SAPPHiRE: a Gamma-gamma Higgs Factory based on the LHeC using lasers or FELs

Atoosa Meseck and Frank Zimmermann

Photon Beams 2017

Padua, 28 November 2017

(LH

many thanks to T. Takahashi and M. Zanetti

ARIES is co-funded by the European Commission in the HORIZON 2020 Research and Innovation programme under grant agreement no 730871.

Large Hadron electron Collider (LHeC) baseline design

LHeC Conceptual Design Report

DRAFT 1.0 Geneva, September 3, 2011 CEBN report ECFA report NuPECC report LHoC-Nota-2011-008 GEN

LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012)

http://cern.ch/lhec

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group THIS IS THE VERSION FOR REFEREEING, NOT FOR DISTRIBUTION

LHeC Study Group

J. Abelleira Fernandez^{10,15}, C.Adolphsen³⁹, S.Alekhin⁴⁰,¹¹, A.N.Akai⁰¹, H.Aksakal³⁰, P.Allport¹⁷, J.L.Albacete³⁷ V.Andreev²⁵, R.B.Appleby²³, N.Armesto³⁸, G.Azuelos²⁶, M.Bai⁴⁷, D.Barber¹¹, J.Bartels¹², J.Behr¹¹, O.Behnke¹¹, S.Belyaev¹⁰, I.BenZvi⁴⁷, N.Bernard¹⁶, S.Bertolucci¹⁰, S.Bettoni¹⁰, S.Biswal³², J.Bluemlein¹¹, H.Boettcher¹¹, H.Braun⁴⁸, S.Brodsky³⁹, A.Bogacz²⁸, C.Bracco¹⁰, O.Bruening¹⁰, E.Bulyak⁰⁸, A.Bunyatian¹¹, H.Burkhardt¹⁰ I.T.Cakir⁵⁴, O.Cakir⁵³, R.Calaga⁴⁷, E.Ciapala¹⁰, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole²⁹, J.C.Collins⁴⁶, J.Dainton¹⁷, A.De.Roeck¹⁰, D.d'Enterria¹⁰, A.Dudarev¹⁰, A.Eide⁴³, E.Eroglu⁴⁵, K.J.Eskola¹⁴, L.Favart⁰⁶, M.Fitterer¹⁰, S.Forte²⁴, P.Gambino⁴², T.Gehrmann⁵⁰, C.Glasman²², R.Godbole²⁷, B.Goddard¹⁰, T.Greenshaw¹⁷, A.Guffanti⁰⁹ V. Guzey²⁸, C.Gwenlan³⁴, T.Han³⁶, Y.Hao⁴⁷, F.Haug¹⁰, W.Herr¹⁰, B.Holzer¹⁰, M.Ishitsuka⁴¹, M.Jacquet³³, B.Jeanneret¹⁰, J.M.Jimenez¹⁰, H.Jung¹¹, J.M.Jowett¹⁰, H.Karadeniz⁵⁴, D.Kayran⁴⁷, F.Kocac⁴⁵, A.Kilic⁴⁵, K.Kimura⁴¹, M.Klein¹⁷, U.Klein¹⁷, T.Kluge¹⁷, G.Kramer¹², M.Korostelev²³, A.Kosmicki¹⁰, P.Kostka¹¹ H.Kowalski¹¹, D.Kuchler¹⁰, M.Kuze⁴¹, T.Lappi¹⁴, P.Laycock¹⁷, E.Levichev³¹, S.Levonian¹¹, V.N.Litvinenko⁴⁷, A.Lombardi¹⁰, C.Marquet¹⁰, B.Mellado⁰⁷, K.H.Mess¹⁰, S.Moch¹¹, I.I.Morozov³¹, Y.Muttoni¹⁰, S.Myers¹⁰, S.Nandi²⁶, P.R.Newman⁰³, T.Omori⁴⁴, J.Osborne¹⁰, Y.Papaphilippou¹⁰, E.Paoloni³⁵, C.Pascaud³³, H.Paukkunen³⁸ E.Perez¹⁰, T.Pieloni¹⁵, E.Pilicer⁴⁵, A.Polini⁰⁴, V.Ptitsyn⁴⁷, Y.Pupkov³¹, V.Radescu¹³, S.Raychaudhuri²⁷, L.Rinolf¹⁰, R.Rohini²⁷, J.Rojo²⁴, S.Russenschuck¹⁰, C.A.Salgado³⁸, K.Sampei⁴¹, E.Sauvan¹⁹, M.Sahin⁰¹, U.Schneekloth¹¹, A.N.Skrinsky³¹, T.Schoerner Sadenius¹¹, D.Schulte¹⁰, H.Spiesberger²¹, A.M.Stasto⁴⁶, M.Strikman⁴⁶, M.Sullivan³⁹, B.Surrow⁰⁵, S.Sultansoy⁰¹, Y.P.Sun³⁹, W.Smith²⁰, I.Tapan⁴⁵, P.Taels⁰², E.Tassi⁵², H.Ten.Kate¹⁰, J.Terron²², H.Thiesen¹⁰, L.Thompson²³, K.Tokushuku⁴⁴, R.Tomas.Garcia¹⁰, D.Tommasini¹⁰, D.Trbojevic⁴⁷, N.Tsoupas⁴⁷, J.Tuckmantel¹⁰, S.Turkoz⁵³, K.Tywoniuk¹⁸, G.Unel¹⁰, J.Urakawa⁴⁴, P.VanMechelen⁰², A.Variola³⁷, R.Veness¹⁰, A.Vivoli¹⁰, P.Vobly³¹, R.Wallny⁵¹, G.Watt¹⁰, G.Weiglein¹², C.Weiss²⁸, U.A.Wiedemann¹⁰, U.Wienands³⁹, F.Willeke⁴⁷, V.Yakimenko⁴⁷, A.F.Zarnecki⁴⁹, F.Zimmermann¹⁰, F.Zomer³³

