

Transverse Dynamics II

JAI Accelerator Physics Course Michaelmas Term 2017

Dr. Suzie Sheehy Royal Society University Research Fellow University of Oxford

Acknowledgements

These lectures have been produced with the advice and some content from Ted Wilson, whose book is the main text for this course.

Also see: S. Y. Lee, Accelerator Physics

R. Bartmann course in Advanced Accelerator Physics http://lin12.triumf.ca/text/PHYS555B207-2014/

Reminder: last lecture

- Reminder: relativity
- Magnetic rigidity
- Transverse dynamics in a cyclotron
- AVF cyclotrons
- Synchrotrons weak focusing
- Magnet types and multipoles
- Synchrotrons strong focusing

Contents

- Equations of motion in transverse co-ordinates
- Check Solution of Hill's equation
- Transfer matrices
- Stability and AG focusing
- Physical meaning of tune and beta

Transverse Motion

Hamiltonian for particle motion

$$H = e\phi + c[m^{2}c^{2} + (\vec{P} - e\vec{A})^{2}]^{1/2}$$

 $\vec{P} = \vec{p} + e\vec{A}$ is the canonical momentum \vec{p} is the mechanical momentum

Hamilton's equations of motion

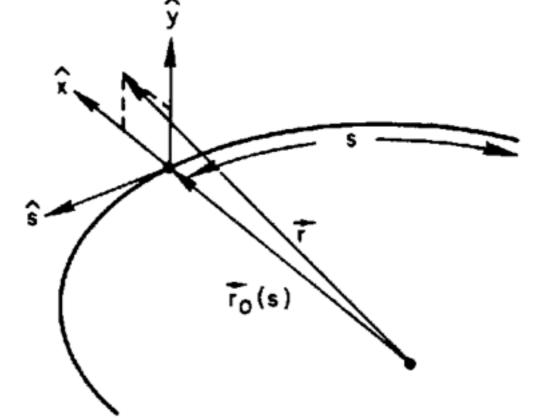
$$\dot{x} = \frac{\partial H}{\partial P_x}, \dot{P}_x = -\frac{\partial H}{\partial x}, etc...$$

(nb. dot denotes derivative wrt time)

nb. For much of the early part of this lecture I follow S. Y. Lee, Accelerator Physics, Chapter 2.

In accelerator physics we ask: "What are the particles' generalized coordinates when they reach a certain point in space?"

• First, we convert to 'Frenet-Serret' co-ordinate system



Particle motion is described with respect to a **reference orbit** in the noninertial frame (x, y, s). This co-ordinate system is known as *Frenet-Serret* • First, we convert to 'Frenet-Serret' co-ordinate system

 $\hat{s}(s) = \frac{d\vec{r}_0(s)}{ds}$ $\hat{x}(s) = -\vec{\rho}(s)\frac{d\hat{s}(s)}{ds}$ Tangent unit vector to closed orbit

Unit vector perpendicular to tangent vector

 $\hat{y}(s) = \hat{x}(s) \times \hat{y}(s)$ Third unit vector...

Particle trajectory: $\vec{r}(s) = \vec{r}_0(s) + x\hat{x}(s) + y\hat{y}(s)$ nb. the reference frame moves WITH the particle We perform a canonical transformation using the generating function:

$$F_3(\vec{P};x,s,y) = -\vec{P}.[\vec{r_0}(s) + x\hat{x}(s) + y\hat{y}(s)]$$

(note: P is momentum in cartesian system)

To obtain the Hamiltonian:

$$H = e\phi + c[m^{2}c^{2} + \frac{(p_{s} - eA_{s})^{2}}{(1 + x/\rho)^{2}} + (p_{x} - eA_{x})^{2} + (p_{y} - eA_{y})^{2}]^{1/2}$$

• Next, we change the independent variable from t to s

The new conjugate phase space variables are $x, p_x; y, p_y; t, -H$

And the new Hamiltonian (s-dependent) is $\tilde{H} = -p_s$

$$\tilde{H} = -(1 + x / \rho) \left[\frac{(H - e\phi)^2}{c^2} - m^2 c^2 - (p_x - eA_x)^2 - (p_y - eA_y)^2 \right]^{1/2} - eA_s$$

Which is time-independent (if also ϕ, A are time-independent)

Expanding the Hamiltonian to second order in px, py

$$\tilde{H} \approx -p(1+x/\rho) + \frac{1+x/\rho}{2p} \left[(p_x - eA_x)^2 + (p_y - eA_y)^2 \right]^{1/2} - eA_s$$

 $H - e\phi = E$ is the total particle energy

 $p = \sqrt{E^2 / c^2 - m^2 c^2}$ is the total particle momentum

Getting to Hill's equation (1)

Hamilton's equations of motion* are:

$$x' = \frac{\partial \tilde{H}}{\partial p_x} \qquad p'_x = -\frac{\partial \tilde{H}}{\partial x} \qquad \qquad y' = \frac{\partial \tilde{H}}{\partial p_y} \qquad p'_y = -\frac{\partial \tilde{H}}{\partial y}$$

With transverse magnetic fields we showed last time scaled & in (x,s,y) :

$$\vec{B} = B_x(x,y)\hat{x} + B_y(x,y)\hat{y}$$
$$B_x = -\frac{1}{(1+x/\rho)}\frac{\partial A_s}{\partial y} \quad B_y = -\frac{1}{(1+x/\rho)}\frac{\partial A_s}{\partial x}$$

Betatron equations of motion become: (neglect higher order terms)

*neglecting synchrotron motion

Getting to Hill's equation (2)

So we have these equations:

$$x'' - \frac{\rho + x}{\rho^2} = \frac{B_y}{B\rho} \frac{p_0}{p} \left(1 + \frac{x}{\rho}\right)^2 \qquad \qquad y'' = -\frac{B_x}{B\rho} \frac{p_0}{p} \left(1 + \frac{x}{\rho}\right)^2$$

