

### Atomic Physics with Partially Stripped lons



#### Dmitry Budker Helmholtz Institute UC Be JGU Mainz Na

UC Berkeley Physics NSD LBNL

Padova, November 28, 2017





Current date: 2017/09/28 21:54:36 GPS Show Map Legend Idea and proof-of-concept: Annalen der Physik **525**(8-9), 659–70 (2013); Phys. Rev. Lett. **110**, 021803 (2013)

- Network of shielded, GPS-synchronized magnetometers + clocks, interferometers,...
- Sensitive to topological Dark Matter: domain walls, axion (ALP) stars, ...
- Multi-messenger astronomy (e.g., look for ALPs from sources of gravitational waves)
- Sensor-correlation techniques resembling those of LIGO/Virgo
- <u>Status</u>: Science Run 1 complete, results to be announced; Run 2: Nov/Dec 2017

#### **CASPEr-NOW** with ZULF NMR



- Zero- and Ultralow-Field Nuclear Magnetic Resonance
- Tool for chemistry, quantum control, and fundamental physics
- A novel scheme to search for ultralight dark matter



Graduate student Ann Fabricant and the Dy parity-violation setup



Graduate student Georgios Chatzidrosos adjusting an NV-diamond magnetometer

#### Magnetometer...in the sky!





#### Parity Nonconservation in Relativistic Hydrogenic Ions

M. Zolotorev and D. Budker



Parity Violation

$$|2S\rangle \Rightarrow |2S\rangle + i\eta |2P\rangle, \quad i\eta = \frac{\langle 2P | \hat{H}_w | 2P}{E_{2S} - E_{2P}}$$

reference circular dichroism

Table 1: Z-dependence of atomic characteristics for hydrogenic ions. In the given expressions,  $\alpha$  is the fine structure constant,  $\hbar=c=1$ , m<sub>e</sub> is the electron mass,  $G_F$  is the Fermi constant,  $\theta_w$  is the Weinberg angle, and A is the ion mass number.

|    | Parameter                                                                                            | Symbol                   | Approximate Expression                                                                                                                   |  |  |
|----|------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | Transition<br>Energy                                                                                 | $\Delta E_{n-n'}$        | $\frac{1}{2} \left( \frac{1}{n^2} - \frac{1}{n'^2} \right) \alpha^2 m_e \cdot Z^2$                                                       |  |  |
|    | Lamb Shift                                                                                           | $\Delta E_{2S-2P}$       | $\frac{1}{6\pi}\alpha^5 m_e \cdot Z^4 \cdot F(Z)^a$                                                                                      |  |  |
|    | Weak<br>Interaction<br>Hamiltonian                                                                   | $\hat{H}_w$              | $i\sqrt{\frac{3}{2}} \cdot \frac{G_F m_e^3 \alpha^4}{64\pi} \cdot \left\{ (1 - 4\sin^2 \theta_w) - \frac{(A - Z)}{Z} \right\} \cdot Z^5$ |  |  |
|    | Electric Dipole<br>Amplitude<br>$(2S \rightarrow 2P_{1/2})$                                          | $El_{2S \rightarrow 2P}$ | $\sqrt{\frac{3}{lpha}} \cdot m_e^{-1} \cdot Z^{-1}$                                                                                      |  |  |
|    | Electric Dipole<br>Amplitude<br>$(1S \rightarrow 2P_{1/2})$                                          | El                       | $\frac{2^7}{3^5}\sqrt{\frac{2}{3\alpha}} \cdot m_e^{-1} \cdot Z^{-1}$                                                                    |  |  |
|    | Forbidden<br>Magn. Dipole<br>Ampl. (1S→2S)                                                           | M1                       | $\frac{2^{5/2} \alpha^{5/2}}{3^4} \cdot m_e^{-1} \cdot Z^2$                                                                              |  |  |
|    | Radiative Width                                                                                      | $\Gamma_{2P}$            | $\left(\frac{2}{3}\right)^8 \alpha^5 m_e \cdot Z^4$                                                                                      |  |  |
| 1. | The function $F(Z)$ is tabulated in Ref. 12. Some representative values are: $F(1)=7.7$ ; $F(5)=4.8$ |                          |                                                                                                                                          |  |  |



#### **Relativistic Doppler Tuning**



Resonance condition:  $\Delta E_{2S-2P} \approx Z^2 10.2 \text{ eV} = 2\gamma \hbar \omega_{lab}$ 

## With LHC (γ≈7000): up to Z=48 (Cd)

#### Statistical Sensitivity



$$\omega_{ion\,frame} = \gamma (1 + \beta) \omega_{lab} \approx 2 \gamma \omega_{lab}$$

Doppler width:

$$\Gamma_D = (\omega \cdot \Delta \beta)_{ion \ frame} \approx \omega_{ion \ frame} \cdot \frac{\Delta \gamma}{\gamma}$$

Fraction of ions excited:

$$\chi_{M1} = (M1 \cdot \widetilde{B}\tau)^2 \cdot \frac{1}{\Gamma_D \tau}$$

 $\widetilde{B} = \widetilde{E}$  is the laser field,  $\tau$  is the ion-laser interaction time.

