Gamma-gamma considerations for CLIC

Edu Marin special thanks to Daniel Schulte

November $28^{\rm th},\,2017$

Photon Beams Workshop Universita di Padova (Italy)

emarinla@cern.ch

Outline

1 CLIC Project

2 $\gamma\gamma$ -Collider

- Motivation
- Calculation Tools
- 380 GeV
 - Luminosity
 - Background
 - Optimization
- 3 TeV
 - Luminosity
 - Background
 - Optimization

CLIC Project

Project

CLIC is the only e^-e^+ LC capable of reaching multi-TeV

CERN Strategy

Scientific strategy: 3 main directions

F. Gianotti, A great year ahead of us

Full exploitation of the LHC:

- □ successful Run 2 (~100 fb⁻¹ of good data) and LS2
- Construction of LIU/HL-LHC on track and financially secured (accelerator and experiments)

Complementary diverse programme serving a broad community, e.g.:

- ongoing experiments and projects at Booster, PS, SPS and their upgrades (ELENA, HIE-ISOLDE 2)
- participation in (global) neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform

Preparation for the future of CERN (and of the discipline):

- vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness
- design studies for future accelerators: CLIC, FCC (including HE-LHC*)
- develop a competing diverse scientific programme complementary to high-E colliders → "Physics with injectors" WG (involving accelerator experts, experimentalists, theorists) is being set up → explore future exciting opportunities (beam dump experiments, precision measurements, etc.) using unique capabilities of CERN's rich accelerator complex, complementary to other efforts in the world → produce report by ~ 2018

CLIC Strategy

Preparing input for European Strategy Particle Physics 2020

- Project Plan for CLIC as a strong post-LHC option
 - Suited for conducting precise studies of potential LHC findings
- Initial costs compatible with CERN budget
 - Cost optimization from 380 Gev \Rightarrow 3 TeV
 - Reduce power consumption
 - High-efficiency Klystrons (380 GeV case)
 - Permanent magnets (3 TeV case)
- Upgradeable in stages over 20-30 years

\Downarrow "Rebaselining"[†] \Downarrow

Optimize machine design w.r.t. cost and power for a staged approach to reach multi-TeV scale

[†]Updated baseline for a staged CLIC, CERN-2016-004, arXiv:1608.07537

Parameters

Parameter	Unit	380 GeV	1.5 TeV	3 TeV
Total Lumi. (<i>L</i>)	$[10^{34} cm^{-2} s^{-1}]$	1.5	3.7	5.9
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{34} cm^{-2} s^{-1}]$	0.9	1.4	2.0
IP beam size $(\sigma^*_{x/y})$	[nm]	149/2.9	60/1.5	45/1.0
Emittance $(\gamma \epsilon_{x/y})$	[nm]	920/20	660/20	660/20
Bunch Charge (Q)	[10 ⁹]	5.2	3.72	3.72
Bunch length (σ_z)	$[\mu m]$	70	44	44
Linac Rep. Freq.	[Hz]	50	50	50
# Bunches / train		352	312	312
Bunch separation	[ns]	0.5	0.5	0.5
Acc. Gradient	[MV/m]	72	100	100
Site Length	[km]	11	29	50
Total site power	[MW]	252	364	589

Efforts are focus on reducing cost and power consumption at all stages

Parameters II

Parameter choices are determined by beam dynamics studies;

- Q, σ_z and bunch spacing are limited by wakefield in the ML
- ϵ_x is mainly determined by the DR as a function of Q
- ϵ_y is given by the DR, RTML, ML and BDS
- $\sigma_{\rm V}^*$ is determined by FFS
- σ_x^* has two sources for the lower limit
 - FFS
 - beamstrahlung effect $\Rightarrow Q, \mathcal{L}$ -spectrum

Thinking forward to $\gamma\gamma$ -collider:

- Only clear parameter which could be further pushed is σ_x^* What is then the limitation from FFS?
- Other parameters may be optimized
 - Different parameters choice may provide an overall ${\cal L}$ gain, despite compromising one of the mentioned variables

