

Beam dynamics studies for the RF LINAC of the ELI-NP Gamma beam system

C. Vaccarezza on behalf of the ELI-NP GBS Team

Outline:

New generation Compton sources:
ELI-NP GBS project

The ELI-NP Gamma Beam System:

Source design

Photoinjector & Linac reference WP:

- S-C-band solution
- Gun-Solenoid study

>The machine layout:

C-band Linac1-2

➤S2E simulation results:

Nominal WP and error sensitivity studies

Gamma-ray Compton Sources

Thanks to the extremely advanced characteristics:

- energy, tunability, mono-chromaticity, collimation, brilliance, time rapidity, polarizability etc.
- the new generation of Compton Sources will play a critical role for advanced applications in many fields: Nuclear resonance fluorescence, Nuclear photonics with (γ-p) (γ-n) reactions, New medical isotopes production, Material studies, Radioactive waste management and isotope identification, High brilliance Neutron sources ecc. ecc.

ELI-NP, the Nuclear Physics Pillar of ELI

is building an advanced Compton Source (Gamma Beam System) aiming at making a substantial step forward in γ-ray beam performances

New generation γ -source:

PH

High Phase Space density electron beams vs Lasers

ELI-NP Source Specifications

	Energy [MeV]	0.2 – 19.5
	Spectral Density [ph/s·eV]	$0.8 - 4.10^4$
	Bandwidth rms [%]	≤ 0.5
	# photons/pulse within FWHM bdw.	≤ 2.6·10 ⁵
	# photons/s within FWHM bdw.	≤ 8.3·10 ⁸
	Source rms size [µm]	10 – 30
	Source rms divergence [µrad]	25 – 200
	Peak brilliance [N _{ph} /s·mm ² ·mrad ² ·0.1%]	10 ²⁰ – 10 ²³
	Radiation pulse length rms [ps]	0.7 – 1.5
	Linear polarization [%]	> 99
	Macro repetition rate [Hz]	100
	# pulses per macropulse	32
	Pulse-to-pulse separation [ns]	16
	Polarization axis wiggling [deg]	< 1
	Synchronization to an external clock [ps]	≤ 0.5
	Source position transverse jitter [µm]	< 5
ото	n Energyojitterpuise-te-puise [%]TH 2017	< 0.2
	# photons jitter pulse-to-pulse [%]	≤ 3

GBS scheme: r.t. RF linac *vs* pulsed laser

Electron beam parameter at IP		Yb:Yag Collision Laser	LE Interaction	HE Interaction
Energy (MeV)	80-720	Pulse energy (J)	0.2	2x0.2
Bunch charge (pC) ^{<}	25-400	Wavelength (eV)	2.3,515	2.3,515
Bunch fength (μm)	100-400	EW/HM pulse length (ns)	35	35
ε _{n_x,v} (mm-mrad)	0.2-0.6	rwini puise length (ps)	5.5	5.5
Bunch Energy spread (%)	0.04-0.1	Repetition Rate (Hz)	100	100
Focal spot size (μm)	> 15	M ²	≤1.2	≤1.2
# bunches in the train	≤32		. 20	. 20
Bunch separation (nsec)	16	Focal spot size w _o (µm)	> 28	> 28
energy variation along the train	0.1 %	Bandwidth (rms)	0.1 %	0.1 %
Energy jitter shot-to-shot	0.1 %	Pointing Stability (urad)	1	1
Emittance dilution due to beam	< 10%		-	-
breakup		Sinchronization to an	< 1 psec	< 1 psec
Time arrival jitter (psec)	< 0.5	ext. clock		
Pointing jitter (µm)	1	Pulse energy stability	1 %	1 %

Based on the electron-photon collider approach:

The rate of emitted photons is given by:

where:

where:

$$L = N_L N_e / 2\pi (\sigma_x^2 + w_0^2 / 4)$$
leading to:

 $N_{\gamma} = L\sigma_T$ Laser

 $L = N_L N_e / 2\pi (\sigma_x^2 + w_0^2 / 4)$

$$\begin{split} N_{\gamma}[sec^{-1}] &= 4.1 \times 10^8 \frac{U_L[J]Q[pC]f_{RF}n_{RF}}{hv_L[eV]\left(\sigma_x^2 \left[\mu m\right] + \frac{1}{4}w_0^2 \left[\mu m\right]\right) \sqrt{1 + \left(\frac{c\sigma_t\delta}{4\sigma_x}\right)^2}} \end{split}$$

Within the desired bandwidth:

normalized collimation angle $\Psi = \gamma_{cm} \vartheta_{max}$

reduced rms transverse momentum \bar{P}

Maximum Spectral Density \propto Phase Space density η_n

Courtesy of L. Serafini

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

Analytical model vs. classical/quantum simulation

Beam Quality constraints

Emittance

Maximization of *η* the electron density into transverse phase space : which means very low emittances~ **0.4 mm-mrad**

Energy Spread

Minimization of the beam energy spread: the **source spectral density requires** $\Delta \gamma / \gamma < 1\%$, we have chosen a conservative threshold of 0.05 %

Energy Spread by RF curvature:

$$\frac{\Delta \gamma}{\gamma}_{rms} \approx 2 \left(\pi f_{RF} \frac{\sigma_z}{c} \right)^2$$

 σ_z < 280 μ m at the injector exit

PHOTON BEAMS WORKSHOP 2017 - PAC

 $\eta \equiv \frac{Q_b}{q^2}$

Nuclear Pr

The hybrid scheme for the Linac:

- Velocity bunching operation
- Long bunch at cathode for high phase space density : Q/ε_n² >10³ pC/(µrad)²
- Short exit bunch (280 μm) for low energy spread (~0.05%)

- Moderate risk (state of art RF gun, reduced multibunch operation problems respect to higher frequencies, low compression factor<3)
- Economic
- Compact (the use of the Cband booster meets the requirements on the available space)

Measured emittance

	Q (pC)	Emittance (mm-mrad)	Time pulse	∆γ/γ (rms)	B=I/ε ² (A/m ²)
FULL L-band ⁽¹⁾ (PITZ,Egun=60 MV/m)	250	0.33 (100%) measured	FWHM=21-22 ps, rise time=2 ps (cathode)	0.15%	1.09 ·10 ¹⁴
FULL S-band ⁽²⁾ (LCLS injector @135 MeV, Egun=120 MV/m)	250	0.4 (95%) <i>measured</i>	FWHM=7.8 ps σ _z =740 μm rms (measured at 135 MeV)	0.1%	1.9 ·10 ¹⁴
FULL X-band ⁽³⁾ (LLNL-SLAC,Egun=200 MV/m)	250	0.35 (100%) <i>computed</i>	σ _t = 0.79 psec, σ _z =237 μm rms	0.16%	8.15 ·10 ¹⁴

[1] S. Rimjaem et al. "Emittance for different bunch charges at the upgraded PITZ facility", FEL Conference 2011

[2] J. Frisch et al. LINAC '10 ,Tsukuba,Japan WE201

P.Emma et al. "Beam brightness measurements in the LCLS injector",Miniworkshop on Compact X-Ray FELs using High Brightness beams, LBNL,2010 [3] F. Zhou et al., "X-band photoinjector beam dynamics",Proc. IPAC10,p.1761

Ronsivalle pres. At ELI-NP Workshop, May 14-16 2012 Milano, Italy,

The thermal emittance

A. Bacci

1.2um/(mm rms) historically used for SPARC simulations

The best value get at LCLS that is 0.9 um/(mm rms) the one used in ELI-NP simulations

D. H. Dowell 'The LCLS Gun'- ICFA BD Workshop, March, 2010

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

Codes comparison:

Tstep – Astra (double check)

The first injector optimizations was made by using the tracking code Tstep (a Parmela heir). Now the results have been tested with a second tracking code Astra

Two important benefits:

- 1) A double check of the simulated data in space charged dominated beams
- 2) The **possibility to use Giotto**, an Optimization Genetic Code which works with Astra