Expand the B field to first order in x,y:

$$B_{y} = -B_{0} + \frac{\partial B_{y}}{\partial x} x \qquad B_{x} = \frac{\partial B_{y}}{\partial x} y$$
$$\frac{B_{0}}{B\rho} = \frac{1}{\rho} \quad \text{ie. dipole field defines the closed orbit}$$

$$x'' + K_x(s)x = 0 \qquad K_x = 1/\rho^2 - K_1(s) y'' + K_y(s)y = 0 \qquad K_y = K_1(s) \qquad K_1(s) = \frac{1}{B\rho} \frac{\partial B_1}{\partial x}$$

nb. in a quadrupole $K_x = -K_y$

Hill's Equation

Hill's equation is a linearised equation of motion describing particle oscillations:

$$\frac{d^2x}{ds^2} + k_x(s)x = 0 \qquad \qquad \frac{d^2y}{ds^2} + k_y(s)y = 0$$

Question: we have ended up with linear equations of motion because we took 2nd order Hamiltonian only! What would happen if we took the full Hamiltonian?

Where k changes along the path, and $B_1(s) = \partial B_y / \partial x$

$$k_x(s) = \frac{1}{\rho^2} - \frac{B_1(s)}{B\rho} \qquad \qquad k_y(s) = \frac{B_1(s)}{B\rho}$$

evaluated at the closed orbit

Focusing functions are periodic over length L, ie. $K_{x,y}(s+L) = K_{x,y}(s)$

nb. In a quadrupole:
$$k_x(s) = -\frac{B_1(s)}{B\rho}$$

Following similar notation to S. Y. Lee, Accelerator Physics, pp.41

E. D. Courant and H. S. Snyder, "Theory of the alternating-gradient synchrotron," Annals of Physics, vol. 3, no. 1, pp. 1–48, 1958.

Let's check if the following solves Hill's equation... x'' + kx = 0

 $x = \sqrt{\beta(s)\varepsilon\cos(\phi(s) + \phi_0)}$

Substitute $w = \sqrt{\beta}$ $\phi = \phi(s) + \phi_0$

& differentiate...

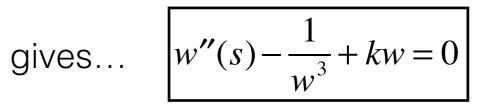
$$x' = \sqrt{\varepsilon} \left\{ w'(s) \cos \phi - \frac{d\phi}{ds} w(s) \sin \phi \right\}$$
 nb. we need: $\frac{d\phi}{ds} = \frac{1}{\beta(s)} = \frac{1}{w^2(s)}$

Differentiate again...

$$x'' = \sqrt{\varepsilon} \left\{ w''(s)\cos\phi - \frac{w'(s)}{w^2(s)}\sin\phi + \frac{w'(s)}{w^2(s)}\sin\phi - \frac{1}{w^3}\cos\phi \right\}$$

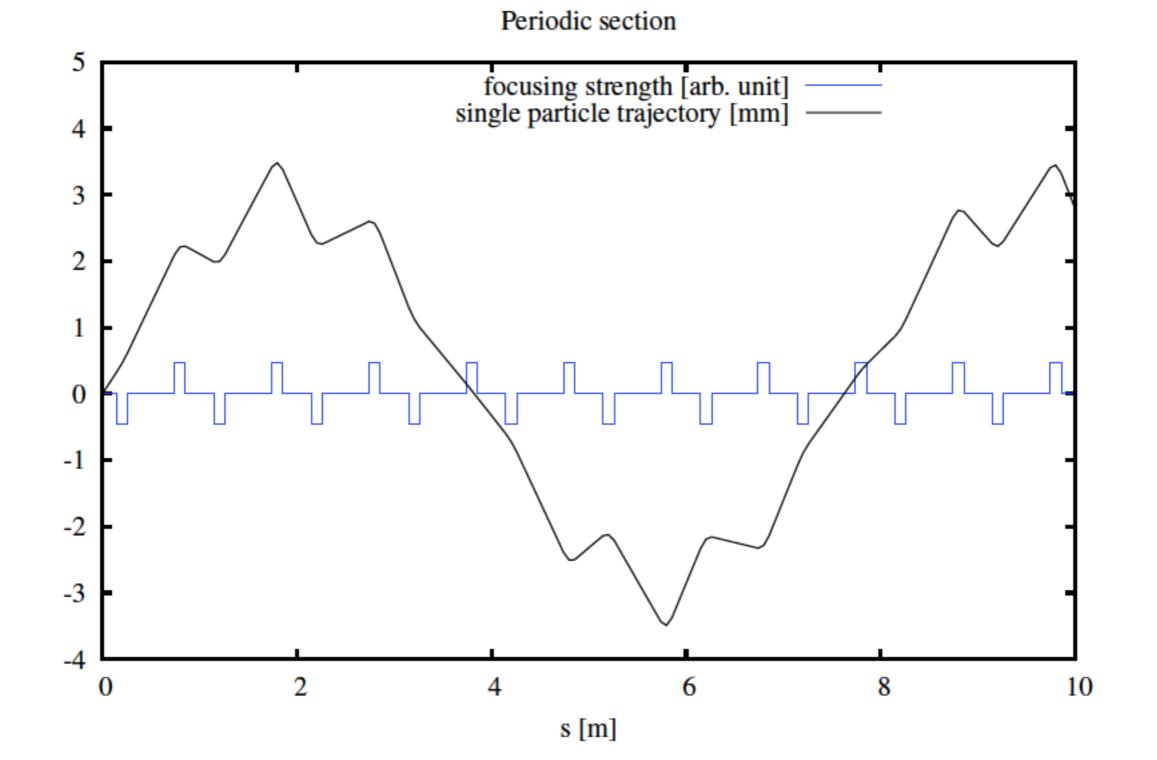
Sub into Hill's...

