
Continuous performance
monitoring

Vassil Vassilev

Motivation

● Enabling performance optimization contributions (often external) to ROOT
● Making sure these contributions are sustainable (i.e. once the money is spend

for optimization it shouldn’t regress)
● Providing continuous performance monitoring service

Approach

● Use an external benchmarking library
● Register machines with exclusive access to jenkins. We have been granted

exclusive access to an Intel Haswell and KNL machines in OpenLab.
● Implement micro and macro benchmarks.

Benchmark

● A program which tests code scalability
● Two major kinds: micro and macro benchmarks

○ Micro benchmarks are like unit tests (eg. googletest) but for making sure certain routines (or
small set of routines) scale

○ Macro benchmarks are like integration tests (eg. roottest)

Benchmarking Libraries

● Unfortunately not a lot of specialized libraries on the market
● Google Benchmark stands out with a compatible, open-source license

https://github.com/google/benchmark

Macrobenchmarks

● They are complex programs which can possibly run long time
● They can have dependencies to external packages (eg. tensorflow, protobuf,

etc) and compare performance
● They should live in rootbench.git in a similar to roottest manner.

Microbenchmarks

● Small, easy-to-write programs with dependencies only in ROOT
● They can compare performance relative to a mode (eg. single thread vs

multithreading, scalar vs vector code, etc)
● They should live in root.git in a similar to gtest manner

GenVector microbenchmarking

I/O microbenchmarking

I/O microbenchmarking

I/O microbenchmarking

RooFit benchmarking

RooFit benchmarking

Infrastructure for data
analytics and visualization of
benchmarks/tests

Oksana Shadura

Goals

● Save statistics of job/test/benchmark runs
● To be able provide visualization of results
● To be able to detect regression and calculate statistics
● To add a performance check to PR or build incrementally each number of

commits

New Jenkins slaves for performance testing

● Thanks to Openlab, it was provided 2 powerful nodes:
● Haswell (56 cores)
● KNL (64 cores)

We will create special label for them!

New Jenkins job: how we can do it

● Big matrix of possible test cases (compilers/SIMD/other flags)
● Build as a part of PR or incrementally during day
● Google benchmark has a nice JSON/CSV output
● Possibility to trigger job via PR (other triggers) or just directly generate

performance plots (data for performance plots)

Available resources https://monit.cern.ch/

Grafana + InfluxDb for continuous storage of records

● XML reports could be send to Influxdb Jenkins Plugin+JUnit
● Or send data directly to DB via curl (influx-db target (e.g:

url,desc,user,pwd,db,rentention) on Jenkins configuration using groovy script)

No plans to invest a lot of time,
but just to be able to save data
generated from builds to
database and after be able to
visualize it on demand!

Generate plots on local machines (standalone)

● JSON to JSON Highchart friendly version (written by Rafael):

json-bench-converter
● Easy Highchart generation on https://jsfiddle.net using pregenerated JSON

https://github.com/Teemperor/json-bench-converter
https://jsfiddle.net

Thank you!

Backup slides

Pros and cons in having in-tree microbenchmarks

● This would allow us to use various thread sanitizers and analyses when
compiling root. This is especially useful for header-only (or template heavy)
code, such as TDF.

● Gives a handle to solve “And btw I forgot one item in the failure causes you'll
see: the benchmark itself is changed, or the code is expected to be slower
because of say an additional runtime check. Happens all the time to
something in ROOT, too, and any of those will mark Jenkins red, unless the
tool somehow distinguishes this? For the old tooling that was a killer.”

● Gives a relationship between PR and benchmarks
● Give us a chance to revive and improve the existing in-tree performance tests

● Easier to relate ROOT build options (eg. -O2, IMT enabled) to the benchmark
executables

● Has greater contribution visibility, shows that ROOT considers performance a
first-class citizen

● Makes creation of a test/benchmark one degree easier (no need to clone
separate repo, set it up, etc)

Pros and cons in having in-tree microbenchmarks

● Based on two polls I did over the last couple of months with various team
members we have: 1 strongly against, 1 strongly in favor and few in favor and
the majority neutral.

Informal team survey

