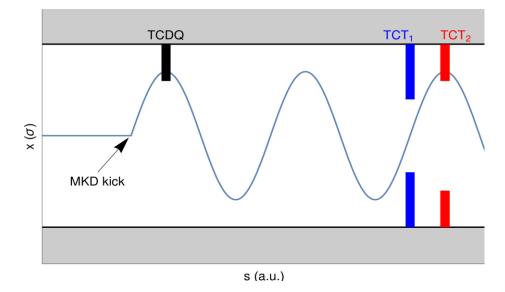


Protected aperture in HL-LHC

R. Bruce, S. Redaelli Acknowledgement: C. Bracco, R. De Maria, A. Lechner

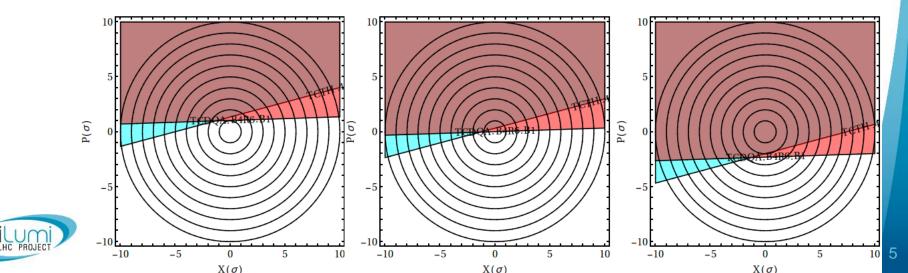

Introduction

- Continuous effort to improve collimation hierarchy and hence reach in β*
 - Tighter collimators => smaller protected normalized aperture => smaller β* allowed
 - Main limitation in the LHC was in Run I and 2015 the risk of damaging tertiary collimators / triplets during asynchronous beam dumps

Introduction

- Significant improvement in β*-reach in the LHC in 2016 / 2017
 - matched phase advance between MKD-TCT
 - Removes risk of TCTs being hit and damaged by primary impacts during asynchronous beam dumps

Nuclear Instruments and Methods in Physics Research A 848 (2017) 19-30


Application to HL-LHC?

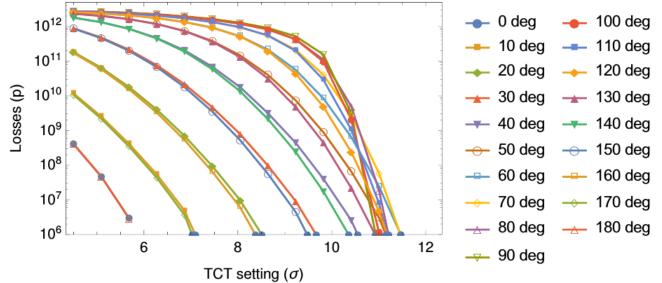
- Can we profit of this experience to improve the β*-reach in the HL-LHC?
- Possibilities discussed previously: R. De Maria in WP2 meeting 1/11/2016, R. Bruce in ColUSM 11/11/2016, R. Bruce at Chamonix 26/1/2017
- Published CERN report CERN-ACC-2017-0051
- In new version optics HL-LHC v1.3: MKD-TCT phase significantly improved
- Today: status of protected aperture in HL-LHC for different phase advance

Studies of TCT losses during asynch dump

- As for LHC, use phase-space integration to estimate losses on TCTs for each bunch during dump failure (type 2 single-module pre-fire worst case).
 - Integrate beam distribution over phase space area caught by studies bottleneck
 - Fast study which does not require full optics for every studied case
 - Disadvantage: does not treat secondary impacts.

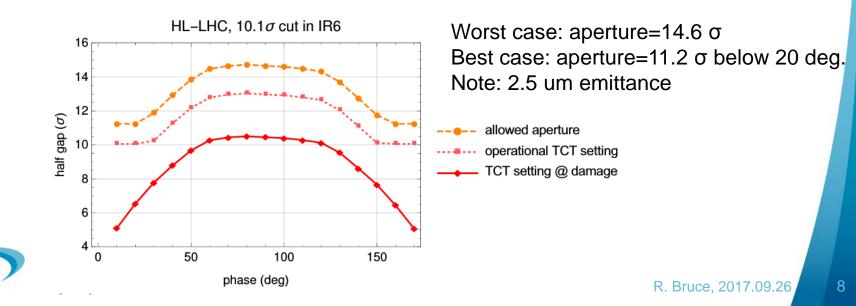
HL-LHC collimator settings, v1.2

	Setting in σ , $\epsilon_n = 3.5 \mu \text{m}$	Setting in σ , $\epsilon_n = 2.5 \mu \text{m}$
TCP7	5.7	6.7
TCS7	7.7	9.1
TCSP6	8.5	10.1
TCDQ6	9.0	10.6
TCT	10.9	12.9
aperture	12.3	14.6


- Present baseline: TCSP is at 10.1 σ, TCDQ at 10.6 σ, but likely that TCDQ can be tightened to 10.1 σ (2.5 um emittance)
- We don't think we can move in TCDQ further due to robustness constraints (C. Bracco, A. Lechner)
 - Decreasing margin TCP-TCSG doesn't bring a gain at the moment
- As function of MKD-TCT phase, study how TCT and aperture can be tightened