$$\sqrt{\varepsilon} \left\{ w''(s)\cos\phi - \frac{1}{w^3}\cos\phi \right\} + kw\sqrt{\varepsilon}\cos\phi = 0$$

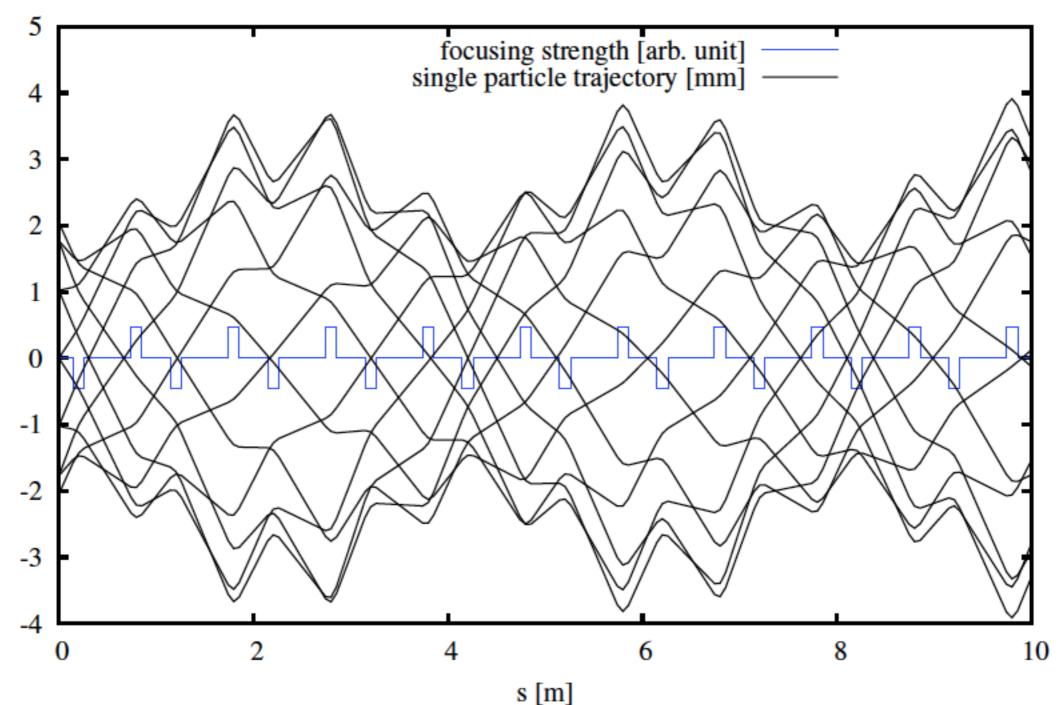


'envelope equation'

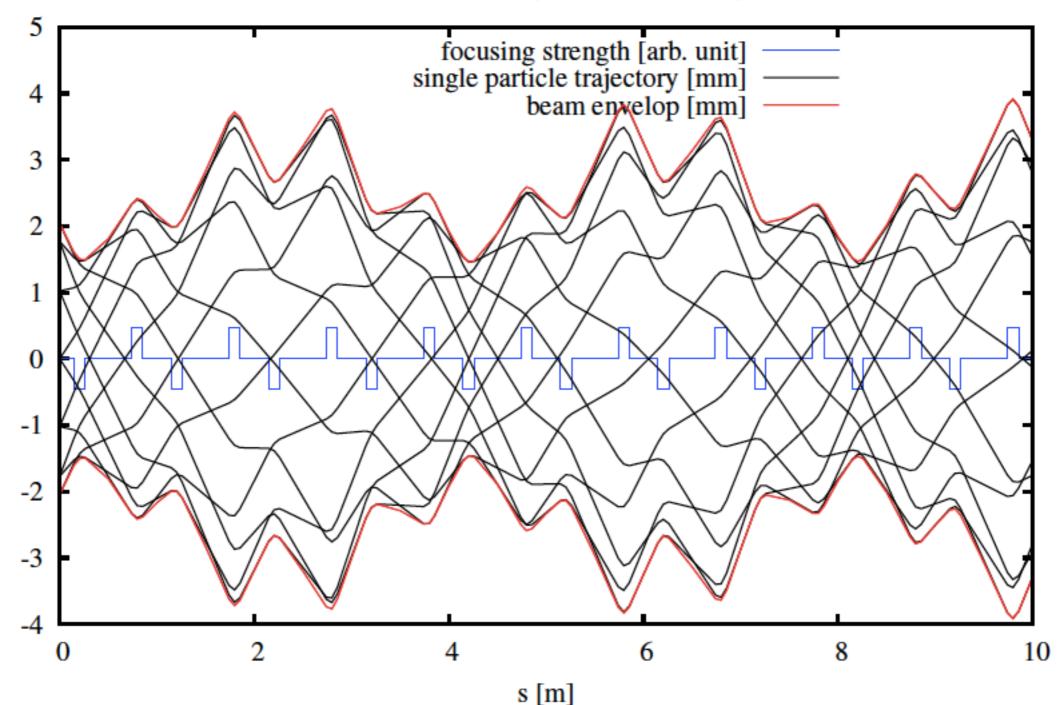
$$\frac{1}{2}\beta\beta'' - \frac{1}{4}\beta'^2 + k\beta^2 = 1$$



