 

 

 

 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

score
1x1

Upsampling 2x + Conv + BN + ReLU

CxHxW output tensor size (w/o batch size)

noise
Nx1

FC + reshape

concat

Conditional WGAN

 

 

 

 

 

Conv s2 + LeakyReLU
CxHxW 7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

FC + reshape

concat

(gray = fixed)

Conditional WGAN

 

 

 

 

 

 

7



Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

FC + reshape

concat

(gray = fixed)

Conditional WGAN

 

 

 

 

 

 

7



Qualitative evaluation (input = pz)

8

Distributions inside calorimeter regions



Qualitative evaluation (input = pz)

r = 1

8

Distributions inside calorimeter regions



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions

r = 1
r = 2

8



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions

r = 1
r = 2
r = 3

8



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions

r = 1
r = 2
r = 3
r = 4

8



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions (bins represent different energy levels)

Standard deviation of sum of 
energies inside the square 
normalized by the initial energy r = 1

r = 2
r = 3
r = 4

8



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions (bins represent different energy levels)

Mean of Ek/E0 and 
conf. int. for 
difference between 
real and fake means

Standard deviation of sum of 
energies inside the square 
normalized by the initial energy

r = 1
r = 2
r = 3
r = 4

8



Qualitative evaluation (input = pz)

9

Distributions inside calorimeter regions (bins represent different energy levels)

r = 1
r = 2
r = 3
r = 4



Qualitative evaluation (input = pz)
Distributions inside calorimeter regions (bins represent different energy levels)

r = 1
r = 2
r = 3
r = 4

9



Qualitative evaluation (input = pz)

10

Energy resolution

Distributions inside calorimeter regions (bins represent different energy levels)



Qualitative evaluation (input = pz)

Energy resolution

➢ Observe good match for statistics 
inside the regions and decent 
match for resolution

Distributions inside calorimeter regions (bins represent different energy levels)

10



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

11



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

Classifier
real

fake
p(real)

11



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

Classifier
real

fake
p(real)

➢ Training metric: binary cross entropy

➢ Val. metric: avg. error on the val. set

11



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

Classifier
real

fake
p(real)

➢ Goal is to compare distance between distributions of simulated data and different versions of our model 
(i.e. provide us a quality metric)

➢ Training metric: binary cross entropy

➢ Val. metric: avg. error on the val. set

11



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

Classifier
real

fake
p(real)

➢ Goal is to compare distance between distributions of simulated data and different versions of our model 
(i.e. provide us a quality metric)

➢ Training metric: binary cross entropy

➢ Val. metric: avg. error on the val. set

11

➢ Setup: ResNet18, 100 epochs, least error on validation



Quantitative evaluation (input = pz)
➢ We perform classifier two sample test (C2ST) on other candidates for sampler model:

○ conditional WGAN/GAN
○ WGAN/GAN

Cond. WGAN Cond. GAN WGAN GAN

Score (0.5 — best) 0,36 0,08 0,12 0,10

Classifier
real

fake
p(real)

➢ Goal is to compare distance between distributions of simulated data and different versions of our model 
(i.e. provide us a quality metric)

➢ Training metric: binary cross entropy

➢ Val. metric: avg. error on the val. set

➢ Setup: ResNet18, 100 epochs, least error on validation

11



Summary

12

➢ Convolutional generative adversarial models can produce calorimeter showers 
that match our desired realism criteria



Summary
➢ Convolutional generative adversarial models can produce calorimeter showers 

that match our desired realism criteria

➢ They achieve sampling rate of 0.04 ms per sample on GPU, 4.7 ms per sample 
on CPU (NVIDIA DGX-1, batch size = 64)

12



Summary
➢ Convolutional generative adversarial models can produce calorimeter showers 

that match our desired realism criteria

➢ They achieve sampling rate of 0.04 ms per sample on GPU, 4.7 ms per sample 
on CPU (NVIDIA DGX-1, batch size = 64)

➢ A lot of work ahead to bring these generative models to production quality for 
use in LHCb and in HEP: make statistics match uniform across all energy 
levels, incorporate support for different particle types and multiple inputs
(px, py, …), etc.

12



Summary
➢ Convolutional generative adversarial models can produce calorimeter showers 

that match our desired realism criteria

➢ They achieve sampling rate of 0.04 ms per sample on GPU, 4.7 ms per sample 
on CPU (NVIDIA DGX-1, batch size = 64)

➢ A lot of work ahead to bring these generative models to production quality for 
use in LHCb and in HEP: make statistics match uniform across all energy 
levels, incorporate support for different particle types and multiple inputs
(px, py, …), etc.

➢ Need to compare our model using proposed metrics with other existing models 
(ex., CaloGAN)

12


