

CLIC: The CLIC Accelerator Design and Performance

CERN Academic Training Wednesday March 7, 2018

> Daniel Schulte For the CLIC collaboration

No names at individual contributions, have to omit many important contributions

7 March 2018 CERN Academic Training, Daniel Schulte

CLIC Introduction

CLIC: **C**ompact **LI**near **C**ollider

CLIC aims to provide **multi-TeV electron-positron** collisions with high luminosity at affordable cost and power consumption

ORGANISATION ELIROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH**

A MULTI-TEV LINEAR COLLIDER **BASED ON CLIC TECHNOLOGY CLIC CONCEPTUAL DESIGN REPORT**

 $\frac{\text{GENENA}}{2012}$

2012 CDR: Shows feasibility of 3 TeV design

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

CLIC Concept

To reach multi-TeV energies:

- Linear collider to avoid synchrotron radiation
- High accelerating field to achieve high energy \Rightarrow Normal conducting accelerating structures
- High beam current and quality to achieve the luminosity
	- \Rightarrow High quality of components
	- \Rightarrow Little imperfections
	- \Rightarrow Fancy beam dynamics

CLIC Staged Scenario

Plenty of physics at low centre-of-mass energies

Energy and luminosity targets from Physics Study Group

Top above threshold Higgs via Zh and WW fusion

Study top at threshold

To be updated with more input from LHC and stage 1

Implementation in stages

CLIC at 380 GeV

Key Parameters

Accelerating Structure

380 GeV / 3 TeV

12 GHz 27 / 23 cm long 72 / 100 MV/m 59.5 /61.3 MW input power 244 ns RF pulses

20600 / 140,000 structures 380 GeV / 3 TeV

Total peak RF power: 1.6 TW (380 GeV) 8.5 TW (3 TeV)

But only 10-5 duty factor

- 50 RF bursts per second
- 244 ns long (312 bunches)
- $= 12.2 \,\mu s/s$

Production of peak power is a challenge Typical 12 GHz klystrons produces O(50 MW)

Solution is drive beam

CLIC Gradient

Breakdowns (discharges during the RF pulse)

Require $p \leq 3 \times 10^{-7}$ m⁻¹pulse⁻¹

Structure design based on empirical constraints, not first principle

- Maximum surface field
- Maximum temperature rise
- Maximum power flow

R&D established gradient O(100 MV/m)

Structure for 380 GeV optimised for cost of first energy stage \Rightarrow 72 MV/m

Power Production: Drive Beam Production

Drive Beam Combination Concept

Power Production: Drive Beam Distribution

Two-beam Module Concept

7

CLIC Two-beam Module

CLIC Test Facility (CTF3)

Drive Beam Scheme Performance

CTF3 measurements:

- RF to drive beam efficiency > 95%
- Current multiplication factor 8
- Most of beam quality
- 145 MV/m X-band acceleration

Detailed simulations of drive beam performance in CLIC

Current stability affected by very low CTF3 energy, 3 x larger beam and delay loop design different from CLIC

From CTF3 to CLEAR

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

$$
\mathcal{L} = H_D \frac{N^2}{4 \pi \sigma_x \sigma_y} n_b f_r
$$

Need to ensure that we can achieve each parameter

Luminosity and Parameter Drivers

Can re-write normal luminosity formula

Need to ensure that we can achieve each parameter

Wakefields and Beam Current

 $\mathcal{L} \propto H_D \ \frac{N}{\sigma_x} \ N n_b f_r \ \frac{1}{\sigma_y}$

2a

 Δt_{h}

Gdfidl simulations

Goal: maximise beam current \Rightarrow Maximise bunch charge

 \Rightarrow Minimise distance between bunches

Limits are given by wakefields: With an offset particles produce transverse wakefields \Rightarrow The head kicks the tail, force is defocusing \Rightarrow Can render beam unstable

RF team loves small **a** Less power easier to reach gradient

Beam team hates small **a** More wakefields Beam less stable

Multi-bunch wakefields minimised by damping and detuning

150

 0.16

 0.16

 0.14

Tricks of the Beam Physics

Make the focus strong again

- Use O(10%) of the linac for magnets
- Leads to small beta-function
- Makes the beam stable (strong spring for an oscillator)

For single bunch use BNS damping (Balakin, Novokhatsky and Smirnov)

• Introduce energy chirp that compensates transverse wakefields

Beam Stability, With BNS

No BNS damping With BNS damping

Beam Stability, With BNS

Luminosity and Beam Quality

 $\mathcal{L} \propto H_D \; \; \frac{N}{\sigma_x} \; \; N n_b f_r \Bigg(\frac{1}{\sigma_y} \Bigg) \; \; \; \sigma_y = \sqrt{\beta_y \epsilon_y/\gamma}$