About 150 Experimentalists and Theorists from 50 Institutes Tentative list Thanks to all and to CERN, ECFA, NuPECC

~600 pages

LHeC Higgs physics

- precision coupling measurements $(Hb\overline{b}, H\gamma\gamma, H4I,...)$
- reduction of theoretical QCD-related uncertainties in *pp* Higgs physics
- potential to find new physics at the cleanly accessible WWH (and ZZH) vertices

parameter [unit]	LHeC		
species	<i>e</i> [±]	<i>p</i> , ²⁰⁸ <i>Pb</i> ⁸²⁺	
beam energy (/nucleon) [GeV]	60	7000, 2760	
bunch spacing [ns]	25, 100	25, 100	
bunch intensity (nucleon) [10 ¹⁰]	0.1 (0.2), 0.4	17 (22), 25 eter	
beam current [mA]	6.4 (12.8)	660 (21 10), 6	
rms bunch length [mm]	0.6 bod P	75.5	
polarization [%]	90 (et 105e)	none, none	
normalized rms emittance $[\mu m]$	50	3.75 (2.0), 1.5	
geometric rms emittance [m]	0.43	0.50 (0.31)	
IP beta function (*), am	0.12 (0.032)	0.1 (0.05)	
IP rms shor size [µm]	7.2 (3.7)	7.2 (3.7)	
synchrotron tune	-	0.0019	
hadron beam-beam parameter	0.0001 (0.0002)		
lepton disruption parameter D	6 (30)		
hourglass reduction factor H _{hg}	0.91 (0.67)		
pinch enhancement factor H_D	1.35 (0.3 for <i>e</i> ⁺)		
luminosity/ nucleon [10 ³³ cm ⁻² s ⁻¹]	1(10)0.2		

LHeC ERL layout

two 10-GeV SC linacs, 3-pass up, 3-pass down; 6.4 mA, 60 GeV e⁻'s collide w. LHC p/ions, e⁻ RF grad ~20 MV/m, 720 or 800 MHz

LHeC: 3 passes, flexible momentum compaction arc lattice building block: 52 m long cell with 2 (10) dipoles & 4 quadrupoles

LHeC flexible momentum compaction cell; tuned for small beam size (low energy) or low $\Delta \epsilon$ (high energy)

prototype arc magnets

eRHIC dipole model (BNL)

5 mm gap max. field 0.43 T (30 GeV)

LHeC dipole models (BINP & CERN)

