Continuous performance
monitoring

Vassil Vassilev

Motivation

e Enabling performance optimization contributions (often external) to ROOT

e Making sure these contributions are sustainable (i.e. once the money is spend
for optimization it shouldn’t regress)

e Providing continuous performance monitoring service

Approach

e Use an external benchmarking library

e Register machines with exclusive access to jenkins. We have been granted
exclusive access to an Intel Haswell and KNL machines in OpenLab.

e Implement micro and macro benchmarks.

Benchmark

e A program which tests code scalability

e Two major kinds: micro and macro benchmarks
o Micro benchmarks are like unit tests (eg. googletest) but for making sure certain routines (or
small set of routines) scale
o Macro benchmarks are like integration tests (eg. roottest)

Benchmarking Libraries

e Unfortunately not a lot of specialized libraries on the market
e Google Benchmark stands out with a compatible, open-source license

https://github.com/google/benchmark

Macrobenchmarks

e They are complex programs which can possibly run long time

e They can have dependencies to external packages (eg. tensorflow, protobuf,
etc) and compare performance

e They should live in rootbench.git in a similar to roottest manner.

Microbenchmarks

e Small, easy-to-write programs with dependencies only in ROOT

e They can compare performance relative to a mode (eg. single thread vs
multithreading, scalar vs vector code, etc)

e They should live in root.git in a similar to gtest manner

GenVector microbenchmarking

Google micro benchmarking of Cartesian3D functions

GenVector library

I 0.35

Theta() 2.21
[036
. s E)

Phi() LSd 1.78
e 147
- —]

Mag2() 1.85 -
1.3 2.01
- ——]
Scale o . 3.215

0 0.5 Il 1.5 2 2.5 3 3.5
Speed up wrt scalar

© Haswell AVX icc17 @ Haswell SSE gcc62 Haswell AVX2 gcc62
@ Haswell SSE icc17

/O microbenchmarking

IO benchmark on KNL(TMemFile)

lthread =365 /07 9570
2 threads = . 7 452 g 387
A Theepds S 0 £ LA A2t T
8 threads 6-3056 o537 640
16 threads — . 7406
32 threads %54596 ssg’ 510

64 threads DVFc0————————————————————t9035 57 7 297
128 threads mmmeeee—————————————————————aee—-6-526 7 297
256 threads 6631 75748230
0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k

Real time for benchmark

@ RT with Flush=1Mb @ RT with Flush=8Mb © RT with Flush=32Mb
@ RT with Flush=64Mb @ RT with Flush=128Mb

/O microbenchmarking
IO benchmark on KNL(TFile)

Performance testing

1 thread —=’3973 16 853
2 threads 8153 20 874
4 threads ? 20 874
8 threads $ 20 874
16 threads =326 20779424 331
32 threads ?Z‘f{dr 27 760
64 threads ?ﬂﬂﬂy 707
128 threads o 19-25137 681
256 threads =3 200 35 75
0 5k 10k 15k 20k 25k 30k 35k 40k 45k

Real time for benchmark

@ size with Flush=1Mb and 1 Branch @ Size with Flush=8Mb and 1 Branch
Size with Flush=32Mb and 1 Branch ¢ Size with Flush=64Mb and 1 Branch
@ Size with Flush=128Mb and 1 Branch

/O microbenchmarking
IO benchmark on KNL(TFile)

Performance testing

1 thread /]/mm—————-————— 16 853
2 threads 00on0———————- 20 874
dthreads =F————"—""" >1 095
8 threads 21 095
16 threads V0079424 331
32 threads Eg? 760
_— — 19.251
64 threads e e 24 045
128 threads —M 24 045

40 650

0 5k 10k 15k 20k 25k 30k 35k 40k 45k
Size, byte

256 threads

@ Size with Flush=1Mb and 500 Branch @ Size with Flush=8Mb and 500 Branch
© Size with Flush=32Mb and 500 Branch® Size with Flush=64Mb and 500 Branch
@ Size with Flush=128Mb and 500 Branch

RooFit benchmarking

RooFit benchmark on KNL (1 channel, O nuisance parameters)
Scalability performance testing