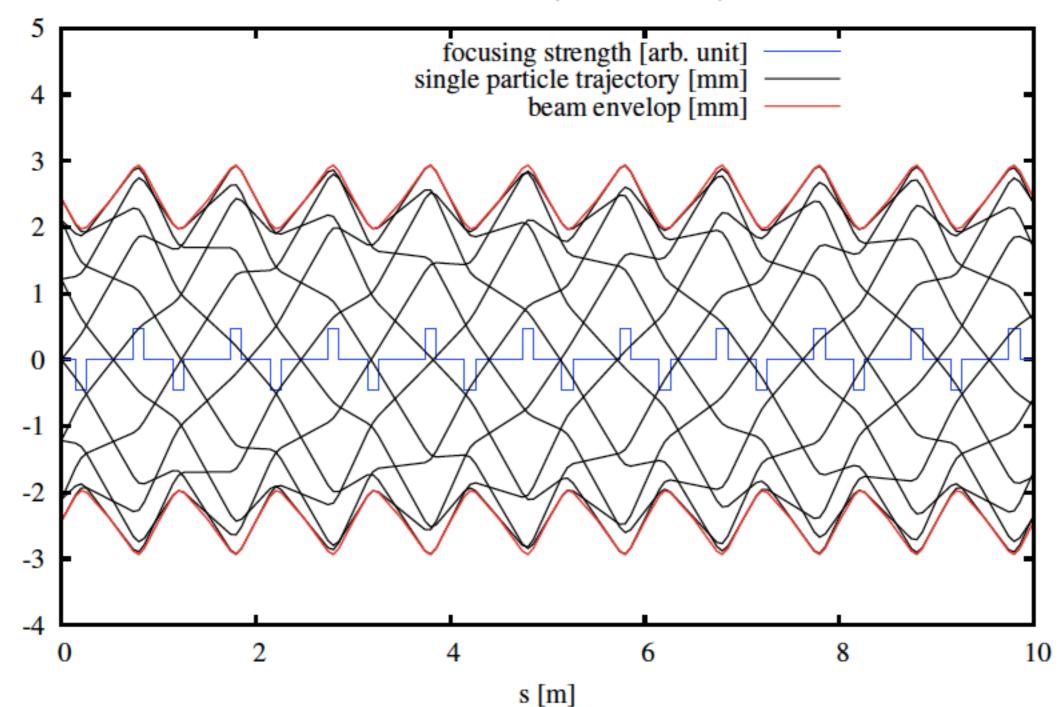
Periodic section (mismatched beam)



Periodic section (mismatched beam)



Periodic section (matched beam)



Solution of Hill's equation

 $x = \sqrt{\beta(s)}\sqrt{\varepsilon} \sin[\phi(s) + \phi_0]$

betatron function property of the machine (not the beam)

emittance (property of beam)

•······ initial phase

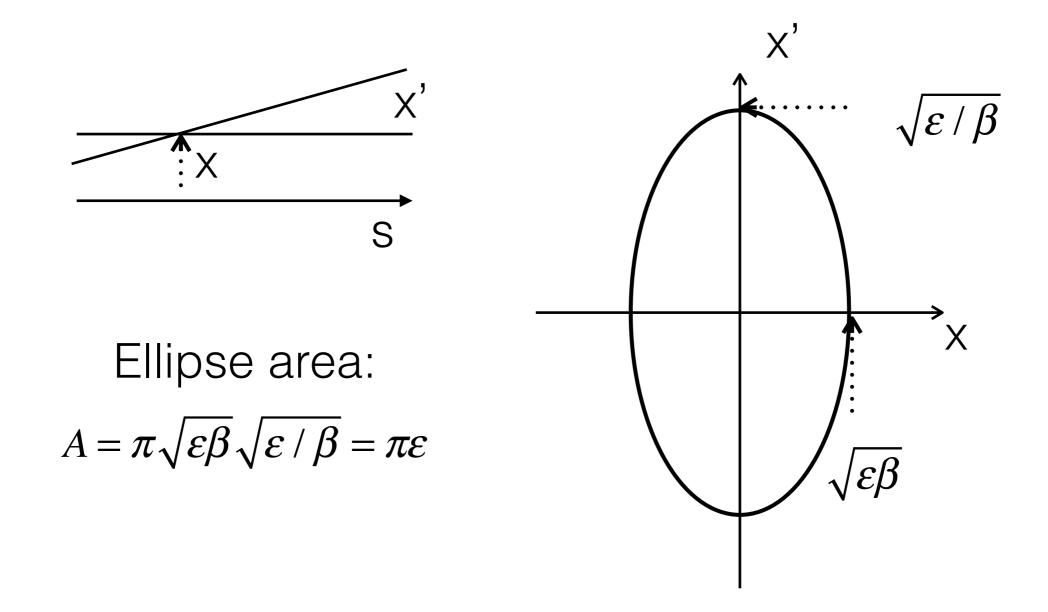
phase

phase advance 'tune'

$$\phi = \int \frac{ds}{\beta(s)}$$

Because transverse oscillations in accelerators were theoretically studied by Kerst and Serber (Physical Review, 60, 53 (1941)) for the first time in betatrons, transverse oscillations in accelerators are known generically as betatron oscillations

Transverse 'phase space' ellipse



Ellipse can change shape but not area! Emittance is conserved. (cf. 'Louiville's theorem')

Transfer matrices

Express solution in matrix form...

$$\vec{x}(s) = M(s \mid s_0) \vec{x}(s_0) \qquad \vec{x}(s) = \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix}$$

Where M is the 'transfer matrix'.

We already know (because we showed)

$$\frac{d\phi(s)}{ds} = \frac{1}{w^2}$$

$$x = w\sqrt{\varepsilon}\cos(\phi(s) + \phi_0)$$

Take derivative for x'...

$$x' = w'\sqrt{\varepsilon}\cos(\phi(s) + \phi_0) - \frac{\sqrt{\varepsilon}}{w}\sin(\phi(s) + \phi_0)$$

reminder...

$$\frac{d(\cos(f(x)))}{dx} = -\sin(f(x))\frac{df(x)}{dx}$$

$$\begin{pmatrix} x(s_2) \\ x'(s_2) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x(s_1) \\ x'(s_1) \end{pmatrix}$$

Trace two rays...