Damping ring main source of horizontal emittance But value is OK, as we will see

Imperfections are the main source of final vertical emittance

Require 90% likelihood to meet static emittance growth target

Damping Rings

Important progress in collaboration with light source community

Studies of lattice and collective effects show that emittance targets can be reached for 3TeV

Currently optimising for 380 GeV

✓

Static Imperfections: Main Linac Alignment

1) Align components accurately on the supporting girders

200 m

2) Establish reference system with overlapping wires, has some error but is not critical

3) Align modules remotely to the wires using their sensors and movers

The error for this is most critical misalignment of components is of the order O(10μm)

4) Use sophisticated beam-based alignment such as dispersion free steering (DFS, i.e. different energy beams) to align components In particular to align BPMs

RF Alignment

Structures scattered on girder \Rightarrow Wakefield kick

5) Measure beam offset with wakefield monitor Move girder to remove mean

offset

 \Rightarrow No net wakefield kick

Limit mainly from

- wakefield monitor accuracy (3.5 μm)
- reproducibility of wakefield
- tiny variation of betatron phase along girder

Wakefield monitor: Measure wakefield in damping waveguide

Main Linac Emittance Growth (3 TeV)

PCLIC Beam-Based Alignment Tests at FACET

DFS applied to 500 meters of SLC linac

- System identification algorithms to construct model
- DFS correction with GUI
- Emittance growth is measured

✓

First magnet has been at $L^* = 3.5$ m from the interaction point, inside of detector

Short L* limits chromaticity, the main challenge

First magnet has been at $L^* = 3.5$ m from the interaction point, inside of detector

Limited angular coverage of detector

Magnet is put on cantilever from tunnel

Magnet needed to be shielded from detector solenoid

TUL

New design with $L^* = 6$ places magnet outside of detector and mitigates high chromaticity

Better for physics

Also easier for equipment: No shielding solenoid Final quadrupole can be attached to tunnel floor

✓

Horizontal Optimum

Hard to push beta-functions that low

Use $L_{0.01}/L$ =60% as criterion Reasonable compromise for most physics studies

Vertical Optimum

Beam Delivery System Imperfections

Realistic imperfections in BDS

Beam-based alignment and beam size tuning is used

Aim to reach 110% of promised luminosity with 90% likelihood (10% is budget for dynamic imperfections)

Two-beam study ongoing Small difference in performance

Single beam tuning 85% reach 110% of promised luminosity

Luminosity is still increasing Simulation is very slow (much slower than reality) Try to improve speed

ATF 2 Results

FONT FB ON

Sextupole Swapped

Dynamic Imperfection Example: Ground Motion

Ground Motion

Beam Motion with Beam Feedback Only

Jitter at IP

x offset

The Stabilisation System

K. Artoos et al.

Beam Trajectory Jitter

Beam Jitter at IP

Beam Jitter at IP

✓

Cost and Power

Goals bring cost and power consumption down: "reasonable cost": O(6 GCHF) Power < O(200 MW)

Preliminary Estimate 252 MW

UPDATED BASELINE FOR A STAGEL COMPACT LINEAR COLLIDER

Preliminary value for 380 GeV (MCHF of Dec 2010)

Improvement of cost and power is ongoing Detailed bottom up estimate Already savings

Klystron-based Alternative

Common modulator 366 kV, 265 A

Novel high

efficiency klystrons

Develop klystron-based alternative Expect comparable cost for first energy stage But increases faster for high energies

CLIC at 3 TeV

Can re-use previous systems and components

Just add more linac and drive beam pulse length

At 3 TeV add one drive beam

Site Near Geneva

Exploration of Future Upgrades

Exploration of novel acceleration methods for lepton collider has started

- Dielectric accelerating structures
- Laser driven plasma
- Beam driven plasma

Plasma-based acceleration demonstrated gradients of 50 GV/m

Application of novel technologies to colliders

- Started a working group for CLIC to understand potential
- Plasma community started a working group on colliders

Main challenge

• Beam quality preservation has to be explored theoretically and experimentally

Conclusion

A staged design for CLIC has been developed

- First energy stage at 380 GeV optimised for performance, cost and power
	- Meet the physics performance targets
	- Cost roughly comparable to LHC
	- Power O(200 MW)
- Further energy stages can reuse components
	- Site available for 3 TeV
- In the long run novel acceleration methods may become available

High gradients and high peak power are key to CLIC

Great control of imperfections is second key

- Technical solutions have been demonstrated, see tomorrow
- Beam-based methods have been established

Note: CLIC CDR

- Vol 1: The CLIC accelerator and site facilities
- CLIC concept with exploration over multi-TeV energy range up to 3 TeV
- Feasibility study of CLIC parameters optimized at 3 TeV (most demanding)
- Consider also 500 GeV, and intermediate energy range
- CLIC costing 500 GeV - <https://edms.cern.ch/document/1234244/>

Vol 2: Physics and detectors at CLIC

- Physics at a multi-TeV CLIC machine can be measured with high precision, despite challenging background conditions
- External review procedure in October 2011
- <http://arxiv.org/pdf/1202.5940v1>

