STAR project: The Italian Compton Source and the interaction chamber

Alberto Bacci INFN-MIlano

November 28th, 2017, Padova (IT)

Index

□ A Brief view of Thomson/Compton European Sources

- One Big Facility & four smaller one
- The Sparc-Thomson Interaction Chamber

□ The STAR project: Southern Europe Thomoson back scattering source for Applied Research

Location & Funds; Dimension/Cost projects Scaling

Beam-line & main characteristics

Interaction Chamber

- Source performances
- □ Conlcusions

European Thomson/Scattering X-Ray sources

A Big facility in Romania; Extreme Light Infrastructure-Nuclear Physics (ELI-NP), C-band linac booster and up to 20 MeV high quality γ-ray

Smaller machines that are opening interesting research lines are:

- ThomX (@LAL, Orsay, France), a small electron ring producing 40-90 KeV, [Yesterday's Talk "Thom-X and Other Laser-Thomson Sources", Pierre Favier].
- STAR @ University of Calabria (CS, Italy). A Linac driven source of monochromatic, ps-long, polarized 20 to 140 keV X-ray beams.
- SPARC_lab (@ INFN Frascati Lab) first Italian Thomson scattering. C.Vaccarezza et al., NIMB A 829 (2016) 237-342.
- Sources which start to be commercially available:

Technische Universität München (TUM, Germany) Compact Light Source, 35keV X-ray. Very interesting but still not commercially attractive to produce high energy X-Ray with very narrow bandwidth, as often requests.

Compact Light Source @ Monaco (Germany): Commercially available

Compact Light Source @ Monaco (Germany): Commercially available

SPARC_LAB thomson Line

	STILLING CONTRACTOR	E Contraction		and the second se
	Table 1: Thomson Source Design Parameters			
	Electron	Energy	(MeV)	30
	Beam	Energy spread	(%)	< 0.1
		Charge	(pC)	100-800
Huge solenoid,		Emittance	(mm mrad)	1÷3
Dinax 1.2	Laser	Wavelength	(nm)	800
	Beam	Pulse energy	(J)	1÷5
		Pulse length	(ps)	6
		Spot size	(µm)	10
		Repetition rate	(Hz)	10
Results in Ref C Vaccarezza et	X-ray Beam	Photon energy	(keV)	20-500
al., NIMB A 829 (2016) 237-342.		Photon number per shot 10 ⁹		
		Source rms rad	ius (µm)	10
		Bandwidth	(%)	10
e beam				

The STAR Project

STAR brief description:

- > A Monochromatic & tunable & ps-long & polarized X-ray beam from 20 to 140 keV.
- Experiments on matter science, cultural heritage analysis and radiological imaging, by using micro-tomography, are planned.
- > An Yb:Yag 100 Hz, 150mJ colliding laser (Amplitude).

Actors in the project :

- UNICAL (UNIversità della CALabria)
- CNISM (Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia)
- Sincrotrone Trieste
- > INFN (Istituto Nazionale di Fisica Nucleare)

Location & Funds

The economical support comes from the EU for Regional Convergence (including Calabria) Development Funds for the community, including research infrastructures

Gross domestic product per capita (US Dollars)

Italy	35.000
Calabria	23.000

Location

University of Calabria (UNICAL):

International Architect competition in 1974 (won by Gregotti Bureau), built in 1977

- > 35.000 Students
- Strong physics department (strong collaborations with CERN)

Features of available X-ray sources						
	Cost (M€)	Size (m)	Energy (keV)	Features		
Syncrotrons	500	500	0.1 - 100	General purpose		
FEL	1000	1000	0.01 - 10	Peak intensity, time resolution		
ELI – NP (TBS for γ)	300	100	20000	Only available γ source		
STAR (TBS for X)	15 ~ 10	30 ~ 10	7-120 (240)	Cost, portability, tunability		
E. Puppin Courtesy						

STAR project layout

Injector Optimization (1-8.8m) for the two phases: 60 MeV and 85 MeV

60 MeV – one S-band TW SLAC cavity Sig_t=3.4ps (Gaussian pulse) Sig_x=340 micron Charge=0.5 nC

85 MeV – two S-band TW SLAC cavities Sig_t=3.7ps (gauss pulse) Sig_x=320 micron Charge=0.5 nC

5000mp Astra simulations

A new interaction chamber scheme 1/3

very expensive

250-300k€

- 2 x Cavity BPM
- 2 x Movable permanent Quads fousing channel

New scheme

The Interaction Chamber is a diagnostic chamber, with a laser entrance as tested at Fermi_lab (Trieste) for the cathode laser; (as planned @ Eli-np & STAR)

A new interaction chamber scheme 2/3

At realative low energy (as at STAR, 0.5 nC for 60-100 MeV) the focusing channel have to be as compact as possible

A new interaction chamber scheme 3/3

The Focusing channel

We studied more solutions, starting from Permanent Quadrupole and Solenoids

FINAL FUSING CHANNEL

Source performances 1/3

Electron beam Parameters				
Electron Energy [MeV]	59.81			
Bunch charge [nC]	0.5			
Bunch length rms [mm]	0.93			
Normalize Emit. x,y [um]	1.7, 1.8			
Energy Spread %	0.2			
Spot size rms; x,y@ IP	9.5, 13.2			
Interaction Laser Parameters				
Pulse energy [mJ]	150			
Pulse Lenght rms [ps]	1.9			
Spot size w0, rms [um]	28			
Wavelegth [nm]	1029			

Source performances 2/3

Simulated Electron Bunch @ Interaction Point

Source performances 3/3

In Conclusion

Compton/Thomson X-ray Sources, in the last few years, by simulations & by recent experimental results have shown great advantages in more and more fields: radiological medical imaging, matter science, study of the historical finds (e.g. unroll of burnt papyrus), etc. ...

Further the possibility to produce synchrotron radiation by not huge machines easily overcoming 100keV x-ray energy with small (order of 10 meters)

Waiting for to TURN-ON of

Thanks for your

e news @ Munich CLS

tropy imaging with a compact

attention

al. Scientific Reports 7, Article number: 14477; Online: 03 November 2017 *Tecnical University of Munich

Microfractures are often missed in classical radiographs; x-ray vector radiography (XVR) can overcome this limitation: degree of anisotropy and orientation of scattering structures