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Reminder: relativity

Can keep gaining in energy, but the velocity no longer increases…
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Reminder: relativity
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Adapted from pp.7  Chao & Tigner, Handbook of Accelerator Physics & Engineering



Question

To calculate the bending magnetic field needed in a particular accelerator, 
do we care about the beam energy, velocity or momentum?? 

A. Kinetic Energy 
B. Velocity 
C. Momentum



Magnetic Rigidity
• A very useful quantity in accelerator physics, gives a measure of how 

hard it is to bend particles of a certain momentum
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In presence of perpendicular B field

Lorentz force
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sub in [2]

[3]

Using [1] and [3] we get:

Bρ = pc
qc

[4a]

In useful units:

Bρ[T .m]= 3.3356 ⋅ pc[GeV ] [4b]



Cyclotrons - transverse

The Cyclotron, from E. Lawrence’s 1934 patent

In a constant field, a charged particle executes a circular orbit, 
with radius ρ and frequency ωω 0 = qBz /m

ρ = mv / qBz ω 0 = vθ / ρ



Weak focusing in cyclotrons

r = ρ + x = ρ(1+ x / ρ)ρ
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Closed orbit in median plane

(r,θ , z)
x is a small orbit deviation
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Expand B field around orbit:

Define field index: 
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Steenbeck 1935, Kerst and Serber 1941

n = − ρ
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nb. field index k can also be defined.



Looking at the horizontal restoring force 

(centrifugal force - magnetic force) 

And combining (5) and (7) we end up with 
(assuming           ): 

We can then get to this equation of motion:

Fx = − mvθ
2

ρ
x
ρ
(1− n)

Fx =
mvθ

2

ρ
− qvθBz (8)

(9)
!!x + vθ

2

ρ 2 (1− n)x = 0

!!x +ω 2x = 0or

ω =ω 0 1− n
For horizontal stability, we require n <1

For vertical stability (see later), we require n > 0

Harmonic oscillator with frequency

Because this focusing feature was discovered in the development 
of betatrons, we call these ‘betatron oscillations’

x≪ ρ



(11)

if particles have same velocity 

Alternatively (cf. Ted Wilson), let’s start with 
the equation of motion in cylindrical co-
ordinates (from Lorentz force) in theta…

(10)

Substituting for small variations and changing from t to s: 
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Taylor expand field about the orbit… 

Define field index as before 

This gives horizontal focusing: 

kQkQ zx =−=       ,1
2ρ

Harmonic motion with oscillations per turn:
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Alternative (equivalent) formulation…



• In reality, have a slightly decreasing field with radius

Weak focusing in cyclotrons

0 ≤ n ≈ −
∂Bz
∂x

≤1

• With relativity… for isochronicity we know we need:

ω rev =
qB(r)
γ (r)m0

B(r) = γ (r)B0 because 

ie. need an increasing field (n<0) 

which is not compatible with a decreasing field, n>0 

n = ρ 2k



AVF cyclotron
Thomas, 1938

Increase vertical focusing by introducing hills & valleys 

This introduces a variation in Bθ

F =
B2 − B 2

B 2 ≈
(BHill − BValley )

2

8 B 2

We define the flutter factor

ν z
2 = n + N 2

N 2 −1
F + ...> 0

The betatron frequency turns 
out to be:

Focusing limit:

N 2

N 2 −1
F > −n = γ 2 −1

Note: for high energies we want a large flutter factor, so B_valley = 0 -> separated sector cyclotron 



“Particles should be constrained to move in a circle of constant radius thus enabling the use of 
an annular ring of magnetic field … which would be varied in such a way that the radius of 
curvature remains constant as the particles gain energy through successive accelerations” - 

Marcus Oliphant, 1943 

Synchrotrons

The Cosmotron, 3.3 GeV p+, BNL



Synchrotrons
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Typical synchrotron magnet cycle

Bending angle in dipole magnet



Weak Focusing: Synchrotrons
• In vertical direction
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• Vertical focusing comes from the curvature of the field lines when 
the field falls off with radius ( positive n-value) 

• Horizontal focussing from the curvature of the path, sometimes 
called ‘body focusing’ 

• The negative field gradient defocuses horizontally and must not be 
so strong as to cancel the path curvature effect

The Cosmotron, 3.3 GeV p+, BNL



Question

What do you think would happen if every other magnet was 
reversed in field gradient direction? 