179

1 threads . 17.7

S as26

0 286

4 threads - 26.381

T 54275
8 threads - 47.1

0

0 100 200 300 400 500 600 700 800
Real time for benchmark,s

@ Migrad @ Hesse (Minos

RooFit benchmarking

RooFit benchmark on KNL (2 channel, O nuisance parameters)
Scalability performance testing

I 43.787
1 threads [42.524
1 205.773

0 551
4 threads - 50.138
0

I 59.76
8 threads - 58.2
0

0 200 400 600 800 1000 1200 1400
Real time for benchmark,s

©® Migrad @ Hesse Minos

Infrastructure for data
analytics and visualization of
benchmarks/tests

Oksana Shadura

Goals

Save statistics of job/test/benchmark runs

To be able provide visualization of results

To be able to detect regression and calculate statistics

To add a performance check to PR or build incrementally each number of
commits

New Jenkins slaves for performance testing

e Thanks to Openlab, it was provided 2 powerful nodes:
e Haswell (56 cores)
e KNL (64 cores)

We will create special label for them!

New Jenkins job: how we can do it

Big matrix of possible test cases (compilers/SIMD/other flags)

Build as a part of PR or incrementally during day

Google benchmark has a nice JSON/CSV output

Possibility to trigger job via PR (other triggers) or just directly generate
performance plots (data for performance plots)

Available resources https://monit.cern.ch/

Services

althhbndthdstatdthlatas

A1

MONIT-KIBANA MONIT-GRAFANA MONIT-ZEPPELIN MONIT-TIMBER

Use Kibana to explore logs

Use Kibana to explore metrics Use Grafana for plotting time Use Zeppelin to generate
stored in Elasticsearch and series metrics coming from more advanced reports and stored in Elasticsearch and
interactive data discovery and different datasources like visualizations over HDFS with interactive data discovery and

plotting. Elasticsearch or InfluxDB. the help of Spark. plotting.(IT only)

Grafana + InfluxDb for continuous storage of records

e XML reports could be send to Influxdb Jenkins Plugin+JUnit
e Or send data directly to DB via curl (influx-db target (e.g:
url,desc,user,pwd,db,rentention) on Jenkins configuration using groovy script)

jenkins_data « Build health
« Build status message
« Build time
= Job duration
« Build result
« Build result ordinal (0=Stable, 1=Unstable, 2=Failure, 3=Not built, 4=Aborted)
« Successful build boolean
« Last stable build number (or 0 if never)
« Last successful build number {or 0 if never)
« Tests failed (unit test results from JUnit Plugin)
= Tests skipped (unit test results from JUnit Plugin)
« Tests total (unit test results from JUnit Plugin)

EtInfluxDB

JUnit Plugin

No plans to invest a lot of time,
but just to be able to save data
generated from builds to
database and after be able to
visualize it on demand!

Generate plots on local machines (standalone)

e JSON to JSON Highchart friendly version (written by Rafael):

json-bench-converter
e Easy Highchart generation on https://jsfiddle.net using pregenerated JSON

https://github.com/Teemperor/json-bench-converter
https://jsfiddle.net

Thank youl!

Backup slides

Pros and cons in having in-tree microbenchmarks

e This would allow us to use various thread sanitizers and analyses when
compiling root. This is especially useful for header-only (or template heavy)
code, such as TDF.

e Gives a handle to solve “And btw I forgot one item in the failure causes you'll
see: the benchmark itself is changed, or the code is expected to be slower
because of say an additional runtime check. Happens all the time to
something™ in ROOT, too, and any of those will mark Jenkins red, unless the
tool somehow distinguishes this? For the old tooling that was a killer.”

e Gives a relationship between PR and benchmarks

e Give us a chance to revive and improve the existing in-tree performance tests

Pros and cons in having in-tree microbenchmarks

e Easierto relate ROOT build options (eg. -O2, IMT enabled) to the benchmark

executables
e Has greater contribution visibility, shows that ROOT considers performance a

first-class citizen
e Makes creation of a test/benchmark one degree easier (no need to clone

separate repo, set it up, etc)

Informal team survey

e Based ontwo polls | did over the last couple of months with various team
members we have: 1 strongly against, 1 strongly in favor and few in favor and
the majority neutral.