#### Statistical Sensitivity



# Want high power but $1s \rightarrow$ optical pumping Fig. 1. The $\Rightarrow$ Keep saturation parameter



Fig. 1. The  $1S \rightarrow 2S$  transition in a hydrogenic system.

$$\chi_{E^1} = \frac{(E_1 \cdot \widetilde{E})^2}{4(\Delta E_{2S-2P})^2} \cdot \Gamma_{2P} \tau <<1$$

#### **Circular Dichroism**





Fig. 1. The  $1S \rightarrow 2S$  transition in a hydrogenic system.

Total number of excited ions in time  $T: N_{\pm} \approx \chi_{M1} \cdot \dot{N}_{ions} T/2$ 

PV dichroism:

$$P = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{2H_{w}}{\Delta E_{2S-2P}} \cdot \frac{E1}{M1}$$

Statistical uncertainty:

$$H_{w} = \frac{1}{4} \sqrt{\frac{\Gamma_{D} \Gamma_{2P}}{\dot{N}_{ions} T \chi_{E1}}}$$

#### **Statistical Sensitivity**





Fig. 1. The  $1S \rightarrow 2S$  transition in a hydrogenic system.

$$Exposure[part.Amp \times year] \ge \frac{\Delta \gamma}{\gamma} \cdot \frac{0.1}{Z^4} \cdot (\delta \sin^2 \theta_w)^2 \cdot \chi_{E^1}$$

# • Ionization on residual gas $\sigma = 4\pi\alpha^2 a_B^2 \frac{Z_a(Z_a+1)}{\tau^2}$

• Field ionization

$$\tau_{f.i.}^{-1} = 4 \frac{\alpha c}{a_B} Z^5 \frac{\varepsilon_{at}}{B_D} \exp\left(-\frac{2\varepsilon_{at} Z^3}{3\gamma B_D}\right)$$

• Photoionization from 2P (and for Z>40, also 2S)

also

• Need laser cooling to reduce

$$\frac{\Delta \gamma}{\gamma} \Rightarrow \text{laser cooling}$$

• Is the required laser realistic?

#### More things to worry about...

- How to detect the PV transition? Absorption cavity?
- Systematics due to stray *E*-field mixing
- *E*-field due to the ions' space charge
- Laser cooling should be faster than intrabeam scatt.

#### Conclusion

■ A lot of cool atomic physics to do with PSI

Challenging; need laser cooling

Fundamental symmetry tests may be possible; also Dark-Matter searches

Table 2. Parameters of relativistic ion storage rings.

| Parameter                                   | RHIC                                             | SPS                  | LHC                                              |
|---------------------------------------------|--------------------------------------------------|----------------------|--------------------------------------------------|
| $\gamma_{\rm max}$ for protons <sup>a</sup> | 250                                              | 450                  | 7000                                             |
| Number of ions/ring <sup>b</sup>            | ~5·10 <sup>11</sup>                              | ~2·10 <sup>11</sup>  | ~5·10 <sup>10</sup>                              |
| Number of<br>bunches/ring                   | 57                                               | 128                  | 500-800                                          |
| R.m.s bunch length                          | 84 cm                                            | 13 cm                | 7.5 cm                                           |
| Circumference                               | 3.8 km                                           | 6.9 km               | 26.7 km                                          |
| Energy spread w/o<br>laser cooling          | 2.10-4                                           | 4.5·10 <sup>-4</sup> | 2.10-4                                           |
| Normalized Emittance<br>(N.E.)              | $\approx 4 \pi \cdot \mu m \cdot rad$            | ≈ 4 π·µm·rad         | ≈ 4 <b>π</b> ·µm·rad                             |
| Dipole field                                | 3.5 T                                            | 1.5 T                | 8.4 T                                            |
| Vacuum, cold                                | <10 <sup>-11</sup> Torr<br>(H <sub>2</sub> , He) | _                    | <10 <sup>-11</sup> Torr<br>(H <sub>2</sub> , He) |

<sup>a</sup> For hydrogenic ions,  $\gamma_{\max}^{ions} = \gamma_{\max}^{p} \cdot Z - 1/A$ 

<sup>b</sup> Estimated from proton and heavy ion data.