Stages

- The accelerator is foreseen to be built in three stages with center-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV
- At each energy stage the center-of-mass energy can be tuned to lower values ($\approx 1/3$), with limited loss of luminosity

ullet Only 1 DB is required for feeding both ML at $E_{
m CM} \leq 1.5$ TeV

Site

Run Model

- The overall duration of the three-stage program is 22 years
- \bullet 3 energy stages (0.38/1.5/3.0) each lasting 7, 5 and 6 years

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int}(fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

- Initial 7 years of construction
- 2 years upgrade periods between stages

 $\gamma\gamma\text{-Collider}$

Motivation

Physics Case

- Higher sensitivity due to higher cross sections[†]
- Ability to manipulate the photon beam polarization

- Unique in understanding CP structure (linearly polarized beams)
- High precision measurements $\Gamma_{\gamma\gamma}$ to 2% (Model independent) [†]*Physics at Photon Colliders*, Mayda M. Velasco, ICFA mini-workshop $\gamma\gamma$ -colliders, 2017

Calculation Tools

Codes Implemented

- PLACET is used to obtain particle distributions at the IP
- Scatter[†] function in C
 - Beam is backtracked to conversion plane
 - Interaction with the laser
 - Scattered electrons and hard photons propagated to IP
- GUINEA-PIG calculates luminosity
 - for $e^- e^-, e^- \gamma, \gamma \gamma$
 - Coherent and incoherent pairs
 - Photons production
 - Hadrons

 PLACET and $\mathsf{GUINEA}\mbox{-}\mathsf{PIG}$ have been cross-checked with similar codes (Elegant, MADX) and CAIN respectively, with reasonable agreement

[†]more details in D. Shulte, *TESLA-Report 1997-08*.

CLIC FFS Parameters

Parameter	Unit	380 GeV
Total Lumi. (<i>L</i>)	$[10^{34} cm^{-2} s^{-1}]$	1.5
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{34} cm^{-2} s^{-1}]$	0.9
IP beam size $(\sigma^*_{x/y})$	[nm]	149/2.9
IP betas $(\beta^*_{x/y})$	[mm]	8.2/0.1
Emittance $(\gamma \epsilon_{x/y})$	[nm]	920/20
Energy spread $(\Delta p/p)$	[%]	0.3
Bunch Charge (Q)	[10 ⁹]	5.2
Bunch length (σ_z)	$[\mu m]$	70
# Bunches / train		352
Chromaticity (ξ_y)		43000
$L_{\rm QD0-IP}$	[m]	4.3

	 0	5				
С.	L	Р	roi	e	CI	

Conversion

 $e^-{\rm -beam}$ and $\gamma{\rm -beam}$ parameters after conversion

Parameter	Unit	e	γ
IP beam size $(\sigma^*_{x/y})$	[nm]	149/4.4	219/190
Energy spread $(\Delta p/p)$	[%]	135	170

Assumed values for conversion :

- d = 1 mm (dist. from laser to IP)
- $\rho = \frac{d}{\gamma \sigma_y^*} = 1$
- k = 1 (conversion efficiency)
- max $E_{\gamma} = 157$ GeV (x = 4.83)
- $\lambda_e = 80\%$ (electron helicity)
- P_{γ} = -1 (laser polarization)

-		(Р	ro	ct	

- Resonator cavities are not possible since train length is too small
- Laser ignition thermonuclear facility (Project LIFE @ LLNL) †

16 Hz 8.125 kJ/pulse 130 kW aver. power

[†]https://web.archive.org/web/20120724051005/ https://life.llnl.gov/life_design/laser_system.php

\mathcal{L} -Spectra

Parameter	Unit	e ⁻ e ⁻	$e^-\gamma$	$\gamma\gamma$
Total Lumi. (<i>L</i>)	$[10^{33} cm^{-2} s^{-1}]$	0.7	1.1	1.73
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{33} cm^{-2} s^{-1}]$	0.3	-	0.9

Incoherent Pairs

Criteria for hitting the BeamCal:

- polar angle $\theta \ge 10 mrad$
- transverse momentum $p_T \ge 20 MeV$

Pairs captured by detector 18% Dissipated Power : 15 W

Photons

Photons captured by detector 70% Dissipated Power : 3.1 W

Parameters Scan

Reducing $\sigma_{\rm x}^*$ a factor 2 is possible

CLIC FFS Parameters

Parameter	Unit	380 GeV
Total Lumi. (<i>L</i>)	$[10^{34} cm^{-2} s^{-1}]$	5.9
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{34} cm^{-2} s^{-1}]$	2.0
IP beam size $(\sigma^*_{x/y})$	[nm]	45/1.0
IP betas $(\beta^*_{x/y})$	[mm]	<mark>10</mark> /0.07
Emittance $(\gamma \epsilon_{x/y})$	[nm]	660/20
Energy spread $(\Delta p/p)$	[%]	0.3
Bunch Charge (Q)	[10 ⁹]	3.7
Bunch length (σ_z)	$[\mu m]$	44
# Bunches / train		312
Chromaticity (ξ_y)		50000
$L_{\rm QD0-IP}$	[m]	3.5

Conversion

 $e^-{\rm -beam}$ and $\gamma{\rm -beam}$ parameters after conversion

Parameter	Unit	e	γ
IP beam size $(\sigma^*_{x/y})$	[nm]	45/1.8	77/77
Energy spread $(\Delta p/p)$	[%]	135	170

Assumed values for conversion :

- d = 1 mm (dist. from laser to IP)
- $\rho = \frac{d}{\gamma \sigma_y^*} = 0.3$
- k = 1 (conversion efficiency)
- max $E_{\gamma} = 1243$ GeV (x = 4.83)
- $\lambda_e = 80\%$ (electron helicity)
- P_{γ} = -1 (laser polarization)

0						
	C.,	Р	roi	e	сt	

Laser

• CO_2 lasers are well suited [†] in terms of λ

[†]*CO2 lasers for Compton x-ray sources and gamma colliders*, I. Pogorelsky @ Photon Beams Workshop, 2017

L-Spectra

Parameter	Unit	e ⁻ e ⁻	${\rm e}^-\gamma$	$\gamma\gamma$
Total Lumi. (<i>L</i>)	$[10^{33} cm^{-2} s^{-1}]$	2.3	6.1	10.0
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{33} cm^{-2} s^{-1}]$	0.9	-	3.9

Spent *e*⁻ **beams**

Criteria for hitting the BeamCal:

- polar angle $\theta \ge 10 \text{ mrad}$
- transverse momentum $p_T \ge 20 \text{ MeV}$

 e^- captured by detector 0% Dissipated Power : 0 W

Incoherent Pairs

Criteria for hitting the BeamCal:

- polar angle $\theta \ge 10 \text{ mrad}$
- transverse momentum $p_T \ge 20 \text{ MeV}$

Pairs captured by detector 26% Dissipated Power : 60 W

Coherent Pairs

Criteria for hitting the BeamCal:

- polar angle $\theta \ge 10 \text{ mrad}$
- transverse momentum $p_T \ge 20 \text{ MeV}$

Pairs captured by detector 0% Dissipated Power : 0 W

Photons

Photons intercepted by detector 87% Dissipated Power : 32 W

Hadrons

Number of Hadronic events per bunch crossing:

Collision	Beam	Rate [x b.c.]	Beam	Rate [x b.c.]
e ⁻ e ⁻	1	0.02	2	0.014
$e^-\gamma$	1	0.12	2	0.010
γe^-	1	0.12	2	0.010
$\gamma\gamma$	1	0.35	2	0.35
Sum	1	0.6	2	0.55

Tracking of these hadronics events is pending

Parameters Scan

Scan of k, ρ , x and σ_x^* parameters

Again reducing $\sigma_{\!x}^*$ improves total and peak $\mathcal{L}.$ others could be studied in detail

CONCLUSIONS

Summary

Parameter	Unit	380 GeV	Opt	3 TeV	Opt
Total Lumi. (<i>L</i>)	$[10^{33} cm^{-2} s^{-1}]$	1.73	3.5	10	15
Peak Lumi. $(\mathcal{L}_{ ext{peak}})$	$[10^{33} cm^{-2} s^{-1}]$	0.9	1.8	3.9	7.7

- Attractive luminosities for both 380 GeV and 3 TeV options with the current designs
- Even more when reducing σ_x^* by half
 - Understanding limitations of FFS on σ_x^* (common interest in the acc, community)
- A detailed study would be necessary to optimize x, ρ and k parameters
 - Evaluate the impact on background and others
 - Lasers are getting closer to requirements