The Gun Solenoid (Solenoid A)

A. Bacci

A New design has been proposed from more motivations

- The BD is very sensitive to the sol position. A closer SOL to the cathode gives better emittance (and about 8-10% field intensity variation for 10 mm of displacement) A shorter SOL is better
- 1) The SPARC SOL is made by 4 coils and the coils alignment is a major issue. Two coils will be aligned more easily
- The SPARC SOL has a large aperture D=76 mm, which is no more justified, a decreasing in the aperture diameter results in lower currents, (actual aperture D=60mm).
- 3) The SPARC SOL works in the + + - current configuration; advantages for multipoles compensation or misalignments compensation (empirical result). In the new SOL the + - is kept as possible working configuration

Solenoid A – the new design

new

 $\begin{array}{l} \textbf{B}_{z,max} \ (++)=0.40 \ T \\ \textbf{B}_{z,max} \ (+-)=0.39 \ T \\ ref. \ \textbf{B}_{z} \ (+-)=0.329 \ T \\ nonlinearity \ by \ saturation \\ (\textbf{B}_{z}.vs.I) < 0.15\% \\ \textbf{GFR 30mm} \ (<1x10^{-3}) \\ (form \ Opera \ 27mm, \\ measured \ 20mm) \\ \textbf{I}_{max} = 176 \ \textbf{A} \end{array}$

What was really a major issue: is the second TW solenoid necessary? For all simulations, reference and commissioning WPs, we used only solenoids on S1.

Wondering if it may be necessary at 500pC WP

SENSITIVITY TO LASER PULSE RISE TIME

Ronsivalle pres. At ELI-NP Workshop, May 14-16 2012 Milano, Italy,

U

Longitudinal Laser Pulse shaping

longitudinal distribution; in blue the ideal case, in green a 10% ripples (pp), in red 20% (p-p) ripples. All the cases have a rise-time of 1ps

Transverse emittance (solid line) and bunch length (dashed line) for the three different flat-top cases: ideal (in blue), 10% ripple (in green)s, 20% ripples (in red).

The barely lower emittance, than the ideal of the longitudinal space charge, which by the density ripples gives lightly longer bunches.

Gamma Beam System - Layout

Courtesy of A. Variola

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

Accelerator Bay 1 - Layout

Nuclear Physics

Accelerator Bay 2 - Layout

C-BAND STRUCTURES: FABRICATION

The manufacturing of the cells required several steps:

1)Rough machining

2)Stress relieving treatment in a vacuum furnace at 500 $^\circ\,$ C for 1 hours

3)Milling of the cell (in particular waveguides apertures and pre-machining of the irises)

4)Ultra-precise manufacturing of irises and cells with lathe (precision $\pm 3 \ \mu m$ and roughness $\leq 50 \ nm$)

Manufacturing of the input and output couplers:

1)Rough machining2)Stress relieving treatment in a vacuum furnace at 500° C for 1 hours3)Milling

Cleaning of the machined components:

1)Removal of the machining oils with neutral soap

- 2)Removal of copper oxidations with weak acid (citric)
- 3)Almeco 19 at 48-50 degree for 5 minutes

4)Rinse with raw water

- 5)Ultrasound cleaning with ngl at 50 degrees
- 6)Rinse with raw water
- 7)Demineralized water in ultrasound at 20 degrees for 10 minutes

Machining and brazing have been done by Comeb (ELI-NP partner) and in the INFN-LNL oven under LNF supervision

8)drying with nitrogen flow9)packaging

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

D. Alesini

Long & Transv wake functions

$$W_{0\parallel}(s) \approx \frac{Z_0 c}{\pi a^2} \exp\left(-\sqrt{\frac{s}{s_1}}\right) (V/Cm), \qquad s_1 = 0.41 \frac{a^{1.8} g^{1.6}}{L^{2.4}}$$

$$W_{\rm QL}(s) \approx \frac{4Z_0 c s_2}{\pi a^4} \left[1 - \left(1 + \sqrt{\frac{s}{s_2}} \right) \exp\left(-\sqrt{\frac{s}{s_2}} \right) \right] \left(V/Cm^2 \right), \quad s_2 = 0.17 \frac{a^{1.79} g^{0.38}}{L^{1.17}}$$