'cosine like' $\phi = 0$ 'sine like' $\phi = \pi / 2$

$$x = w\sqrt{\varepsilon}\cos(\phi(s) + \phi_0)$$

$$x' = w'\sqrt{\varepsilon}\cos(\phi(s) + \phi_0) - \frac{\sqrt{\varepsilon}}{w}\sin(\phi(s) + \phi_0)$$

Yields 4 simultaneous equations so we can solve for a,b,c,d...

$$\mu = \phi_2 - \phi_1$$

$$M_{12} = \begin{pmatrix} \frac{w_2}{w_1} \cos \mu - w_2 w_1' \sin \mu & w_1 w_2 \sin \mu \\ -\frac{1 + w_1 w_1' w_2 w_2'}{w_1 w_2} \sin \mu - \left(\frac{w_1'}{w_2} - \frac{w_2'}{w_1}\right) \cos \mu & \frac{w_1}{w_2} \cos \mu + w_1 w_2' \sin \mu \end{pmatrix}$$

Simplify by considering a period or 'turn', and w's are equal.

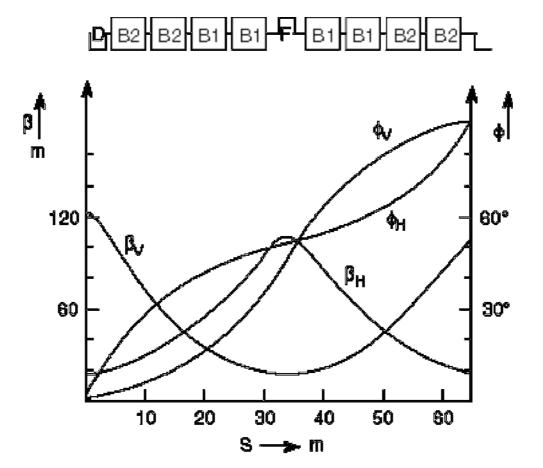
$$M_{period} = \begin{pmatrix} \cos \mu - ww' \sin \mu & w^2 \sin \mu \\ -\frac{1 + w^2 w'^2}{w^2} \sin \mu & \cos \mu + ww' \sin \mu \end{pmatrix}$$

If we define the so-called 'Twiss' or 'Courant-Snyder' parameters:

$$\beta = w^{2} \qquad \alpha = -\frac{1}{2}\beta' \qquad \gamma = \frac{1+\alpha}{\beta}$$
$$M_{period} = \begin{pmatrix} \cos\mu + \alpha\sin\mu & \beta\sin\mu \\ -\gamma\sin\mu & \cos\mu - \alpha\sin\mu \end{pmatrix}$$

(sorry that we are reusing symbols again... these are NOT the relativistic parameters)

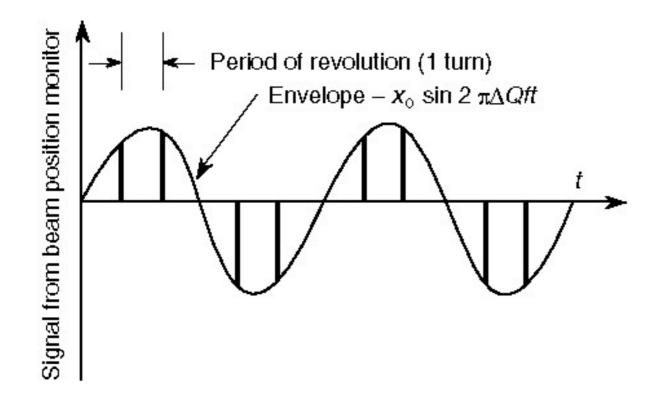
Evolution of beta in a lattice...



