

Adversarial Tuning of Perturbative Parameters

in Non-Differentiable Physics Simulators

Michela Paganini

Ph.D. Student, Yale University Affiliate, Lawrence Berkeley National Lab

WonderMicky

michela.paganini@yale.edu

mickypaganini.github.io

with Luke de Oliveira, Steve Mrenna, Ben Nachman, Chase Shimmin, Paul Tipton

Adversarial Tuning of Perturbative Parameters

in Non-Differentiable Physics Simulators

Michela Paganini

Ph.D. Student, Yale University Affiliate, Lawrence Berkeley National Lab

- WonderMicky
- michela.paganini@yale.edu
- mickypaganini.github.io

with Luke de Oliveira, Steve Mrenna, Ben Nachman, Chase Shimmin, Paul Tipton

What is MC tuning?

Prior Work and (Partial) Bibliography

- Monte Carlo event generator validation and tuning for the LHC, arXiv:0902.4403
- Monte Carlo tuning and generator validation, arXiv: 0906.0075
- Systematic event generator tuning for the LHC, arXiv: 0907.2973
- Tuning Monte Carlo Generators: The Perugia Tunes, arXiv: 1005.3457
- Interleaved Parton Showers and Tuning Prospects, arXiv: 1011.1759
- Charged particle multiplicities in pp interactions at sqrt(s) = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and new PYTHIA6 tune, ATLAS-CONF-2010-031
- New developments in event generator tuning techniques, arXiv:1005.5357
- General-purpose event generators for LHC physics, arXiv: 1101.2599
- New ATLAS event generator tunes to 2010 data, ATL-PHYS-PUB-2011-008

- ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, ATL-PHYS-PUB-2011-009
- Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003
- Tuning of PYTHIA6 to Minimum Bias Data, *EPJ Web Conf.* 60 (2013) 20056
- QCD Monte-Carlo model tunes for the LHC, Prog.Part.Nucl.Phys. 73 (2013) 141-187
- Tuning PYTHIA 8.1: the Monash 2013 Tune, arXiv: 1404.5630
- An Introduction to PYTHIA 8.2, arXiv:1410.3012
- Sensitivities to PDFs in parton shower MC generator reweighting and tuning, arXiv:1601.04229
- Event generator tuning using Bayesian optimization, arXiv:1610.08328
- Adversarial Variational Optimization of Non-Differentiable Simulators, arXiv:1707.07113
- Improved tuning methods for Monte Carlo generators, arXiv:1801.07187

What is MC tuning?

- MC is based on theoretical models
- There are free parameters in the theory

Constraining these parameters to take on values that are consistent with existing data is call "MC tuning".

Basic MC tuning recipe

1. Pick set of parameter values

2. Generate MC events

3. Plot 1D observables from MC and reference data events

4. Calculate
$$\chi^2(\boldsymbol{p}) = \sum_{\mathcal{O}} \sum_{b \in \mathcal{O}} w_b \frac{(f^{(b)}(\boldsymbol{p}) - \mathcal{R}_b)^2}{\Delta_b^2}$$

This work: Ideas and Contributions

- I. Replace data-MC comparison based on χ^2 agreement of 1D histograms with NN-based high-dimensional discrimination
- II. Use the **full radiation pattern** inside jets as input, instead of a handful of observables
- III. Learn event reweighting function to avoid several expensive generation calls
- IV. Tune generator parameters by back-propagation

NN-based high-dimensional data-MC comparison.

Fundamental Approach

- Question: does $p_{\mathsf{generator}}(x|\theta)$ match $p_{\mathsf{data}}(x)$?
- Instead of checking 1D histograms, let a NN do this for you in high-dimensions (accounts for correlations)

Experimental Setup

- Dijet events at in pp collisions at 13 TeV, produced with Pythia 8.230 via the numpythia package in scikit-hep (500 GeV $< p_T < 1000$ GeV)
- Jet clustering with FastJet via the pyjet package in scikit-hep (anti- k_T R=0.4; jet $p_T > 10$ GeV; select 2 leading jets)
- Specify μ_{FSR} variations
- Write out to HDF5
- Train a classifier using PyTorch
- Method sensitivity in terms of binary ROC AUC

Binary Classification Tasks vs. μ_{FSR} =1.0 Baseline

Use full radiation pattern inside jets.

Use more complex input features

Letting a NN compare distributions scales better

• Can use much more complex inputs such as properties of all particles in the event

Binary Classification Tasks vs. μ_{FSR} =1.0 Baseline

Learn event reweighting function.

Learning the MC Event Reweighting

Tune generator parameters by back-propagation.

Algorithm 1 Proposed tuning algorithm.

- **Require:** Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.
- **Require:** : Ω_0 , initial discriminator's parameters. θ_0 , initial value of the perturbative parameters to tune. $\mathbb{P}_{MC}(\theta_0)$, the pre-computed empirical distribution of simulated events.
 - 1: while θ has not converged do
 - 2: **for** $t = 0, ..., n_D$ **do**
 - 3: Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- 4: Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events.
- 5: Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- 6: $g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L} \left(D(x^{(i)}), 1 \right) + w^{(i)}(\theta) \mathcal{L} \left(D(x'^{(i)}), 0 \right) \right) \right]$
- 7: $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- 8: end for
- 9: Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events.
- 10: Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- 11: $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- 12: $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

Require: : Ω_0 , initial discriminator's parameters. θ_0 , initial value of the perturbative parameters to tune. $\mathbb{P}_{MC}(\theta_0)$, the pre-computed empirical distribution of simulated events.