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

The beam envelope evolution along the C-band Linac

Nuclear Ph

The beam emittance evolution along the C-band Linac

SB-Transverse beam size and distribution (Elegant tracking)

LOW ENERGY

HIGH FNFRGY

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

SB-energy spread & current

Lowen

Highen

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

Simulated gamma beams for different energies

Energy [MeV]	2.00	3.45	9.87	19.5
# photons/pulse within FWHM bdw.	< 1.2·10 ⁵	< 1.1·10 ⁵	< 2.6·10 ⁵	< 2.5·10 ⁵
# photons/s within FWHM bdw.	< 4.0·10 ⁸	< 3.7·10 ⁸	< 8.3·10 ⁸	< 8.1·10 ⁸
Source rms size [mm]	12	11	11	10
Source rms divergence [mrad]	<u>≤</u> 140	<u>≤</u> 100	≤ 50	<u>≤</u> 40
Radiation pulse length rms [ps]	0.92	0.91	0.95	0.90

Machine error sensitivity studies

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

The method

- Misalignments and jitters have been introduced both in the injector and all along the linac with the aim to provide specifications for jitters and alignments of accelerating structures and magnets.
- Error matrices from injector and linac have been coupled one with each other randomly.
- Error value distributions are calculated according to the latin hypercube scheme (as reported in the TDR) by using a matrix of the latin hypercube that randomly factorizes in the range [-100 : +100]% of error values.
- Data analysis has been done on 100 bunches, each composed of 30k macro particles.

Photoinjector:

Injector sensitivity analysis has been performed over a random sampling of 100 runs, by using the codes Giotto* and Astra.

Errors on GUN				
RF Voltage [Δ V]	0.2	%	fe	е
RF Phase [Δφ]	0.2	deg	r >	x
Errors on S-band Accelerating Sections			οι	0
RF Voltage [Δ V]	0.2	%	me	e
RF Phase [Δφ]	0.2	deg		r
Alignment on transverse plane [Δxy]	70	μm	s	i
Errors on Solenoids (GUN & TW cavities)			D d	י ם
Alignment on transverse plane [Δxy]	70	μm		n
Errors on Cathode Laser System				с С
Arrival time [Δt]	200	fs		
Pointing Instabilities [Δs]	20	μm		e
Energy Fluctuation	5	%		

[*] A. Bacci, ULR: http://pcfasci.fisica.unimi.it/Pagine/GIOTTO/GIOTTO.htm

Linac

		Errors on C-band Accelerating Sections			
		RF Voltage [ΔV]	0.2	%	Static/dynamic
		RF Phase [Δφ]	1	Deg	from 100nnm
		Alignment on transverse plane [Δxy]	0,70,100	μm	precision
twice		Errors on Quadrupoles			/stability of PS
field		Geometric strength [Δk]	0.3	%	plus strongly
goodn		Alignment on transverse plane [Δxy]	0,70,100	μm	conservative
ess		Rotation about incoming longitudinal axis $[\Delta \Theta]$	1	mrad	consideration
and		Errors on Dipoles			on field quality
100pp	~	Bend angle [ΔB]	0.1	%	or some quad
m		Rotation about incoming longitudinal axis $[\Delta \Theta]$	1	mrad	
on/sta		Errors on Steerers			twice 100ppm
bility		Strenght Jitters [ΔB]	0.05	%	precision /stability of
of PS		Errors on BPMs			bipolar PS
		Noise	10	μm	

Results at the injector exit (160 runs)

Energy, $\sigma = 1.1e - 01$ MeV

Analysis made by the GIOTTO^[*] code, which is paralelized (MPI) **CPU-TIME:** 30k mps, Space-Charge ON, and a IV order Runge-Kutta, with 0-0.5 ps as time-step, keeps 4-6 hours.

