FlexibleFuture

Alexander Voigt

RWTH Aachen

Paris, 11.10.2017

2 Automatic uncertainty estimates

Contents

1 EFT towers

2 Automatic uncertainty estimates

Current limits on SUSY particle masses

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	ε, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	-1) Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{split} & \text{MSUGRACIASSM} \\ & \tilde{q}^{2}_{11}\tilde{q}^{-1}_{12} \tilde{q}^{2}_{11} \tilde{q}^{-1}_{12} \tilde{q}^{2}_{11} \tilde{q}^{-1}_{12} \tilde{q}^{2}_{11} \tilde{q}^{2}_{11} \tilde{q}^{2}_{11} \tilde{q}^{2}_{11} \tilde{q}^{2}_{12} \tilde$	0-3 e, µ/1-2 τ : 0 mono-jet 0 3 e, µ 0 1-2 τ + 0-1 ℓ 2 γ 7 2 e, µ(Z) 0	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet		20.3 36.1 32 36.1 36.1 36.1 36.1 32 32 20.3 13.3 20.3 20.3	62 6 800 GeV 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.55 TeV 37 TeV 1.8 TeV	$\begin{split} &m(j)\!=\!m(j) \\ &m(j)\!=\!m(j$	1907.0525 ATLAS-CONF-037-022 1904.0773 ATLAS-CONF-037-022 ATLAS-CONF-037-023 ATLAS-CONF-037-03 ATLAS-CONF-037-03 1007.0510 1007.0510 1007.0540 1007.0540 1007.0540 1000.0330 1000.0330 1000.0330
3 rd gen § med.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	2 2 2 1	1.92 TeV 1.97 TeV 37 TeV	$\begin{array}{l} m(\hat{\tau}_{1}^{0}){<}600GeV \\ m(\hat{\tau}_{1}^{0}){<}200GeV \\ m(\hat{\tau}_{1}^{0}){<}300GeV \end{array}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
314 gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1$, $\tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$, $\tilde{h}_1 \rightarrow c \tilde{k}_1^0$ $\tilde{h}_1 \tilde{h}_1$ (natural GMSB) $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow Z$ $\tilde{h}_2 \tilde{h}_1 \tilde{h}_2 \rightarrow \tilde{h}_1 \rightarrow K$	0 $2 e, \mu$ (SS) $0 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 \cdot 2 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 b mono-jet 1 b 1 b 4 b	Yas Yas Yas Yas Yas Yas Yas	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	8 950 GeV 7 157570 GeV 200-720 GeV 7 90-180 GeV 205-950 GeV 7 90-180 GeV 205-950 GeV 7 90-322 GeV 7 7 90-320 GeV 300-780 GeV 7 150-660 GeV 320-800 GeV 6 320-800 GeV 320-800 GeV		$\begin{split} m(\tilde{t}_{1}^{2}) & \!$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-039 1202.1202, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{split} \tilde{t}_{k,k} \tilde{t}_{k,k}, \tilde{t} \rightarrow \tilde{t}_{k}^{2} \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}(\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}), \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{x}_{k}^{2}, \tilde{t}_{k}(\tilde{r}), \tilde{t}_{k}^{2}, \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{r}(r\tilde{r}) \\ \tilde{x}_{k}^{2} \tilde{x}_{k}^{2} \rightarrow \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \\ \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k} \tilde{t}_{k}^{2} \\ \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k} \tilde{t}_{k}^{2} \end{pmatrix} \\ \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k} \tilde{t}_{k}^{2} \end{pmatrix} \\ \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k} \tilde{t}_{k}^{2} \\ \tilde{t}_{k}^{2} \tilde{t}_{k}^{2} \rightarrow \tilde{t}_{k} \tilde{t}_{k}^{2} \end{pmatrix} \\ \tilde{t}_{k}^{2} \tilde{t}_{$	$2 e, \mu$ $2 e, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ e, μ, γ $4 e, \mu$ $4 \cdot e, \mu + \gamma$ $\gamma G = 1 e, \mu + \gamma$ $\gamma G = 2 \gamma$	0 0 0-2 jets 0-2 b 0	165 165 165 165 165 165 165 165 165 165	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	2 99-440 GeV 2 710 GeV 2 730 GeV 3 740 GeV 4 74 4 74 4 74 4 74 5 70 GeV 5 85 GeV 6 115-270 GeV 8 85 GeV 8 90 GeV	₩ m(t ²)+m m(t ²)+m	$\begin{split} m(\tilde{t}_{1}^{0}) = 0 & \\ m(\tilde{t}_{1}^{0}) = 0, \\ m(\tilde{t}_{1}^{0}) =$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 1501.07110 1403.5086 1907.05403
Long-lived particles	Direct $\hat{x}_1^{+}\hat{x}_1^{-}$ prod., long-lived \hat{x}_1^{+} Direct $\hat{x}_1^{+}\hat{x}_1^{-}$ prod., long-lived \hat{x}_1^{+} Stable, stopped \hat{y} -R-hadron Stable \hat{y} -R-hadron Metasztable \hat{y} -R-hadron GMSB, stable $\hat{x}_1^{+} \rightarrow \hat{x}_1^{-}$ prod. prod. $\hat{x}_1^{+}\hat{x}_1^{-} \rightarrow \hat{x}_1^{-}$ GMSB, $\hat{x}_1^{+} \rightarrow \hat{x}_1^{-}$ prod. long-lived \hat{x}_1^{-} $\hat{x}_2^{-}\hat{x}_1^{-} \rightarrow \hat{x}_1^{-}$ prod. GGM §3, $\hat{x}_1^{+} \rightarrow Z\hat{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk 1-2 µ 2 y displ. cc/eµ/µ displ. vtx + jet	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	11 430 GeV 2 495 GeV 2 850 GeV 2 800 GeV 2 800 GeV 2 800 GeV 2 10 700 V 1 10 700 V	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{t}_1^{-1}) & m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 102 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{MeV}, \; \pi(\tilde{t}_1^{-1}) = 151 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{p} \; \text{ms} \; \pi(\tilde{t}_1) = 100 \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{(} \text{ms} \; \text{ms} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \; \text{T} \; \text{M} \\ m(\tilde{t}_1^{-1}) = 100 \; \text{GeV}, \; \text{T} \;$	ATLAS-CONF-017-017 1506.05322 1310.6584 1806.65129 1804.04520 1411.6795 1403.5542 1504.65162 1504.65162
RPV	$ \begin{array}{l} LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} ep_{t} e\tau / \mu\tau \\ Blinear \ RPV \ CMSSM \\ \tilde{v}_{\tau}^{T} (X_{\tau}^{T}) = \langle \mathcal{M} e^{T} (X_{\tau}^{T}) = \langle $	$e\mu,e\tau,\mu\tau$ $2e,\mu$ (SS) $4e,\mu$ $3e,\mu+\tau$ 0 $4e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $1e,\mu$ $2e,\mu$	0-3 b 5 large-R je 5 large-R je 1-10 jets/0-4. 1-10 jets/0-4. 2 jets + 2 b 2 b	- Yes Yes ts - ts - ts - ts - ts -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5. 4.2 21 1.14 Te 22 1.06 V 1.14 Te 24 1.06 TeV 24 1.06 TeV 25 1.06 TeV 26 1.0	1.9 TeV 1.45 TeV V 1.55 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} I_{111}^{i} &= 0.11, \ J_{1121121214} = 0.07 \\ m(\xi) = m(\xi), \ c_{122} < 1 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.0024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 0.024, \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m(\xi)^{i} = 1 \ M_{122} < 0 \ mm \\ m$	1607.08073 1444.2503 ATLAS-CONF-2015-675 1405.5085 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2015-607 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-035
Other	Scalar charm, $\hat{c} \rightarrow c \hat{\ell}_1^0$	0	2 c	Yes	20.3	2 510 GeV		m(\$ ⁰ ₁)<200 GeV	1501.01325
'Only	a selection of the available ma omena is shown. Many of the	uss limits on r limits are ba	new states	s or	1	0 ⁻¹ 1		Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