1: while θ has not converged do

- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$
- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

Require: : Ω_0 , initial discriminator's parameters. θ_0 , initial value of the perturbative parameters to tune. $\mathbb{P}_{MC}(\theta_0)$, the pre-computed empirical distribution of simulated events.

```
1: while \theta has not converged do
```

for $t = 0, ..., n_{\rm D}$ do

Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

6:
$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L} \left(D(x^{(i)}), 1 \right) + w^{(i)}(\theta) \mathcal{L} \left(D(x'^{(i)}), 0 \right) \right) \right]$$
7:
$$\Omega \leftarrow \Omega - \operatorname{Opt}(\Omega, g_{\Omega}; \lambda)$$

end for

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

11:
$$g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$$

 $\theta \leftarrow \theta - \mathsf{Opt}(\theta, q_{\theta}; \lambda)$

13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

6:
$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: : Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

Require: : Ω_0 , initial discriminator's parameters. θ_0 , initial value of the perturbative parameters to tune. $\mathbb{P}_{MC}(\theta_0)$, the pre-computed empirical distribution of simulated events.

1: while θ has not converged do

for $t = 0, ..., n_{\rm D}$ do

Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x^{(i)}), 0\right) \right) \right]$$

 $\Omega \leftarrow \Omega - \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$

end for

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

11:
$$g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$$

 $\theta \leftarrow \theta - \mathsf{Opt}(\theta, g_{\theta}; \lambda)$

13: end while

Algorithm 1 Proposed tuning algorithm.

Require: : Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

Require: : Ω_0 , initial discriminator's parameters. θ_0 , initial value of the perturbative parameters to tune. $\mathbb{P}_{MC}(\theta_0)$, the pre-computed empirical distribution of simulated events.

1: while θ has not converged do

for $t = 0, ..., n_{\rm D}$ do

Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + \frac{w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

 $\Omega \leftarrow \Omega - \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$

end for

Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

11:
$$g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$$

 $\theta \leftarrow \theta - \mathsf{Opt}(\theta, g_{\theta}; \lambda)$

13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

6:
$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L} \left(D(x^{(i)}), 1 \right) + w^{(i)}(\theta) \mathcal{L} \left(D(x'^{(i)}), 0 \right) \right) \right]$$
7:
$$\Omega \leftarrow \Omega - \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$$

- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do for $t = 0, ..., n_{\rm D}$ do Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data. Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights. $g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$ $\Omega \leftarrow \Omega - \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$ end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$ $\theta \leftarrow \theta - \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

6:
$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L} \left(D(x^{(i)}), 1 \right) + w^{(i)}(\theta) \mathcal{L} \left(D(x'^{(i)}), 0 \right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Algorithm 1 Proposed tuning algorithm.

Require: Opt, an optimization algorithm (e.g., RMSProp) with hyperparameters λ . b, the batch size. $n_{\rm D}$, the number of training iterations of the discriminator per generator iteration. \mathcal{L} , the binary cross-entropy loss function.

- 1: while θ has not converged do
- for $t = 0, ..., n_{\rm D}$ do
- Sample $\{x^{(i)}\}_{i=1}^b \sim \mathbb{P}_{\text{data}}$ a batch of events from the real data.
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.

$$g_{\Omega} \leftarrow \nabla_{\Omega} \left[\frac{1}{b + \sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} \left(\mathcal{L}\left(D(x^{(i)}), 1\right) + w^{(i)}(\theta) \mathcal{L}\left(D(x'^{(i)}), 0\right) \right) \right]$$

- $\Omega \leftarrow \Omega \mathsf{Opt}(\Omega, g_{\Omega}; \lambda)$
- end for
- Sample $\{x'^{(i)}\}_{i=1}^b \sim \mathbb{P}_{MC}(\theta_0)$ a batch of simulated events. Compute $\{w^{(i)}(\theta)\}_{i=1}^b = \{f(x'^{(i)}|\theta)\}_{i=1}^b$ simulated batch event weights.
- $g_{\theta} \leftarrow \nabla_{\theta} \frac{1}{\sum_{i} w^{(i)}(\theta)} \sum_{i=1}^{b} w^{(i)}(\theta) \mathcal{L}\left(D(x^{\prime(i)}), 1\right)$
- $\theta \leftarrow \theta \mathsf{Opt}(\theta, g_{\theta}; \lambda)$
- 13: end while

Summary: Ideas and Contributions

- I. Replace data-MC comparison based on χ^2 agreement of 1D histograms with NN-based high-dimensional discrimination
- II. Use the **full radiation pattern** inside jets as input, instead of a handful of observables
- III. Learn event reweighting function to avoid several expensive generation calls
- IV. Tune generator parameters by back-propagation

Thank you!

Questions?

You can find me at: ☐ michela.paganini@yale.edu