Laser-proton and laser-PSI collisions simulation

Camilla Curatolo

INFN Milan, Italy

camilla.curatolo@mi.infn.it

November 28, 2017 ARIES Photon beams workshop, Padova, Italy

Many thanks for the collaboration to: Luca Serafini, Vittoria Petrillo, Fabrizio Castelli, Francesco Broggi, Witold Krasny, Wieslaw Placzek

Dac

• Laser-proton collision for Hadron-Photon Collider (HPC) conceptual study [see Luca Serafini's talk]: scheme, relevant reactions and simulation tools

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

- Laser-proton collision for Hadron-Photon Collider (HPC) conceptual study [see Luca Serafini's talk]: scheme, relevant reactions and simulation tools
- How those tools can be usefull for the GAMMA-FACTORY

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Laser-proton collision for Hadron-Photon Collider (HPC) conceptual study [see Luca Serafini's talk]: scheme, relevant reactions and simulation tools
- How those tools can be usefull for the GAMMA-FACTORY
 - PSI-Laser collisions simulation: preliminary results

- Laser-proton collision for Hadron-Photon Collider (HPC) conceptual study [see Luca Serafini's talk]: scheme, relevant reactions and simulation tools
- How those tools can be usefull for the GAMMA-FACTORY
 - PSI-Laser collisions simulation: preliminary results
 - Work done and to do list

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

HPC: INTRODUCTION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HPC: INTRODUCTION

• TeV protons keV photons: very asymmetrical collision $(\gamma_{CM} \simeq \gamma_{pr}) \Rightarrow$ high Lorentz boost imparted to secondary beams: high energy, very collimated and low transverse emittance

HPC: INTRODUCTION

- TeV protons keV photons: very asymmetrical collision $(\gamma_{CM} \simeq \gamma_{pr}) \Rightarrow$ high Lorentz boost imparted to secondary beams: high energy, very collimated and low transverse emittance
- energy of photons in protons rest frame much higher than in laboratory

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

HPC: MAIN REACTIONS

PRoton	Epr	N _{pr}	σ_0	PHoton	E_{ph}	N _{ph}
source	(TeV)		(μm)	source	(keV)	
SPS	0.4	$2\cdot 10^{12}$	18	TCS	350	10^{8-9}
LHC	7	$2\cdot 10^{11}$	7	FEL	6 - 20	10 ¹³
FCC	50	1011	1.6	FEL	2 - 12	10^{13-14}

HPC: MAIN REACTIONS

PRoton	Epr	N _{pr}	σ_0	PHoton	E_{ph}	N _{ph}
source	(TeV)		(μm)	source	(keV)	
SPS	0.4	$2\cdot 10^{12}$	18	TCS	350	10^{8-9}
LHC	7	$2\cdot 10^{11}$	7	FEL	6 - 20	10 ¹³
FCC	50	10^{11}	1.6	FEL	2 - 12	10^{13-14}

Energy range: 220 ${\rm MeV} < E_{ph}' < 1~{\rm GeV}$

HPC: MAIN REACTIONS

PRoton	Epr	N _{pr}	σ_0	PHoton	E_{ph}	N _{ph}
source	(TeV)		(μm)	source	(keV)	
SPS	0.4	$2\cdot 10^{12}$	18	TCS	350	108-9
LHC	7	$2\cdot 10^{11}$	7	FEL	6 - 20	10 ¹³
FCC	50	10^{11}	1.6	FEL	2 - 12	10^{13-14}

Energy range: 220 MeV $< E'_{ph} < 1$ GeV

 $p + \gamma \rightarrow p' + e^-e^+$ Homemade event generator based on Geant4 differential cross sections: calculation in PRF + Lorentz transformation to LAB

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

 $p+\gamma \rightarrow p'+e^-e^+$ Homemade event generator based on Geant4 differential cross sections

$p + \gamma \rightarrow \pi^+ + n \rightarrow \mu^+ + \nu_\mu + n$

Homemade event generator with correct differential cross sections: generation of pion + neutron and decay of pion into muon + neutrino

 $p+\gamma \rightarrow p'+e^-e^+$ Homemade event generator based on Geant4 differential cross sections

 $p+\gamma \to \pi^+ + n \to \mu^+ + \nu_\mu + n$ Homemade event generator with correct differential cross sections

 $p + \gamma \rightarrow p' + \mu^- \mu^+$ Close to muon production threshold: homemade event generator based on flat differential cross section. Far from threshold: homemade event generator based on Geant4 approach with correct differential cross section: calculation in PRF + Lorentz transformation to LAB

 $p+\gamma \rightarrow p'+e^-e^+$ Homemade event generator based on Geant4 differential cross sections

 $p+\gamma \to \pi^+ + n \to \mu^+ + \nu_\mu + n$ Homemade event generator with correct differential cross sections