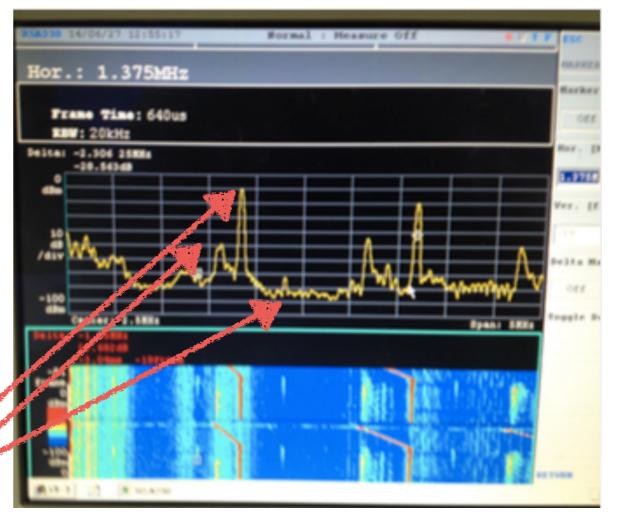
								1
	LENGTH	ANGLE	K(V)	ALPHA(P) BETA(H)	ALPHA(H)	MUH/2PI BETA(V)	ALPHA(V)	HUV/2PI AH/2 AV/2
01	3.085000	0.000000	-,015063	1,386440104,884855	2,452160	.004571 19,011703	•,520345	1226571 65,715663 9,917560
	360000	0.000000	0.000000	1,374053103,127965	2,428089	005122 19.395014	. 544408	229555 64 547513 10 017039
03	6,260000	008445	0.000000	1,196124 75,348859		016433 28 828710		872198 64 004371 12 212911
	400000	0.000000	0.000000	1.186405 73.751941		017287 29 609417	. 989248	074377 54,751341 12,376828
				1.060742 51.548094	1,564207	033474 44 610910		101988 54 174091 15 192432
05	6,260000	,008445	0,00000			034692 45,718585		103302 45,428681 15,379447
	.390000	0.000000	0.000000	1,054559 50,338182	1,538130			
07	6,260000	008445	0,000000	981762 33,701223		058975 66 274961		181441 44,905056 18,517478
8	,380000	0.000000	0,000000	,978948 32,860011		,060793 67,691002		122344 36 980337 18 713705
09	6 260000	+008445	0,000000	,959017 21,781569	,675586	.098381 93,787676		134861 36,534921 22,028267
10	2,342700	0,000000	0,000000	,961450 18,983146		116758104,896272	2,449038	138621 30,069327 23,295624
11	3,085000	0.000000	015037	1.034354 18,983068	• 518916	143368104,901020	2,447388	143191 28,349412 23,716525
12	350000	0.000000	0.000000	1,050730 19,354500	• 542318	146275103,196611	2 424067	143726 28,638028 23,296218
13	6,260000	008445	0.000000	1 370047 28 764399	# .960879	189011 75 452122	2,007802	155027 35,089639 23,106121
14	380000	0.000000	0.000000	1,391035 29,504322		191088 73,935822	1,982463	155836 35 546047 19,757412
15	6,260000	008445	0.000000	1,763219 44,472640	.1.404847	218731 51,724094		171975 43,750575 19,557880
16	390000	0.000000	0.000000	1,788053 45,578591		.220109 50,513067	1,539589	173189 44,298587 16,358398
17	6 250000	008445	0.000000	2,213103 66,113699		238298 33,849177	1,122280	\$97377 53,470174 16,165762
18	400000	0.000000	0.000000	2 241952 67 603985		239251 32,962034		199283 54 079136 13,233307
19	6,260000	008445	0.000000	2,719868 93,714254		251780 21 859390		36745 63,830251 13,058741
				2,909420104,882261		255558 19,038995		355140 67 592709 10 634409
20	2,352700	0.000000	0,000000					281673 68.853088 9.924676
21	3,085000	0.000000	• 015063	2,946010104,882266		250189 19,038106		
22	360000	0,000000	0.000000	2,925443103,125421	2,428027	260680 19,421551		
23	6,260000	.008445	0,000000	2,594240 75,347037		271992 28,854181		327246 67,105194 12,218305
24	,400000	0,000000	0,000000	2,574765 73,750162		,272846 29,634602		389424 57,546939 12,382087
25	6,260000	008445	0,000000	2,296428 51,546933		289032 44,628208		356957 56,950187 15,195377
26	390000	0,000000	0,000000	2,280734 50,337057	1,538085	290251 45,735180		358331 47,899567 15,382238
27	6,260000	008445	0,00000	2,055264 33,700612	1,119525	314534 66,276862	=1,849098	376466 47,356928 18,517744
28	380000	0.000000	0.000000	2,043182 32,859428		316382 67,691805	-1,874435	377369 39,127022 18,713817
29	6,260000	008445	0,000000	1.870577 21.781395	675557	353941 93,766993		369888 38,663082 22,025838
30	2.342700	0.000000	0.000000	1,815875 18,983101		372318104 865902	.2.446875	393648 31,892336 23,292251
31	3.085000	0,000000	015037	1,873603 18,983178		398928104,662544		398220 30 027986 23,712598
÷.	~ I * ± 0 0 0 0	*******	8 V 8 V V V V	the same followithe		14		ference and an extrant

How do we measure a 'tune'?

Measure the turn-by-turn oscillations of a bunch



Main frequency = revolution frequency 'Sideband' frequency gives the tune Tune measurement example from Kyoto University 150 MeV proton FFAG



Transfer matrices
$$\vec{x}(s) = M(s \mid s_0) \vec{x}(s_0)$$
 $\vec{x}(s) = \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix}$

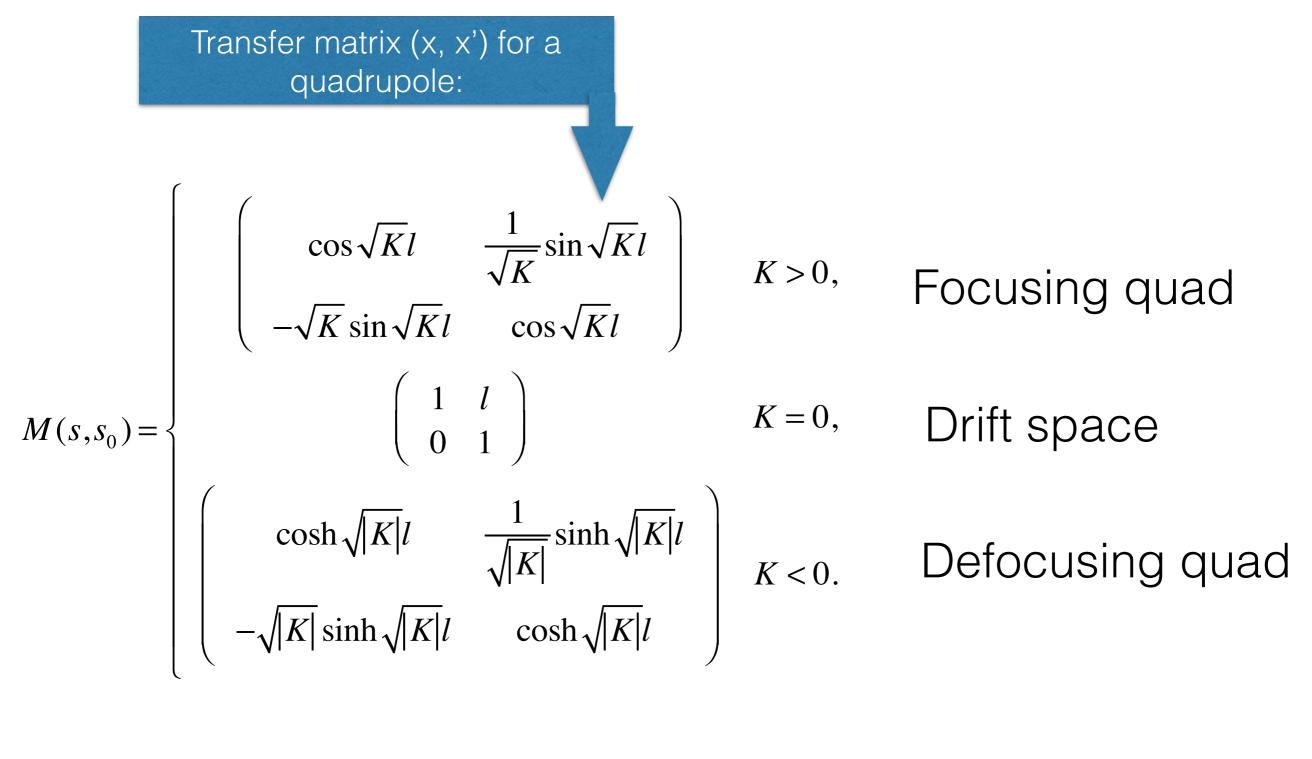
Where M is the 'transfer matrix'.