25 mm gap max. field 0.264 T (60 GeV)

RF cavity development

5-cell 800 MHz cavity, JLAB prototype for LHeC, FCC-ee (top mode) & FCC-eh

optimized for high current operation

JLAB, October 25, 2017

F. Marhauser et al

PERLE @ Orsay Test Facility

BINP, CERN, Daresbury/Liverpool, Jlab, Orsay +.. 400 MeV, 3 turns, 20 mA, 802 MHz

- CDR published in J Phys G [arXiv:1705.08783]
- intensity 100 x ELI: technology, beam dynamics, physics

Future Circular Collider Study Goal: CDR for European Strategy Update 2019/20

international FCC collaboration (CERN as host lab) to design:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as a possible first step
- *p-e (FCC-he) option,* one IP,
 FCC-hh & ERL
- HE-LHC w FCC-hh technology

A Baseline for the FCC-he

Oliver Brüning¹, John Jowett¹, Max Klein^{1,2},

Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹ ¹ CERN, ² University of Liverpool April 6th, 2017 Table 1: Baseline parameters and estimated peakanthosities of future electron-proton collider configurations for the electron ERL when use the concurrent *en* and *m* operation mode

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	12.5	50
$E_e [{\rm GeV}]$	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p [\mu { m m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor \mathbf{H}_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1	8	12	15

SAPPHIRE

a new type of collider

t, W, ...

γ

s-channel production; lower energy; no e⁺ source

another advantage: no beamstrahlung \rightarrow higher energy reach than e⁺e⁻ colliders

Н

γγ collider Higgs factory

LHC – the first photon collider!

CERN COURIER

Nov 6, 2012 Using the LHC as a photon collider

The protons and nuclei accelerated by the LHC are surrounded by strong electric and magnetic fields. These fields can be treated as an equivalent flux of photons, making the LHC the world's most powerful collider not only for

protons and lead ions but also for photon-photon and photon-hadron collisions (*CERN Courier* October 2007). This is particularly so for beams of multiply charged heavyions, where the number of photons is enhanced by almost four orders of magnitude compared with the singly charged protons (the photon flux is proportional to the square of the ion charge).

ultra-peripheral photonphoton interaction in *Pb-Pb* collisions at ALICE

CERN Courier, November 2012

thanks to John Jowett

γγ collider based on e⁻

combining photon science & particle physics!

which beam & photon energy / wavelength?

$$E_{\gamma,max} = \frac{x}{1+x} E_{beam}$$
$$x = \frac{4E_e \omega_L}{m_e^2} \cos^2 \frac{\theta}{2}$$
example $x \approx 4.3$

(for x>4.83 coherent pair production occurs)

with $E_{beam} \approx 80 \text{ GeV}$: $E_{\gamma,max} \approx 66 \text{ GeV}$ $E_{CM,max} \approx 132 \text{ GeV}$

 E_{photon} ~3.53 eV , λ ~351 nm

Higgs $\gamma\gamma$ production cross section

S. A. Bogacz, J. Ellis, L. Lusito, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, F. Zimmermann, 'SAPPHiRE: a Small Gamma-Gamma Higgs Factory,' arXiv:1208.2827

Left: The cross sections for $\gamma\gamma \rightarrow h$ for different values of M_h as functions of $E_{CM}(e-e-)$.

Right: The cross section for $\gamma\gamma \rightarrow h$ as a function of M_h for three different values of $E_{CM}(e-e-)$.

Assumptions: electrons have 80% longitudinal polarization and lasers are circularly polarized, so that produced photons are highly circularly polarized at their maximum energy.

