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Goal

➢ For the particle of a given type with given momentum and position on the face of 
the calorimeter generate reasonable response in calorimeter cells
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HxW matrix
energy response
in cells 

target

➢ Metrics we desire to match between simulated data and our samples:

○ cluster mean energy and shape

○ total energy resolution

○ cluster shape fluctuation

○ correlations between different cells of the cluster
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Approach

 

GAN: WGAN:
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Qualitative evaluation (input = pz)
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Energy resolution

Distributions inside calorimeter regions (bins represent different energy levels)
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Energy resolution

➢ Observe good match for statistics 
inside the regions and decent 
match for resolution

Distributions inside calorimeter regions (bins represent different energy levels)
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➢ Need to compare our model using proposed metrics with other existing models 
(ex., CaloGAN)
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