The effect of a succession of drifts & lenses can be found by multiplying their transfer matrices...

$$\vec{x}(s_n) = M_n(s_n | s_{n-1}) \dots M_3(s_3 | s_2) M_2(s_2 | s_1) M_1(s_1 | s_0) \vec{x}(s_0)$$

We could do this for a whole ring, but usually can exploit some symmetry (superperiod or cell)

AG focusing

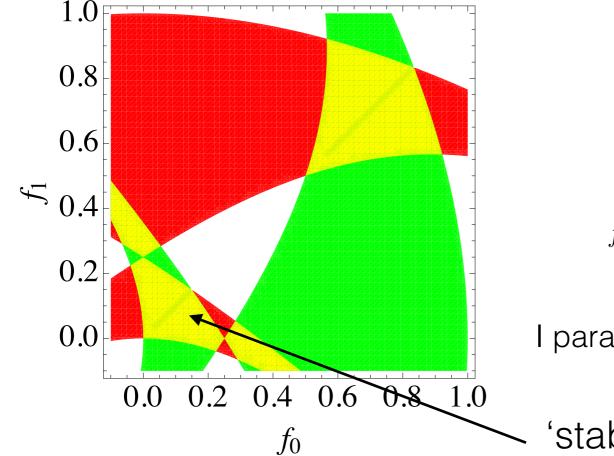


Stability: an example

This solution is 'stable' in periodic system when there is a real betatron phase advance or tune, such that:

$$|Tr(M)| \le 2$$

So let's test this out...



 $f(\theta) = \begin{cases} f_0 + f_1 = const., & 0 < \theta < \frac{1}{2}\theta_0 \\ f_0 - f_1 = const., & \frac{1}{2}\theta_0 < \theta < \theta_0. \end{cases}$

I parameterise it in terms of f, think of f as focal length

'stability region'

nb. no drift space & no edge focusing in this case

AG focusing: thin lens

For infinitesimally short lenses, we can recover most of the physics

 $K(s) = \pm \delta(s) / f$ where f is the focal length.

In the 'thin lens' approximation, for a 'FODO' lattice:

$$M = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \frac{d}{f} - \frac{d^2}{f^2} & 2d + \frac{d^2}{f} \\ -\frac{d}{f^2} & 1 + d/f \end{pmatrix}$$

Focusing & defocusing with a drift between doesn't cancel out. This is what gives us 'alternating gradient' focusing

Equating these two:

$$M_{FODO} = \begin{pmatrix} 1 - \frac{d}{f} - \frac{d^2}{f^2} & 2d + \frac{d^2}{f} \\ -\frac{d}{f^2} & 1 + d/f \end{pmatrix} \qquad M_{period} = \begin{pmatrix} \cos\mu + \alpha \sin\mu & \beta \sin\mu \\ -\gamma \sin\mu & \cos\mu - \alpha \sin\mu \end{pmatrix}$$

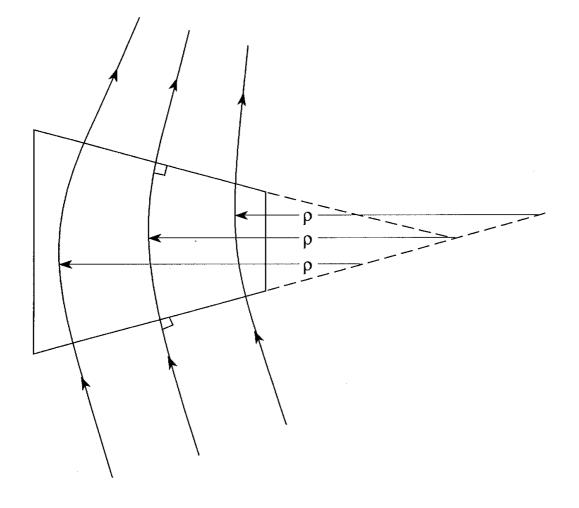
We find:

$$\cos\mu = \left(m_{11} + m_{22}\right)/2 = 1 - \frac{d^2}{2f^2}$$

Beta function
$$\beta_{cs} = 2d \frac{1 + \sin(\mu/2)}{\sin \mu}$$

Phase advance $\mu(s) = \int_{0}^{s} \frac{ds}{\beta(s)}$ 'tune' $v = \mu/2\pi$

nb. sector magnet focusing



$$M_{x} = \begin{pmatrix} \cos \theta , & \rho \sin \theta \\ -\frac{1}{\rho} \sin \theta , & \cos \theta \end{pmatrix}$$