Vol 3: "CLIC study summary"

- Summary and available for the European Strategy process, including possible implementation stages for a CLIC machine as well as costing and cost-drives
- Proposing objectives and work plan of post CDR phase (2012-16)
- <http://arxiv.org/pdf/1209.2543v1>

In addition a shorter overview document was submitted as input to the European Strategy update, available at: [http://arxiv.org/pdf/1208](http://arxiv.org/pdf/1208.1402v1) .1402v1

Input documents to Snowmass 2013 has also been submitted: [http://arxiv.org/abs/1305](http://arxiv.org/abs/1305.5766) .5766 and [http://arxiv.org/abs/1307](http://arxiv.org/abs/1307.5288) .5288

Note: CLIC Optimisation

Scan 1.7 billion cases:

Fix structure design parameters: a_1 , a_2 , d_1 , d_2 , N_c , f , G

 \Rightarrow key beam parameters

Resulting designs:

 \Rightarrow Luminosity, cost and power (including other systems)

This is the one that we picked

Colors indicate luminosities

200

180

160

140

 3.1

 3.2 3.3

 3.4

 3.5

Cost [a.u.]

3.6 3.7 3.8 3.9

 4.1

4

Cost

Goal set as "reasonable cost": 6 GCHF

Preliminary cost estimate from rebaselining

Performing bottom-up cost estimate

Also optimise the cost

- Module design is being improved
- Injector cost has been relatively high, is being reduced substantially by about halving number of klystrons
- Drive beam injector has already been optimised
- Civil engineering is being reviewed

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN JUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH**

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

 $\frac{1238788}{308}$

• …

Power

THE STEED

Goal set as "reasonable power": 200 MW Preliminary Estimate 252 MW

Preliminary power estimate from rebaselining

Performing bottom-up power estimate

Also optimise the power

- Use of permanent magnets
- Reduction of injector power
- More efficient klystrons
- Use of green power: Ability to switch or and off to follow electricity availability
- …

RELANSATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIR **CERN JUROPEAN ORGANIZATION FOR NUCLEAR REVEARS**

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

Ring To Main Linac Transport (RTML)

Transports the beam from the damping rings to the main linacs

Shortens the long bunch from the damping ring

Beam-beam Feedback

Performances

Drive Beam Tolerances

Drive Beam Combination in CTF3

Drive Beam Quality

Current stability and phase stability are key

Errors lead to wrong main beam energy

Losses in the delay loop, different design than in CLIC due to space 3 x smaller beam in CLIC should help

Availability

Aim for 80% availability during scheduled physics runs

- Identifying the most important failures
- Mitigation concepts
- Repair time
- Operation schedule to optimise timing of stops

Longitudinal Wakefields and Energy Spread

Loaded gradient along bunch

On-crest acceleration: \triangleright more than 2% full gradient spread **≻ 0.7% RMS energy spread**

Off-crest acceleration (12°): \geq 1% full gradient spread 0.35% RMS gradient spread Loose about 2% in gradient

Main Linac: Low Emittance Preservation

Beam stability

- incoming beam can jitter (have small offsets) and become unstable
- lattice design, choice of beam parameters

Static imperfections

- errors of reference line, elements to reference line, elements. . .
- excellent pre-alignment, beam-based alignment, beam-based tuning

Dynamic imperfections

- Ground motion, cooling water induced jitter, RF jitter, electronic noise,. . .
- lattice design, BNS damping, component stabilisation, feedback, re-tuning, re-alignment
- Combination of dynamic and static imperfections can be severe
- Lattice design needs to balance dynamic and static effects

Main Linac: Dispersion-free Steering

Use beams of **different energy** to identify offset BPMs

Compromise between offset and difference

Off-energy beam has different bump

Dispersion: Different energy particles take different trajectories

Adjust BPM reference to be on new trajectory

Pre-alignment Wavelength

Reference line error with given wavelength

Betatron wavelengths of the different sectors

Ground Motion Summary

Beam Delivery System Tuning

Beam Delivery System Tuning

Most demanding case: Full two-beam tuning at 3 TeV

90% of machines achieve more than 97% of promised luminosity

Working on pushing this to 110% of promised luminosity

20

30

Scan

40

15000 luminosity measurements required

 $10¹$

 $-[5.9 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

 1.2

 0.8

 0.6

 0.4

 0.2

 $\overline{0}$

 Ω

Hourglass Effect

The Approach

Build a linac that can be extended for further energy stages detector

accelerator 100 MV/m accelerator 72 MV/m

BDS

unused arcs

Higher gradient will beneficial for upgrade

 $=$ 2.75 km

BDS and Energy Stages

Hardware will be modified, but try to minimise changes At high energy smaller number of bunches and bunch charge

- Should be acceptable in most systems But have to allow for longer pulses
- Upgrade of injector and RTML RF systems