EFT towers with low-scale SM

EFT towers with low-scale 2HDM

Requirements for uncertainty estimate

- reasonable
- code specific
- flag specific
- generic (MSSM, NMSSM, THDM, ...)
- $M_S \lesssim 1 \, {
 m TeV}$: envelope fixed order 3-loop calculation
- $M_S\gtrsim 1\,{
 m TeV}$: envelope EFT 2-loop calculation

Debatable ways to calculate ΔM_h

fixed order	1L	2L	3L
$Q_{ m pole} \ y_t(M_Z) \ lpha_s(M_Z)$	[<i>M_S</i> /2,2 <i>M_S</i>]	[<i>M_S</i> /2,2 <i>M_S</i>]	[<i>M_S</i> /2,2 <i>M_S</i>]
	0L vs. 1L	1L vs. 2L	2L vs. 3L
	0L vs. 1L	1L vs. 2L	2L vs. 3L
EFT/mixed	$\Delta \lambda^{0L}$	$\Delta \lambda^{1L}$	$\Delta \lambda^{2L}$
$Q_{ m match} \ \lambda(M_{\cal S})$	$[M_S/2, 2M_S]$	$[M_S/2, 2M_S]$	$[M_S/2, 2M_S]$
	0 vs. $\frac{v^2}{M_S^2}$	0 vs. $\frac{v^2}{M_S^2}$	0 vs. $\frac{v^2}{M_S^2}$
EFT/mixed	ΔM_h^{1L} , eta^{1L}	ΔM_h^{2L} , eta^{2L}	ΔM_h^{3L} , eta^{3L}
$Q_{ m pole} \ y_t(M_Z) \ lpha_s(M_Z)$	$[M_t/2, 2M_t]$	[<i>M_t</i> /2,2 <i>M_t</i>]	[<i>M_t</i> /2, 2 <i>M_t</i>]
	OL vs. 1L	1L vs. 2L	2L vs. 3L
	OL vs. 1L	1L vs. 2L	2L vs. 3L

M_h in the MSSM at fixed loop order

Large cancellations:

 $aneta=5,\ X_t=0,\ M_S=2\,{
m TeV}$

M_h in the MSSM at fixed loop order

 $aneta=5,\ X_t=0,\ M_S=2\,{
m TeV}$