TCT losses vs phase and setting

Parametric study over phase and TCT opening, keeping the protection device (TCSP/TCDQ) fixed at 10.1 σ , normalized to 2.2e11 p/bunch


- Next step: find intersection with damage limit for each phase and relate to setting
- Using previously calculated limit of plastic deformation (5e9 protons, E. Quaranta et al. PRSTAB 20, 091002 2017) with additional factor 2 safety margin
 - Further margin: Plastic deformation should not require exchange of collimator can use 5th axis

Allowed TCT setting and aperture in operation

- TCT must operate sufficiently far outside the setting @ damage
- Calculate operational setting and allowed aperture with methods used for LHC (PRSTAB 18, 061001 (2015)) accounting for orbit, β-beat, setup error etc.
- Note: aperture from asynch dump only. Cleaning limits anyway to around 10.1 sigma

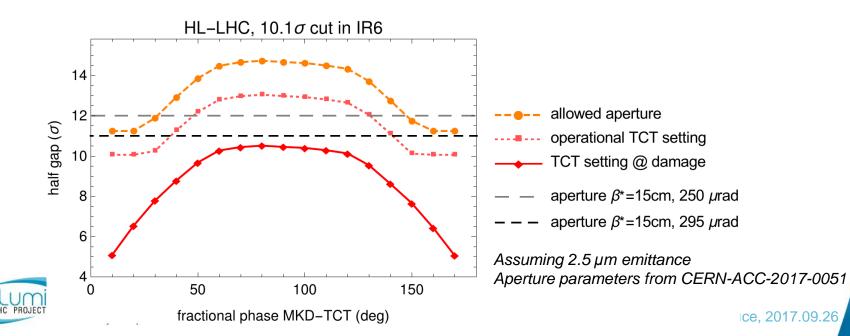
Protected aperture vs MKD-TCT phase

$\Delta \mu$ MKD-TCT	Protected aperture (σ)	
	LHC, $\epsilon_n = 3.5 \ \mu \text{m}$	HL-LHC, ϵ_n =2.5 μ m
0°	9.5	11.2
10°	9.5	11.2
20°	9.5	11.2
30°	10.0	11.9
40°	10.9	12.9
50°	11.7	13.8
60°	12.3	14.5
70°	12.3	14.6
80°	12.3	14.6
90°	12.3	14.6

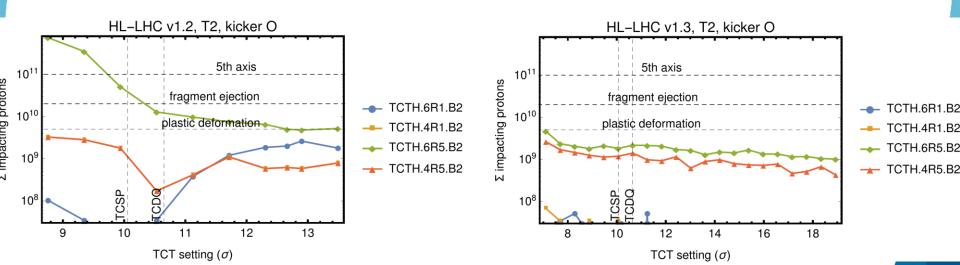
Phase advance in HL-LHC v1.3

optics	TCT6 IR1 B1	TCT6 IR5 B1	TCT6 IR1 B2	TCT6 IR5 B2
HL-LHC v1.2 15 cm	106	285	137	101
HL-LHC v1.3 15 cm	180	155	154	152

- For HL-LHC v1.2 optics: aperture should be above 14.6 σ.
- For HL-LHC v1.3 optics: aperture should be above 11.9 σ.


Proposed new collimation hierarchy for v1.3

Collimator	Setting (LHC – 3.5 µm)	Setting (HL – 2.5 µm)
TCP7	5.7	6.7
TCS7	7.7	9.1
TCSP6	8.5	10.1
TCDQ6	8.5	10.1
TCT IR1/5	8.8	10.4
Aperture IR1/5	10.0	11.9


Translate aperture in β*-reach

- Below 20 deg phase advance, we can almost recover 15 cm and 295 urad
- For 30 deg phase, reach in β* is between 16 cm and 17 cm
- Need to also decrease crossing angle to recover
- At 30 deg: 250 urad (10.6 σ BB separation) gives enough aperture for β * =15 cm

TCT asynch dump losses from SixTrack

- Simulating type 2 single-module pre-fire with SixTrack
 - Full magnetic tracking with collimation system in place
 - Method described in NIM A 848 (2017) 19–30
- As expected, only secondary impacts on TCTs over studied range of settings in HL-LHC v1.3

Conclusions

- One main limitation for protected aperture and β* has been risk of damage on TCTs and triplets during asynch dumps
- Studied how limitation varies as function of MKD-TCT phase
- In HL-LHC v1.3, mitigated with good phase advance MKD-TCT as in LHC
- Protected aperture for HL-LHC v1.3 is estimated at 11.9 σ
- β*=15 cm can be recovered in this optics if 250 µrad crossing is used