Reconfiguring *LHeC* → *SAPPHiRE*

SAPPHIRE*

*Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

S. A. Bogacz, J. Ellis, L. Lusito, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, <u>F. Zimmermann</u>, 'SAPPHiRE: a Small Gamma-Gamma Higgs Factory,' arXiv:1208.2827

SAPPHiRE: a Small $\gamma\gamma$ Higgs Factory

SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

SAPPHIRE	symbol	value
total electric power	Р	100 MW
beam energy	Ε	80 GeV
beam polarization	P _e	0.80
bunch population	N _b	10^{10} A
repetition rate	frep , 7x0.	200 kHz
bunch length	ent L.	30 µm
crossing angle	θ_{c}	≥20 mrad
normalized horizage of emittance	γε _{x,y}	5,0.5 μm
horizontal avera function	β_x^*	5 mm
vertical IP beta function	β,*	0.1 mm
horizontal rms IP spot size	σ_x^*	400 nm
vertical rms IP spot size	σ_v^*	18 nm
horizontal rms CP spot size	σ_x^{CP}	400 nm
vertical rms CP spot size	σ_v^{CP}	440 nm
e ⁻ e ⁻ geometric luminosity	L _{ee}	2x10 ³⁴ cm ⁻² s ⁻¹

SAPPHIRE	symbol	value
total electric power	Р	100 MW
beam energy	E	80 GeV
beam polarization	P _e	0.80
bunch population	N _b	10 ¹⁰ A
repetition rate	frep. 7x0.	300 kHz
bunch length	ent L	30 µm
crossing angle	θ_{c}	≥20 mrad
normalized horizone per emittance	γε _{x,y}	5,0.5 μm
horizonta avera function	β_x^*	5 mm
vertical IP beta function	β,*	0.1 mm
horizontal rms IP spot size	σ_x^*	400 nm
vertical rms IP spot size	σ_v^*	18 nm
horizontal rms CP spot size	σ_x^{CP}	400 nm
vertical rms CP spot size	σ_v^{CP}	440 nm
e ⁻ e ⁻ geometric luminosity	L _{ee}	2x10 ³⁴ cm ⁻² s ⁻¹

photon pulse properties & luminosity

Table 2: Example parameters for the CLICHE mercury laser system [3], and for the SAPPHiRE laser system, assuming $\mathcal{L}_{ee} = 4.8 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ and $\mathcal{L}_{ee} = 2.2 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$, respectively.

from arXiv 1208.2827

Variable	Symbol	CLICHE [3]	SAPPHiRE
Laser beam parameters			
Wavelength	λ_L	$0.351 \ \mu \mathrm{m}$	$0.351~\mu{ m m}$
Photon energy	$\hbar\omega_L$	$3.53 \text{ eV} = 5.65 \times 10^{-19} \text{ J}$	$3.53~{ m eV}$
Number of laser pulses per second	N_L	$169400 \mathrm{s}^{-1}$	$200000 \mathrm{s}^{-1}$
Laser peak power	W_L	$2.96 \times 10^{22} \text{ W/m}^2$	$6.3 \times 10^{21} \text{ W/m}^2$
Laser peak photon density		$5.24 \times 10^{40} \text{ photons/m}^2/\text{s}$	$1.1 \times 10^{40} \text{ photons/m}^2/\text{s}$
Photon beam			
Number of photons per electron bunch	N_{γ}	9.6×10^{9}	1.2×10^{10}
$\gamma\gamma$ luminosity for $E_{\gamma\gamma} \geq 0.6 E_{CM}$	$\mathcal{L}_{\gamma\gamma}^{peak}$	$3.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	$3.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

recent simulation by T. Takahashi (21 November 2017):

wave length 0.351 micron, pulse energy 2 J, pulse length 2 ps, spot size 2.89 micron

yielding; 7.6x10²¹ Watt/m², 1.3x10⁴⁰ /m²/s

200 kHz x 2 Joule = 400 kW intracavity power

SAPPHiRE $\gamma\gamma$ luminosity

luminosity spectra for SAPPHiRE as functions of $E_{CM}(\gamma\gamma)$, computed using Guinea-Pig for three possible normalized distances $\rho \equiv I_{CP-IP}/(\gamma\sigma_{\gamma}^{*})$ (left) and different polarizations of in-coming particles (right)

 ρ =1 \leftrightarrow I_{CP-IP} ~2 mm

Energy loss and energy spread on multiple passes

The energy loss per arc is ΔE_{arc} [GeV] = 8.846 × 10⁻⁵ $\frac{(E [GeV])^4}{2\rho[m]}$

For $\rho=764$ m (LHeC design) the energy loss in the various arcs is summarized in the following table. e^- lose about 4 GeV in energy, which can be compensated by increasing the voltage of the two linacs from 10 GV to 10.5 GV. We take 11 GV per linac to be conservative.

