Dynamic Aperture and β -Beating with Field Errors from 11T Dipoles

P. D. Hermes, M. Giovannozzi

CERN

Acknowledgements : S. Izquierdo Bermudez, R. De Maria, A. Mereghetti, F. Savary And the LHC@home volunteers

WP2 Meeting

03.10.2017

Introduction

- HL-LHC baseline : new 11T dipoles (MBH) in 8L7/8R7 to provide space for additional collimators
- Possibly second set of MBH magnets + collimator in cell 10 (not baseline)

Introduction

- HL-LHC baseline : installation of new 11T dipoles (MBH) in cells 8L7/8R7 to provide space for additional collimators
- MBH field quality errors may
 - Impact dynamic aperture (DA)
 - Introduce β-beating
- This presentation : quantify the impact of MBH field quality errors on DA and β-beating
- Update on previous presentations on this topic :
 - > 25.04.17 : LARP CM28/HiLumi Meeting, Napa, CA, USA
 - 21.03.17 : WP2 Meeting

Contents

Introduction

MBH Field Quality

Dynamic Aperture with MBH field errors At Injection and Collision During Ramp

$\beta\text{-beating}$

Summary and Conclusions

Field quality

	DS-11T Dipole field quality version 5 February 2017 R _{ref} =17mm								
	Systematic					Uncertainty		Random	
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
1						20	20	20	20
2	0.000	-14.633	0.000	0.000	-14.633	1.705	1.705	1.7045	1.705
3	7.500	-0.611	-8.800	-1.300	6.889	1.079	1.079	1.0788	1.079
4	0.000	-0.859	0.000	0.000	-0.859	0.623	0.623	0.6229	0.623
5	-0.014	0.416	2.400	2.386	0.403	0.349	0.349	0.3490	0.349
6	0.000	-0.021	0.000	0.000	-0.021	0.175	0.175	0.1746	0.175

► Latest baseline from 05/02/2017 by S. Izquierdo Bermudez

Field quality

	DS-11T Dipole field quality version 5 February 2017 R _{ref} =17mm								
	Systematic					Uncertainty		Random	
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
1					\sim	20	20	20	20
2	0.000	-14.633	0.000	0.000	-14.633	1.705	1.705	1.7045	1.705
3	7.500	-0.611	-8.800	-1.300	6.889	1.079	1.079	1.0788	1.079
4	0.000	-0.859	0.000	0.000	-0.859	0.623	0.623	0.6229	0.623
5	-0.014	0.416	2.400	2.386	0.403	0.349	0.349	0.3490	0.349
6	0.000	-0.021	0.000	0.000	-0.021	0.175	0.175	0.1746	0.175

- ► Latest baseline from 05/02/2017 by S. Izquierdo Bermudez
- What is the impact of all errors on dynamic aperture?
- b₂ component at high field : impact on β-beating?

Field quality

	DS-11T Dipole field quality version 5 February 2017 R _{ref} =17mm								
	Systematic					Uncertainty		Random	
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
1					\sim	20	20	20	20
2	0.000	-14.633	0.000	0.000	-14.633	1.705	1.705	1.7045	1.705
3	7.500	-0.611	-8.800	-1.300	6.889	1.079	1.079	1.0788	1.079
4	0.000	-0.859	0.000	0.000	-0.859	0.623	0.623	0.6229	0.623
5	-0.014	0.416	2.400	2.386	0.403	0.349	0.349	0.3490	0.349
6	0.000	-0.021	0.000	0.000	-0.021	0.175	0.175	0.1746	0.175

- ► Latest baseline from 05/02/2017 by S. Izquierdo Bermudez
- What is the impact of all errors on dynamic aperture?
- b₂ component at high field : impact on β-beating?

Dynamic Aperture with MBH field errors

SixTrack : compare dynamic aperture

- Conf. 1 : without MBH units
- Conf. 2 : with one MBH unit in cell 8L7/8R7
- Conf. 3 : with MBH units in cell 8L7/8R7 and 10L7/10R7
- <u>LHC@home</u> \approx 18×5000 simulations over max. 100000 turns
- ► HL-LHC V1.0 optics at injection and collision with $\beta^* = 15$ cm in IR1/5, $\beta^* = 10$ m in IR2, 3m in IR8
- Include all field errors up to b_{15} and a_{15}
- Considered emittance : $\epsilon_N = 2.5 \,\mu\text{m}$ rad

Dynamic Aperture with and without MBH field errors

Dynamic Aperture with and without MBH field errors

Dynamic Aperture with and without MBH field errors

Dynamic aperture with MBH field errors Summary

			Min. DA $[\sigma]$		
Beam	E [GeV]	Optics	Conf. 1	Conf. 2	Conf. 3
1	7000	Collision	9.4	9.4	9.4
1	450	Injection	11.5	11.5	11.5
2	7000	Collision	8.2	8.1	8.0
2	450	Injection	11.7	11.6	11.6

- All study cases show similar DA distributions as Conf. 1
- No significant change in DA with MBH field errors
- Maximum reduction for given angle : $< 0.5 \sigma$
- Situation during ramp may be different