 $p + \gamma \rightarrow p' + \mu^- \mu^+$ Close to muon production threshold: homemade event generator based on flat differential cross section. Far from threshold: homemade event generator based on Geant4 approach with correct differential cross section

 $p + \gamma \rightarrow p + \gamma'$ Homemade event generator CMCC: calculation in CM + Lorentz transformation to LAB

LHC protons vs 6keV FEL photons

 $p+\gamma \rightarrow p'+e^-e^+$ Homemade event generator based on Geant4 differential cross sections

 $p+\gamma \to \pi^+ + n \to \mu^+ + \nu_\mu + n$ Homemade event generator with correct differential cross sections

 $p + \gamma \rightarrow p' + \mu^- \mu^+$ Close to muon production threshold: homemade event generator based on flat differential cross section. Far from threshold: homemade event generator based on Geant4 approach with correct differential cross section

 $p + \gamma \rightarrow p + \gamma'$ Homemade event generator CMCC

• Energy of laser photons in PSI rest frame $E'_L \simeq 2\gamma E_L$: laser energy tuned to hit the resonance

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• Energy of laser photons in PSI rest frame $E'_L \simeq 2\gamma E_L$: laser energy tuned to hit the resonance

• Resonance cross section \sim Mbarn (6-7 orders higher ICS off e⁻, 12-13 orders higher ICS off protons)

• Energy of laser photons in PSI rest frame $E'_L \simeq 2\gamma E_L$: laser energy tuned to hit the resonance

• Resonance cross section \sim Mbarn (6-7 orders higher ICS off e^- , 12-13 orders higher ICS off protons)

 High energy photons emitted by spontaneous emission: isotropic emission ⇒ flat differential cross section

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Energy of laser photons in PSI rest frame $E'_L \simeq 2\gamma E_L$: laser energy tuned to hit the resonance

• Resonance cross section \sim Mbarn (6-7 orders higher ICS off e^- , 12-13 orders higher ICS off protons)

- High energy photons emitted by spontaneous emission: isotropic emission \Rightarrow flat differential cross section
- Max energy of the emitted photons (emitted forward in PSI rest frame) $E_{\gamma}^{max}=4\gamma^2 E_L=2\gamma E_L'$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Energy of laser photons in PSI rest frame $E'_L \simeq 2\gamma E_L$: laser energy tuned to hit the resonance

• Resonance cross section \sim Mbarn (6-7 orders higher ICS off e^- , 12-13 orders higher ICS off protons)

- High energy photons emitted by spontaneous emission: isotropic emission \Rightarrow flat differential cross section
- Max energy of the emitted photons (emitted forward in PSI rest frame) $E_{\gamma}^{max} = 4\gamma^2 E_L = 2\gamma E_L'$
 - CMCC event generator modified for PSI-Laser collisions: two examples Xe^{39+} and Pb^{81+}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GAMMA FACTORY: Xe³⁹⁺ EXAMPLE

PSI Beam	<i>Xe</i> ³⁹⁺		
M_i mass of one ion	120 GeV $/c^2$		
γ_i relativistic factor	34.66		
E_i energy of one ion	4.19 TeV		
$\Delta\gamma/\gamma$ rel. en. spread ion beam	$3 \cdot 10^{-4}$		
N _i number of ions per bunch	$2\cdot 10^9$		
ϵ^n normalized transverse emittance	2 mm mrad		
$\beta_x = \beta_y$ beta function	50 m		
σ_x rms transverse size	1.7 mm		
σ_z rms bunch lenght	12 cm		
Laser	Green		
$\lambda_L (E_L)$	532 nm (2.33 eV)		
N_L number of photons per pulse	$8.73 \cdot 10^{14}$		
U_L laser energy	0.33 mJ		
w_0 laser waist at IP (2 σ_L)	3.4 mm		
R_L Rayleigh lenght $(\pi w_0^2/\lambda_L)$	68.23 m		
σ_t rms pulse lenght	1 m		

 $E_{res} = E_I' = 161.5 \text{ eV}$

$$N_{\gamma} \text{ per shot} = \frac{N_i N_L}{2\pi (\sigma_x^2 + \sigma_L^2)} \bar{\sigma} = \frac{2 \cdot 10^9 \ 8.73 \cdot 10^{14}}{4\pi (1.7 \cdot 10^{-3})^2} 5.89 \cdot 10^{-20} = 2.83 \cdot 10^9$$

[ō value from Evgeny Bessonov's]