beam energy [GeV]	$\Delta E_{\rm arc}$ [GeV]	$\Delta\sigma_{\rm E}$ [MeV]
10	0.0006	0.038
20	0.009	0.43
30	0.05	1.7
40	0.15	5.0
50	0.36	10
60	0.75	20
70	1.39	35
80	1.19	27
total	3.89	57 (0.071%)

Emittance growth

The emittance growth is $\Delta \varepsilon_N$ with $C_q = 3.8319 \times 10^{-13}$ m, and p th For LHeC RLA design with the m, and ρ =764 m, <H>=1.2x10⁻³ (Use gacz et al). At 30 GeV the emittance
growth of LHeC optics 3 13 micro; 000 high for our purpose, and extrapolation to 80 GeV is unfavourable with 6th power of energy. From L. Teng we also have scaling law $< H > \propto$ $l_{bend}^3/
ho^2$, which suggests that by reducing the cell length and dipole length by a factor of 4 we can bring the horiz. norm. emittance growth at 80 GeV down to 1 micron.

Valery Telnov thinks this scaling is too optimistic

flat polarized electron source

- target $\varepsilon_x/\varepsilon_y \simeq 10$
- flat-beam gun based on flat-beam transformer concept of Derbenev et al.
- starting with $\gamma \epsilon^{4-5} \mu m$ at 0.5 nC, injector test facility at <u>Fermilab A0 line achieved emittance ~40 μm horizontally</u> and 0.4 μm vertically, with $\epsilon_x/\epsilon_v \sim 100$
- for SAPPHiRE we only need $\epsilon_x/\epsilon_y \sim 10$, but at three times larger bunch charge (1.6 nC) and smaller initial $\gamma \epsilon \sim 1.5 \ \mu m$
- these parameters are within the present state of the art (e.g. the LCLS photoinjector routinely achieves 1.2 μm emittance at 1 nC charge)
- however, we need a polarized beam...

normalized emittance for 1 nC has been reduced from tens of μm to 1 μm

Bruce Carlsten, SPACE CHARGE 2013

can we get ~ 1-nC polarized e^{-} bunches with ~1 μ m emittance?

long-standing R&D efforts:

low-emittance DC guns
(MIT-Bates, Cornell, SACLA?, JAEA, KEK,
Daresbury, ...)

[E. Tsentalovich, I. Bazarov, B. Militsyn, et al]

polarized SRF guns (FZD, BNL, ...) [J. Teichert, J. Kewisch, et al]

Cornell DC gun

The answer is a **qualified 'yes'**. Presently we have demonstrated 90% emittances of 0.5mm-mrad at 80pC/bunch and 0.2mm-mrad at **20pC/bunch for 2ps rms bunches** with the gun voltage and photocathode we are using. The scaling with charge is bunch charge^(1/2) meaning that numbers around 2-3 mm-mrad should be doable from our gun today [for 1-2 nC charge]. We are working on *further improving our gun and laser shaping*, expecting to halve the emittance even when using the same **photocathodes** we have today. Better photocathodes automatically translate into smaller emittances and many pursue this venue as well

Ivan Bazarov, 7 Nov 12

SACLA pulsed "DC" gun

I think **our gun almost meets your requirement** except for the repetition rate

Hitoshi Tanaka, 7 Nov 12

Rossendorf polarized SRF gun

Für **2013** wollen wir die 2. Version der SRF-Gun in Betrieb nehmen. Das neue Cavity erreichte im Test am Jlab ein Peakfeld von 43 MV/m. Mit diesen Werten sollten wir **1 nC Ladung mit 500 kHz Reprate im CW** (0.5 mA average current) erreichen. Die Emittanz könnte etwa **2 μm** sein. Auf **1 μm** könnte man etwa kommen, wenn wir **vom Gausslaser zum Flat-top** übergehen (analog zu PITZ/XFEL gun). Mit der Inbetriebnahme der 2. Gun, wird dann auch das Kathodentransfersystem ausgetauscht, und wir denken dann auch die **GaAs-Kathoden** zu testen. Ergebnisse dann **im Jahr 2014**.