 $R_{ref} = 17$ mm

Study of DA during ramp

- Study with modified field quality table
- Set components individually to their maximum during ramp
- Remaining components from standard field quality table
- All studies at injection energy \rightarrow comparability
- Conservative scenario : negligence of adiabatic damping

Dynamic aperture during ramp

Overview

Dynamic aperture during ramp

Min. DA for all study cases

Dynamic aperture during ramp

Min. DA - Min. DA [nominal]

Dynamic aperture with MBH field errors Summary

		Conf. 2		Со	nf. 3
Beam	f.q. table	ΔDA	DA_{min}	ΔDA	DA_{min}
		$[\sigma]$	$[\sigma]$	$[\sigma]$	$[\sigma]$
B1	nominal	±0.0	11.5	±0.0	11.5
B1	<i>b</i> 3 max.	-0.6	11.4	-0.2	11.6
B1	<i>b</i> 5 max.	-0.1	11.6	-0.4	11.5
B1	<i>b</i> 7 max.	-0.1	11.6	-0.4	11.5
B1	<i>b</i> 9 max.	-0.1	11.6	-0.4	11.5
B1	all max.	-0.6	11.7	-0.2	11.6

 ΔDA : max. DA reduction for any angle

Dynamic aperture with MBH field errors Summary

		Conf. 2		Сог	nf. 3
Beam	f.q. table	ΔDA	DA_{min}	ΔDA	DA_{min}
		$[\sigma]$	$[\sigma]$	$[\sigma]$	$[\sigma]$
B2	nominal	±0.0	11.6	±0.0	11.6
B2	<i>b</i> 3 max.	-0.4	11.7	-0.9	11.6
B2	<i>b</i> 5 max.	-0.5	11.6	-0.4	11.6
B2	<i>b</i> 7 max.	-0.5	11.6	-0.4	11.6
B2	<i>b</i> 9 max.	-0.5	11.6	-0.4	11.6
B2	all max.	-0.4	11.7	-0.9	11.6

 ΔDA : max. DA reduction for any angle

β -beating

- Switch off all field error components but b₂
- ▶ MBH magnets : high b₂ at collision
- Expected : higher β -beating from MBH in collision
- IR7 : beams are not changing aperture \rightarrow no cancellation of b_2 from MBH
- Study cases : HL-LHC V1.0 as before
- Simulation with MAD-X for all seeds

$\beta\text{-beating}$ at injection

$\beta\text{-beating}$ at injection

Distribution for B2V

$\beta\text{-beating}$ at collision

$\beta\text{-beating}$ at collision

Outlook

- MBH is close to Q8
- Quadrupole could be rematched
- Compensate beta-beating from MBH b₂
- Work in progress

Summary and Conclusions

- DA and β -beating studied in three setups with MBH magnets
- Injection and Collision : minor effect on DA, no significant reduction
- \blacktriangleright Field errors during ramp with two MBH units per beam : reduction up to 0.8 σ
- β -beating from b_2 :
 - Injection : Very small effect
 - Collision : Additional β-beat compared to MB magnets, potential compensation with Q8R7/Q8L7

Appendix

Error Tables and Routines Used

db5=/afs/cern.ch/eng/lhc/optics/V6.503 slhc=/afs/cern.ch/eng/lhc/optics/HLLHCV1.0 wise=/afs/cern.ch/eng/lhc/optics/errors/0705

db5/measured_errors/rotations_Q2_integral.tab slhc/errors2/ITbody_errortable_v5 slhc/errors2/ITnc_errortable_v5 slhc/errors2/ITcs_errortable_v5 slhc/errors2/D1_errortable_v1 slhc/errors2/D2_errortable_v5 slhc/errors2/Q4_errortable_v2 slhc/errors2/Q5_errortable_v0 slhc/errors2/MCBXFAB_errortable_v1 /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors2/MBH_errortable_v2 wise/injection_errors-emfqcs-1.tfs wise/collision_errors-emfqcs-1.tfs db5/measured_errors/Efcomp_MBRB.madx db5/measured_errors/Efcomp_MBRS.madx db5/measured_errors/Efcomp_MBRS.madx db5/measured_errors/Efcomp_MBX.madx db5/measured_errors/Efcomp_MBX.madx

Error Tables and Routines Used

db5=/afs/cern.ch/eng/lhc/optics/V6.503 slhc=/afs/cern.ch/eng/lhc/optics/HLLHCV1.0 wise=/afs/cern.ch/eng/lhc/optics/errors/0705

db5/measured_errors/Efcomp_MQW.madx db5/measured_errors/Efcomp_MQTL.madx db5/measured_errors/Efcomp_MQMC.madx db5/measured_errors/Efcomp_MQX.madx db5/measured_errors/Efcomp_MQY.madx db5/measured_errors/Efcomp_MQML.madx db5/measured_errors/Efcomp_MQML.madx db5/measured_errors/Efcomp_MQML.madx slhc/errors2/Efcomp_MQXFbody.madx slhc/errors2/Efcomp_MQXFends.madx slhc/errors2/Efcomp_MBXAB.madx slhc/errors2/Efcomp_MBRD.madx slhc/errors2/Efcomp_MQYY.madx slhc/errors2/Efcomp_MQYL.madx slhc/errors2/Efcomp_MQXFAB.madx