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Introduction

» Jets are collimated stream
of particles produced by
particle collisions.
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< Run: 271516
Event: 7786087
2015-07-13 09:38:38 CEST




1. Protons collide at high energies.
2. Quarks and gluons produced are hadronized.
3. The decay products are clustered into jets using

algorithms.

\«

Is the jet quark initiated or gluon initiated? (

e~ |

n
Wt \ Particle Jet Energy depositions

in calorimeters
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» In many searches for new physics signals at the LHC, jets
are initiated by light-flavor quarks (u, d, s), while the jets
background processes are initiated by gluons.

» We are currently working on,
» Classification of quark and gluon initiated jets.
» Bias between the event generators.

» Bias between real and simulated data.
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Quark/Gluon Jets

Figure: Quark jet Figure: Gluon jet

» Quark initiated jets are
narrower

» Gluon initiated jets are
more wide.

CF:% J CAZS J

B.R.Webber, Quark and Gluon Jets in Quantum Chromodynamics, Physica Scripta, vol 25, no 1B, p 198, 1982
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Jet images are 2D repres Entatiol of energy deposits in the
calorimeter.



Event Generation

PYTHIA *

HERWIG

o3

bl
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Processes

» Quark-initiated jets
> qq —aq
> 93 —~qg
> 99 —qq

» Gluon- initiated jets
> 99 — 99
> 4g — gd

P T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet
discrimination, arXiv:1612.01551 [hep-ph]
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Parameters

» Radius =0.4
» Pseudorapidity |n| < 2.5

» Transverse momentum in ranges 100-110 GeV, 200-220
GeV, 500-550 GeV and 1000-1100 GeV.

P T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet

discrimination, arXiv:1612.01551 [hep-ph]
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Preproccessing

1. Centering: The jet is rotated and boosted so that the
central pixel is at (0, 0).

2. Crop: Crop the image with (1, ¢)e(—R, R).
3. Normalize: Total pixel intensity of the image is > _ /; = 1.

4. Zero-center: l; — I — pj; , where p;; is the average of the
training set.

5. Standardize: l; — l;j/(oj + r) where oj; is the standard
deviation of the training set and r = 10~°.

P T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet
discrimination, arXiv:1612.01551 [hep-ph]
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(a) Average gluon image (b) Average quark image
before preprocessing steps 4-5 before preprocessing steps 4-5

Figure: Jet-lmages
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(a) Average gluon image after (b) Average quark image after
preprocessing preprocessing

Figure: Jet-lmages
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Convolutional Neural Networks

» Convolutional Neural Network (CNN) are neural networks
for image recognition and image classification.

» CNN scans over the two dimensional pixel intensities of an
RGB image.

Figure: Convolutional Neural Network

P. T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet

discrimination, arXiv:1612.01551 [hep-ph]
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Figure: Components of a CNN
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Deep Learning on Jet-Images

» Jetimages of size 33 x 383.
» 3 convolutional layer and 2 fully connected layer.
» RelLU (Rectified Linear Unit) activation.

sigmoid RelLU

o) == | B2 =mas(0, )

J

Figure: ReLU and Sigmoid activations

» Filters of size 8 x 8,4 x 4and 4 x 4 are used.

» Maxpooling layers 2 x 2 is also applied to the CNN with a
stride length of 2.

» The fully connected layer consists of 128 units.
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» The jet images produced are fed into the network as
grayscale images.

» An additional information of charge is applied to improve
the accuracy of the model.
» “Colour” images with colour channels,

» RED = Transverse momentum of charge particles.
» GREEN = Transverse momentum of neutral particles.
» BLUE = Charge particle multiplicity.

» The “coloured” images are then trained.

P T. Komiske, E. M. Metodiev, M. D. Schwartz, Deep learning in color: towards automated quark/gluon jet
discrimination, arXiv:1612.01551 [hep-ph]
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@

» CNN is trained on Tensorflow using NVIDIA GeForce
1080Ti GPU on Cuda 9.0 platform.

» The network is trained over 100 epochs with a learning
rate « of 0.001.

» 180000 jet images are used for training, 20000 images for
validation and 40000 images are used for testing.
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Results and Future Works
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» Domain adversarial neural network is a new learning

approach for data trained and tested on similar but different

oL, —

distributions.
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Figure: DANN architecture
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Y. Ganin et al. , Domain-Adversarial Training of Neural Networks, arXiv:1505.07818 [stat]
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