Summary

- Equations of motion in transverse co-ordinates
- Check Solution of Hill's equation
- Transfer matrices
- Stability and AG focusing
- Physical meaning of tune and beta

Note: Ted Wilson's cyclotron derivation $w = \frac{q}{m_0} B_0$

Equation of motion in a cyclotron

Non relativistic

$$\frac{d(m\mathbf{v})}{dt} = \mathbf{F} \qquad \qquad \frac{d(m\mathbf{v})}{dt} = q[\mathbf{v} \times \mathbf{B}]$$

• Cartesian

$$\frac{d(mv_x)}{dt} = \frac{d(m\dot{x})}{dt} = q[\dot{y}B_z - \dot{z}B_y]$$

$$\frac{d(mv_y)}{dt} = \frac{d(m\dot{y})}{dt} = q[\dot{z}B_x - \dot{x}B_z]$$

$$\frac{d(mv_z)}{dt} = \frac{d(m\dot{z})}{dt} = q[\dot{x}B_y - \dot{y}B_x]$$

Cylindrical

$$\frac{d(m\dot{r})}{dt} - mr\dot{\Theta}^{2} = q[r\dot{\Theta}B_{z} - \dot{z}B_{\theta}]$$
$$\frac{d(mr\dot{\Theta})}{dt} + m\dot{r}\dot{\Theta} = q[\dot{z}B_{r} - \dot{r}B_{z}]$$
$$\frac{d(m\dot{z})^{2}}{dt} = q[rB_{\theta} - r\dot{\Theta}B_{r}]$$

Lecture 3 - E. Wilson - 17 Oct 2012 – Slide 6

Cyclotron orbit equation

• For non-relativistic particles $(m = m_0)$ and with an axial field $B_z = -B_0$

$$m_0 \left(\ddot{r} - r\dot{\theta}^2 \right) = -qr\dot{\theta}B_z$$
$$m_0 \left(r\ddot{\theta} + 2r\dot{\theta} \right) = q\dot{r}B_z$$
$$m_0 \ddot{z} = 0$$

• The solution is a closed circular trajectory which has radius

$$R = \frac{p}{qB_z}$$

• and an angular frequency

$$\omega = \frac{q}{m_0} B_z$$

- Take into account special relativity by $m = m_0 \gamma = m_0 \frac{E}{E_0}$
- And increase B with g to stay synchronous!

Lecture 3 - E. Wilson - 17 Oct 2012 -- Slide 7

Cyclotron focusing – small deviations

• See earlier equation of motion

$$\frac{d\left(m\dot{r}\right)}{dt} + mr\dot{\theta}^{2} + q\left[r\dot{\theta}B_{z} - \dot{z}B_{\theta}\right] = 0$$

• If all particles have the same velocity:

$$\rho \dot{\theta} = v_0 = \dot{z}$$
$$\frac{d}{dt} \left(m \frac{d\rho}{dt} \right) + \frac{m v_0^2}{\rho} + e v_0 B_z = 0$$

Change independent variable and substitute for small deviations

$$\frac{d}{dt} = v_0 \frac{d}{ds} , \quad \Delta B_z = B_z - B_0, \quad \mathbf{x} = \rho - \rho_0$$

• Substitute

$$\frac{1}{mv_0}\frac{d}{ds}\left(p_0\frac{dx}{ds}\right) + \frac{x}{\rho_0^2} + \frac{1}{\rho_0}\frac{\Delta B_z}{B_0} = 0$$

 $p_0 = mv_0$

Lecture 3 - E. Wilson - 17 Oct 2012 -- Slide 8

Cyclotron focusing – field gradient

From previous slide

$$\frac{1}{mv_0}\frac{d}{ds}\left(p_0\frac{dx}{ds}\right) + \frac{x}{\rho_0^2} + \frac{1}{\rho_0}\frac{\Delta B_z}{B_0} = 0$$

Taylor expansion of field about orbit

$$B_{z} = B_{0} + \frac{\partial B_{z}}{\partial x}x + \frac{1}{2!}\frac{\partial^{2} B_{z}}{\partial x^{2}}x^{2} + \dots$$

Define field index (focusing gradient)

$$k = -\frac{1}{(B_0 \rho_0)} \frac{\partial B_z}{\partial x}$$

To give horizontal focusing

$$\frac{1}{p_0} \frac{d}{ds} \left(p_0 \frac{dx}{ds} \right) + \left(\frac{1}{\rho^2} - k \right) x = 0$$

Lecture 3 - E. Wilson - 17 Oct 2012 – Slide 9

Cyclotron focusing – betatron oscillations

From previous slide - horizontal focusing:

$$\frac{1}{p_0} \frac{d}{ds} \left(p_0 \frac{dx}{ds} \right) + \left(\frac{1}{\rho^2} - k \right) x = 0$$

Now Maxwell's

$$\nabla \times \mathbf{B} = 0$$

- **Determines** $\left(\frac{\partial B_x}{\partial z}\right)_0 = \left(\frac{\partial B_z}{\partial x}\right)$
- hence $B_x = -zB_0\rho_0k$
- In vertical plane

$$\frac{1}{p_0} \frac{d}{ds} \left(p_0 \frac{dz}{ds} \right) + kz = 0$$

Simple harmonic motion with a number of oscillations per turn:

$$Q_x = \sqrt{\frac{1}{\rho^2} - k}, \qquad Q_z = \sqrt{k}$$

- These are "betatron" frequencies ωQ_x , ωQ_y
- Note vertical plane is unstable if

$$k > \frac{1}{\rho^2}$$

J.A.I.