

Back-end systems evolution in high energy physics Example of LHCb Detector

J.P. Cachemiche, Centre de Physique des Particules de Marseille

Outline

- The LHCb experiment
- Current architecture
- Upgrade
- Triggerless readout concept
- Initial and final readout architecture

The LHCb detector

One of the 4 experiments on the LHC

- Study of mater/anti-matter asymetries in B meson physics

Current architecture

Hardware trigger to decrease data flow from 40 to 1 MHz

Why do we upgrade ?

Motivation

- Maximum luminosity in next 5 years: 5 fb-1
- At current rythme, statistical precision of measurements varies very slowly
- By increasing the luminosity from 2×10³² to 10³³ cm⁻²s⁻¹
 - Reach a cumulated luminosity > 50 fb-1

But ...

- Saturation of hardware trigger on hadronics channels
 - Architecture change required

Solution

LHCb opted for a « triggerless » approach

- Previous systems were able to process events at 1 Mhz
- Current system implemented in 2009, upgrade planned for 2019
- Moores's law predictions should allow to envisage filtering of events by software at 40 MHz
 - More powerful algorithmes
 - More flexible

Triggerless readout principle

- All event fragments of a same collision must be routed towards a single CPU
- Fragments of the next one routed to another CPU
- Etc ..
- Event building is required for **each** collision.
 - Huge bandwidth

Initial architecture

- First level of concatenation achieved in ATCA crates
- All event fragments routed through a switch network to a single computer
- Key issues :
 - Requires hardware IPs for either 10GbE links, Infiniband, Omnipath or else
 - Collision management

ATCA40 board

Collisions handling

2 methods to make data converge toward a single CPU: both require memory

- **Push** : requires expensive switches with **memory** inside
- Pull : requires memory on already very dense back-end boards

Architecture evolution

Implementation of the event builder directly in the farms

Allowed by recent architectures of Intel chips :

- Very large bandwidths inside the PC
- Independent paths to memory
- Multicore CPUs
 - Powerful enough to handle both Event building and Software Trigger
 - Solves the memory issue

New readout/trigger scheme

and software trigger

- Large memory in the CPU \rightarrow simpler acquisition board, cheaper switches
- Possibility to run LLT in the Event Building CPU blades
- No more intermediate crates
- Less optical links
- Network type can be changed easily
- Scalable

Back-end systems evolution in high energy physics - Example of LHCb Detector

Deeper in the computer

▶ 80 % of processing power still available for Low Level Trigger computation

Final architecture

 Distance between FE and RO : ~350m

- ~12000 optical links
- ~ 500 readout boards
- ~24 to 48 links on each board
- ~100 kbytes per event
- ~32 Tb/s aggregate bandwidth

Conclusion

Promizing architecture

Is this a general trend?

- More and more hardware features migrate towards software
- Half of the 4 experiments on LHC will use a software trigger

But ...

- Requires a lot of bandwidth
- Requires also a full redesign of previously used algorithmes due to Moore's law inflexion

	Event-size [kB]	Rate [kHz]	Bandwidth [Gb/s]	Year [CE]
ALICE	20000	50	8000	2019
ATLAS	4000	200	6400	2022
CMS	2000	200	3200	2022
LHCb	100	40000	32000	2019

Future DAQ expected bandwidth in the LHC Niko Neufeld, CERN

It will be critical to fully exploit multi-core architectures

		ALICE	LHCb	CMS	ATLAS
	Hardware trigger	No	No	Yes	Yes
	Software trigger input rate	50 kHz Pb-Pb 200 kHz p-Pb	30 MHz	500/750 kHz for PU 140/200	0.4 MHz
	Baseline processing architecture	CPU/GPU/FPGA/ Cloud&Grid	CPU farm (+coprocessors)	CPU farm (+coprocessors)	CPU farm (+coprocessors)
	Software trigger output rate	50 kHz Pb-Pb 200 kHz p-Pb	20-100 kHz	5-7.5 kHz	5-10 kHz

Future DAQ key numbers in the LHC V.V Gligorov, CERN

More ...

The PCIe40 board

- 48 bidirectional links at 10 Gbits for acquisition and control
- 2 bidirectional links at 10 Gbits/s for time distribution
- >100 Gbits/s PCIe Gen3 x 16
- 1.1 Million logic element Arria10 FPGA
- 150W power consumption

LHCb upgrade vs current

	LHCb Run1 & 2	LHCb Run 3
Max. inst. luminosity	4 x 10^32	2 x 10^33
Event-size (mean - zero-suppressed) [kB]	~ 60 (L0 accepted)	~ 100
Event-building rate [MHz]	1	40
# read-out boards	~ 330	400 - 500
link speed from detector [Gbit/s]	1.6	4.5
output data-rate / read-out board [Gbit/s]	4	100
# detector-links / readout-board	up to 24	up to 48
# farm-nodes	~ 1000 (+ 500 in 2015)	1000 - 4000
# links 100 Gbit/s (from event-builder PCs)	n/a	400 - 500
final output rate to tape [kHz]	5	20 - 100