A. Nothing 
B. Focusing would be weaker (i.e. cancels out) 
C. Focusing would be stronger (i.e. adds 

somehow)



(From last lecture: this is re. longitudinal motion) 

Phase stability

V =V0 sin(2π fa +φs )

V
b

a

φs φearly

a - synchronous 
b - arrives early, sees higher voltage, goes to larger orbit -> arrives later next time 
c - arrives late, sees lower voltage, goes to smaller orbit -> arrives earlier next time
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Magnetic Fields
• Maxwell’s equations, time independent, no sources, so:

∇× B
!"
= 0

∇⋅B
!"
= 0

J
!"
= 0

B
!"
= µ0H
!"!

• Consider a constant vertical field Bz, and

By + iBx = Cn (x + iy)
n−1

• n is an integer > 0, C is a complex number 

• (real part understood)



By + iBx = Cn (x + iy)
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Where we know Bz is constant.

RHS:
= (n −1)(x + iy)n−2 + i2 (n −1)(x + iy)n−2 = 0

So we find that as expected, the field 
satisfies Maxwell’s equations in free space 

By + iBx = Cn (x + iy)
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Multipole fields

By + iBx = Bref (bn + ian )
x + iy
Rref

⎛

⎝⎜
⎞

⎠⎟n=1

∞

∑
n−1

In the usual notation:

bn are “normal multipole coefficients” (LEFT) 
and an are “skew multipole coefficients” (RIGHT) 
‘ref’ means some reference value

n=1, dipole field 
n=2, quadrupole field 
n=3, sextupole field

Images: A. Wolski, https://cds.cern.ch/record/1333874 

https://cds.cern.ch/record/1333874


Multipole Magnets
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Images: Ted Wilson, JAI Course 2012 Image: Danfysik
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Image: Wikimedia commons



Combined function magnets

Image courtesy of ISIS, STFC

rf cavity

dipole magnets

quadrupole magnets



Quadrupole focusing

27

By = gx

k =
g

p/q

‘normalised gradient’ of quad

1

f

=
L(dB(t)/dx)

p(t)/q

‘focal length’



Synchrotrons - Alternating Gradient
• An issue: for large R the deviations from ideal orbit get very large. This 

meant large aperture and expensive magnets. 

• Greater focusing was needed in both horizontal and vertical… 

• “What if some of the magnets in the cosmotron were reversed?”

E. Courant realised that the focusing would be 
STRONGER & the magnets could be SMALLER!



• 1952: Courant, Livingston, Snyder publish about strong 
focusing 

• 1954: Wilson et al. build first synchrotron with strong focusing 
for 1.1MeV electrons at Cornell, 4cm beam pipe height, only 
16 Tons of magnets. 

• 1959: CERN builds the PS for 28GeV after proposing a 5GeV 
weak focusing accelerator for the same cost (PS is still in use)

Historical note: Nicholas Christofilos 

Greek physicist, had the AG idea in 1949, 
opted to patent it instead of publishing. 
He is often forgotten in physics books…
http://www.google.com/patents?vid=2736799



Particle in AG focusing



Particle in AG focusing



Particle in AG focusing



Particle in AG focusing



Transverse co-ordinates

Particle motion is described with respect to a reference orbit in the non-
inertial frame (x, y, s). This co-ordinate system is known as Frenet-Serret



Hill’s Equation (a first look)
d 2x
ds2

+ kx (s)x = 0

kx (s) =
1
ρ 2 −

B1(s)
Bρ

Where k changes along the path, and

 . E. D. Courant and H. S. Snyder, “Theory of the alternating-gradient synchrotron,” Annals of Physics, vol. 3, no. 1, pp. 1–48, 1958.  

nb. In a quadrupole:

ky(s) =
B1(s)
Bρ

B1(s) = ∂By / ∂x

evaluated at the closed orbit

d 2y
ds2

+ ky(s)y = 0

Following similar notation to S. Y. Lee, Accelerator Physics, pp.41

kx (s) = − B1(s)
Bρ

Kx,y(s + L) = Kx,y(s)Focusing functions are periodic over length L , ie. 

Hill’s equation is a linearised equation of motion describing particle oscillations:



Solution of Hill’s equation
(More next lecture…)

x = β(s) ε sin[φ(s)+φ0 ]

betatron function 
property of the machine 

(not the beam)

emittance 
(property of beam)

phase

initial phase

φ = ds
β(s)∫phase advance ‘tune’



Transverse ‘phase space’ ellipse

s
x

x’

x

x’

εβ

ε / β

A = π εβ ε / β = πε

Ellipse area:

Ellipse can change shape but not area! 
Emittance is conserved. (cf. ’Louiville’s theorem’)
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