Jochen Teichert, 12 Nov 12

BNL QWT polarized SRF gun

simulations of 5 μm emittance at 10 nC with 112 MHz gun

Tor Raubenheimer, 14 Nov 2012

recent e⁻ gun progress (since 2012)

cryogenic photocathodes (L. Cultrera et al., Cornell, PRST-AB 18, 113401 (2015); F. Hug)

DC gun for CBETA (K. Smolenski, Cornell; E. Jensen) – delivered 75 mA (!) 2.6 days lifetime @ 65 mA

PERLE gun design (Daresbury, B. Militsyn, T. Noakes) γε< 25 μm (!?), 20 mA

self-generated FEL γ beams (instead of laser)?

recent improvements (A. Meseck):

- beam circulating only in one direction
 applicable to both laser and FEL schemes
- refined FEL scheme driven by separate lowenergy beams

$$\lambda_{s}(\gamma, K) = 351.04 \text{ nm} \qquad E_{\Phi}(\lambda_{s}(\gamma, K)) = 3.532 \text{ eV} \qquad \rho\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}\right) = 0.011$$

$$L_{sat}\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}\right) = 4.392 \text{m} \qquad \rho\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}\right) = 1.534\% \qquad N_{\Phi}\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}, \sigma_{t}\right) = 1.757 \times 10^{16}$$

$$\Lambda_{T}\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}\right) = 0.053 \qquad B\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta\right) = 0.035 \qquad L_{g}\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}\right) = 0.205 \text{m}$$

$$\frac{N_{\Phi}\left(\gamma, K, I, \frac{\varepsilon_{n}}{\gamma}, \beta, \frac{\sigma_{\gamma}}{\gamma}, \sigma_{t}\right)}{\sigma_{xy}\left(\frac{\varepsilon_{n}}{\gamma}, \beta\right)^{2}} \cdot 0.2 \text{MHz} = 4.168 \times 10^{30} \text{ m}^{-2} \cdot \text{s}^{-1} \qquad \sigma_{xy}\left(\frac{\varepsilon_{n}}{\gamma}, \beta\right) = 2.904 \times 10^{-5} \text{ m}$$

A. Meseck

required number of 3.5 eV photons per bunch as a function the beam dimension at the collision point for different gamma yields

using formla from PhD thesis of C. Curatolo (2016)

A. Meseck

Beam and Laser waist size [micron]

SAPPHiRE R&D items

- γγ interaction region & spent e-
- large high-finesse optical cavity & high repetition rate laser
 - or FEL implementation
- fast kicker
 - or separation scheme for beams circulating in opposite directions
- polarized low-emittance e⁻ gun
- separation of spent beam

conclusions

- SAPPHiRE = one of the cheapest possible options to further study the Higgs
- a refined scheme with fast kicker and bypass avoids beam circulating in opposite direction and reduces the number of return loops by factor 2
- specific laser + optical cavity system meeting the requirements to be developed
- alternative FEL option available

References for LHeC and SAPPHiRE:

- S. A. Bogacz, J. Ellis, L. Lusito, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, F. Zimmermann, 'SAPPHiRE: a Small Gamma-Gamma Higgs Factory,' arXiv:1208.2827
- [2] D. Asner et al., 'Higgs physics with a gamma gamma collider based on CLIC I,' Eur. Phys. J. C 28 (2003) 27 [hep-ex/0111056].
- [3] J. Abelleira Fernandez et al, 'A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector,' Journal of Physics G: Nuclear and Particle Physics 39 Number 7 (2012) arXiv:1206.2913 [physics.acc-ph].
- [4] Yuhong Zhang, 'Design Concept of a γ-γ Collider-Based Higgs Factory Driven by Energy Recovery Linacs,' JLAB Technote JLAB-TN-12-053, 31 October 2012
- [5] E. Nissen, 'Optimization of Recirculating Linacs for a Higgs Factory,' prepared for HF2012
- [6] J. Limpert, T. Schreiber, A. Tünnermann, 'Fiber lasers and amplifiers: an ultrafast performance evolution,' Applied Optics, Vol. 49, No. 25 (2010)
- [7] T. Takahashi, private communication, 21 November 2017
- [8] A. Meseck, numerous private communications