GAMMA FACTORY: Xe³⁹⁺ EXAMPLE

GAMMA FACTORY: Pb^{81+} EXAMPLE

PSI Beam	Pb^{81+}
M_i mass of one ion	193 GeV $/c^{2}$
γ_i relativistic factor	3000
<i>E_i</i> energy of one ion	579 TeV
$\Delta\gamma/\gamma$ rel. en. spread ion beam	0
N_i number of ions per bunch	$9.4 \cdot 10^{7}$
ϵ^n normalized transverse emittance	9 mm mrad
$\beta_x = \beta_y$ beta function	0.5 m
σ_x rms transverse size	38.7 μ m
σ_z rms bunch lenght	15 cm
Laser	FEL
$\lambda_L (E_L)$	108.28 nm (11.45 eV)
N_L number of photons per pulse	$3\cdot 10^{13}$
U_L laser energy	56 μ J
w_0 laser waist at IP (2 σ_L)	50.84 μ m
R_L Rayleigh lenght $(\pi w_0^2/\lambda_L)$	7.5 cm
σ_t rms pulse lenght	15 cm

 $E_{res} = E'_L = 68.7 \text{ keV}$

 $N_{\gamma} \text{ per shot} = \frac{N_i N_L}{2\pi (\sigma_x^2 + \sigma_L^2)} \bar{\sigma} = \frac{9.4 \cdot 10^7 \ 3 \cdot 10^{13}}{2\pi ((38.7 \cdot 10^{-6})^2 + (25.42 \cdot 10^{-6})^2)} 3.32 \cdot 10^{-22} = 6.9 \cdot 10^7$ [\$\overline{\sigma}\$ value from Evgeny Bessonov's]

GAMMA FACTORY: Pb^{81+} EXAMPLE

◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○ < ⊙ < ⊙

GAMMA FACTORY: BW SIMULATION VS FORMULA

GAMMA FACTORY: Pb^{81+} EXAMPLE

WORK DONE:

• We have modified the CMCC event generator for PSI-laser collision

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WORK DONE:

- We have modified the CMCC event generator for PSI-laser collision
- We have evaluated the relative bandwidth of the emitted photon beams for different collimation angles and we have compared the simulation results with the analytical formula: very good agreement

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

WORK DONE:

- We have modified the CMCC event generator for PSI-laser collision
- We have evaluated the relative bandwidth of the emitted photon beams for different collimation angles and we have compared the simulation results with the analytical formula: very good agreement
 - We have compared the results obtaneid by Wieslaw Placzek with GF-CAIN and the results of CMCC: perfect agreement!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

WORK DONE:

- We have modified the CMCC event generator for PSI-laser collision
- We have evaluated the relative bandwidth of the emitted photon beams for different collimation angles and we have compared the simulation results with the analytical formula: very good agreement
 - We have compared the results obtaneid by Wieslaw Placzek with GF-CAIN and the results of CMCC: perfect agreement!

TO DO:

• We will have to insert in CMCC the correct calculation of the total number of emitted photons by taking into account the density and the spectrum of the incoming photon beam [see Vittoria Petrillo's talk]

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

WORK DONE:

- We have modified the CMCC event generator for PSI-laser collision
- We have evaluated the relative bandwidth of the emitted photon beams for different collimation angles and we have compared the simulation results with the analytical formula: very good agreement
 - We have compared the results obtaneid by Wieslaw Placzek with GF-CAIN and the results of CMCC: perfect agreement!

TO DO:

• We will have to insert in CMCC the correct calculation of the total number of emitted photons by taking into account the density and the spectrum of the incoming photon beam [see Vittoria Petrillo's talk]

• The event generators we developed for HPC can be modified to simulate the emitted photon beam collision on fixed target (in particular the muon pair production close to threshold)

Thank you for your attention!

- L. Serafini, C. Curatolo and V. Petrillo, Low emittance pion beams generation from bright photons and relativistic protons, http://arxiv.org/pdf/1507.06626.pdf (2015)
- C. Curatolo, PhD Thesis: High brilliance photon pulses interacting with relativistic electron and proton beams, Universitá degli Studi di Milano, 2016; https://air.unimi.it/handle/2434/358227 (2016)

C. Curatolo, F. Broggi, and L. Serafini, *Phase space analysis of secondary beams generated in hadron-photon collisions*, Nucl. Instrum. Methods Phys. Res., Sect. A 865, 128 (2017)

L. Serafini, F. Broggi, and C. Curatolo, *Study of Hadron-Photon Colliders for Secondary Beam Generation* in *Proc. 8th Int. Particle Accelerator Conf.* (*IPAC'17*), Copenhagen, Denmark, May 2017, paper WEPAB124, pp. 2865–2867, (2017)

L. Serafini, F. Broggi and C. Curatolo, *Production of TeV-class photons via Compton back-scattering on proton beams of a keV high brilliance FEL*, Nucl. Instr. Meth. Phys. Res., Sect. B 402, 343 (2017)

C. Curatolo, I. Drebot, V. Petrillo, and L. Serafini, *Analytical description of photon beam phase spaces in inverse Compton scattering sources*, Phys. Rev. Accel. Beams 20, 080701 (2017)