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

[*] A. Bacci, ULR: http://pcfasci.fisica.unimi.it/Pagine/GIOTTO/GIOTTO.htm

A. Bacci

 σ_z , $\sigma = 4.7e - 03$ mm

Frozen misalignments Three «screwed» machines(Longitudinal)

Frozen misalignments Three screwed machines(Transversal)

It comes out:

in the Linac the most critical parameters are the RF phase jitter on accelerating structures and misalignments on magnetic elements

I. Drebot

y-source sensitivity

2.85 MeV @IP	Without errors	With errors	
Electron bunch charge	250	250 ± 25	pC
Collimation Angle [⊖]	192.5	192.5	μrad
Total Flux	8.7∙10 ⁶	$(8.0 \pm 1.7) \cdot 10^{6}$	N _{ph} /pulse
Flux within FWHM BW	1.4∙10 ⁵	(1.3 ± 0.2)•10 ⁵	N _{ph} /pulse
BW	0.50	0.55 ± 0.02	%

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

"Snake" profile of the C-band Cavities

Nuclear Physics

<u>The Model</u>

- The longitudinal axis of C-band cavities has been characterised with the laser tracker (accuracy ±0.041mm) (*)
- The cells have been dimensionally aligned with respect to a **best-fit line** that minimizes the beam quality degradation.

The Method

- Measured cell displacements have been inserted in the Elegant code (**)
- A gentle trajectory correction allows to avoid the beam quality degradation (spot size growth due to emittance dilution @IP)

	Nominal	Snake profile	Snake profile	
234 Wev @P	beamline	(w/o correction)	(w correction)	
Energy spread	0.82	0.82	0.82	‰
Bunch length	273.0	274	274	μm
ε _{nxv}	0.43	0.44	0.43	mm mrad
Focal Spot	19.7	19.9	19.7	μm
n _{x (local)}	2.59	4.69	2.29	mm

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

A. Giribono

A "real" machine model: Quasi Constant Gradient C-band Cavities

The Model

- C-band cavities shaped to have a *quasi-constant accelerating field* with E_{avg}=33 MV/m and a 15 % slope (*).
- Elegant code include RF focusing, adiabatic damping and RF kick based on the Serafini - Rosensweig model (**).

The Method

- Studies on the overall C-band linac matched for the 234 MeV e⁻ beam
- The focusing strength associated to the transverse RF field in the couplers scales as $K_r = \frac{1}{8} \left| \frac{\gamma'}{\gamma} \right|^2$ affecting the transverse beam dynamics (**).

234 MeV @IP	Constant	Quasi Constant	
(n=17)	Gradient	Gradient	
Energy	234.0	234	MeV
Energy spread	0.82	0.82	‰
Bunch length	273.0	274	μm
ε _{nx v}	0.44	0.43	mm mrad
Focal Spot	19.6	20.5	μm

PHOTON BEAMS WORKSHOP 2017 - PADOVA - NOV. 28TH 2017

A. Giribono

Dark current evaluation

Nuclear Physics

- Electromagnetic fields in a high gradient RF cavity can result in electron emission from the metallic walls of the cavity itself and induce, in case these electrons are captured and accelerated by the accelerating fields, the so called "dark-current".
- Simulations on the dark current transport in the ELI-NP GBS linac (both low and high energy) have been performed to evaluate beam losses and provide the basis for shielding and safety system specifications.
- 3 nC dark current, composed of 100 k macro-particles, over 1 μs RF pulse length with uniform cylinder transverse distribution on the cathode with a radius of 2.5 mm (worst case scenario at ELI-NP the RF pulse length is 1.5 μs).

Conclusions

- The Eli-NP Gamma beam system has been presented focusing on the source design and the Linac optimization criteria.
- The machine beam dynamics consolidation studies have been described
- Implementation of dfs/trajectory/luminosity feedback in the control system is ongoing to be ready for the machine commissioning start.

Acknowledgements: all the collegues of GBS team