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Reminder: last lecture
• Reminder: relativity 

• Magnetic rigidity 

• Transverse dynamics in a cyclotron 

• AVF cyclotrons 

• Synchrotrons - weak focusing 

• Magnet types and multipoles 

• Synchrotrons - strong focusing



Contents

• Equations of motion in transverse co-ordinates 

• Check Solution of Hill’s equation 

• Transfer matrices 

• Stability and AG focusing 

• Physical meaning of tune and beta



Transverse Motion
Hamiltonian for particle motion

H = eφ + c[m2c2 + (P
!"
− eA
!"
)2 ]1/2

P
!"
= p
!"
+ eA
!"

is the canonical momentum
p
!"

is the mechanical momentum

Hamilton’s equations of motion

!x = ∂H
∂Px

, !Px = − ∂H
∂x
,etc...

(nb. dot denotes derivative wrt time)
nb. For much of the early part of this  lecture I follow S. Y. Lee, Accelerator Physics, Chapter 2.



Particle motion is described with respect to a reference orbit in the non-
inertial frame (x, y, s). This co-ordinate system is known as Frenet-Serret

• First, we convert to ‘Frenet-Serret’ co-ordinate system

In accelerator physics we ask: “What are the 
particles’ generalized coordinates when they reach 
a certain point in space?”



• First, we convert to ‘Frenet-Serret’ co-ordinate system

Tangent unit vector to closed orbitŝ(s) = dr
!
0 (s)
ds

x̂(s) = −ρ(s) dŝ(s)
ds

Unit vector perpendicular to tangent vector

ŷ(s) = x̂(s)× ŷ(s) Third unit vector…

Particle trajectory: r
!
(s) = r

!
0 (s)+ xx̂(s)+ yŷ(s)

We perform a canonical transformation using the generating function:

F3(P
!"
;x, s, y) = −P

!"
.[r0
!"
(s)+ xx̂(s)+ yŷ(s)]

(note: P is  momentum in cartesian system)

To obtain the Hamiltonian:

H = eφ + c[m2c2 + (ps − eAs )
2

(1+ x / ρ)2
+ (px − eAx )

2 + (py − eAy )
2 ]1/2

nb. the reference frame moves WITH the particle



• Next, we change the independent variable from t to s

x, px;y, py;t,−HThe new conjugate phase space variables are

And the new Hamiltonian (s-dependent) is 

Which is time-independent (if also           are time-independent) φ,A

!H = − ps
!H = −(1+ x / ρ) (H − eφ)2

c2
−m2c2 − (px − eAx )

2 − (py − eAy )
2⎡

⎣
⎢

⎤

⎦
⎥

1/2

− eAs

Expanding the Hamiltonian to second order in px, py

!H ≈ − p(1+ x / ρ)+ 1+ x / ρ
2p

(px − eAx )
2 + (py − eAy )

2⎡⎣ ⎤⎦
1/2
− eAs

H − eφ = E

p = E2 / c2 −m2c2
is the total particle energy

is the total particle momentum



Getting to Hill’s equation (1)
Hamilton’s equations of motion* are:

*neglecting synchrotron motion

′x = ∂ !H
∂px

′px = − ∂ !H
∂x

′y = ∂ !H
∂py

′py = − ∂ !H
∂y

With transverse magnetic fields we showed last time scaled & in (x,s,y) :

Betatron equations of motion become: (neglect higher order terms)

B
!"
= Bx (x, y)x̂ + By(x, y)ŷ

Bx = − 1
(1+ x / ρ)

∂As
∂y

By = − 1
(1+ x / ρ)

∂As
∂x

′′x − ρ + x
ρ 2 =

By

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

′′y = − Bx

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2



Getting to Hill’s equation (2)

′′x − ρ + x
ρ 2 =

By

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

′′y = − Bx

Bρ
p0
p
1+ x

ρ
⎛
⎝⎜

⎞
⎠⎟

2

So we have these equations:

Expand the B field to first order in x,y:

By = −B0 +
∂By

∂x
x Bx =

∂By

∂x
y

B0
Bρ

= 1
ρ ie. dipole field defines the closed orbit

′′x + Kx (s)x = 0

′′y + Ky(s)y = 0

Kx = 1/ ρ
2 − K1(s)

Ky = K1(s)
K1(s) =

1
Bρ

∂B1
∂x

nb. in a quadrupole Kx = -Ky



Hill’s Equation
d 2x
ds2

+ kx (s)x = 0

kx (s) =
1
ρ 2 −

B1(s)
Bρ

Where k changes along the path, and

 . E. D. Courant and H. S. Snyder, “Theory of the alternating-gradient synchrotron,” Annals of Physics, vol. 3, no. 1, pp. 1–48, 1958.  

nb. In a quadrupole:

ky(s) =
B1(s)
Bρ

B1(s) = ∂By / ∂x

evaluated at the closed orbit

d 2y
ds2

+ ky(s)y = 0

Following similar notation to S. Y. Lee, Accelerator Physics, pp.41

kx (s) = − B1(s)
Bρ

Kx,y(s + L) = Kx,y(s)Focusing functions are periodic over length L , ie. 

Hill’s equation is a linearised equation of motion describing particle oscillations:

Question: we have ended up with linear equations of motion because we took 2nd 
order Hamiltonian only! What would happen if we took the full Hamiltonian?



Let’s check if the following solves Hill’s equation…

x = β(s)ε cos(φ(s)+φ0 )

w = β φ = φ(s)+φ0Substitute

& differentiate…

′x = ε ′w (s)cosφ − dφ
ds
w(s)sinφ⎧

⎨
⎩

⎫
⎬
⎭

nb. we need:
dφ
ds

= 1
β(s)

= 1
w2 (s)

Differentiate again…

′′x = ε ′′w (s)cosφ− ′w (s)
w2 (s)

sinφ + ′w (s)
w2 (s)

sinφ

=0
! "#### $####

− 1
w3 cosφ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

′′x + kx = 0

Sub into Hill’s…

ε ′′w (s)cosφ − 1
w3 cosφ

⎧
⎨
⎩

⎫
⎬
⎭
+ kw ε cosφ = 0 gives… ′′w (s)− 1

w3 + kw = 0

1
2
β ′′β − 1

4
′β 2 + kβ 2 = 1‘envelope equation’

we impose this…



Particle in AG focusing



Particle in AG focusing



Particle in AG focusing



Particle in AG focusing



Solution of Hill’s equation
x = β(s) ε sin[φ(s)+φ0 ]

betatron function 
property of the machine 

(not the beam)

emittance 
(property of beam)

phase

initial phase

φ = ds
β(s)∫phase advance ‘tune’

Because transverse oscillations in accelerators were theoretically studied by Kerst and 
Serber (Physical Review, 60, 53 (1941)) for the first time in betatrons, transverse 

oscillations in accelerators are known generically as betatron oscillations



Transverse ‘phase space’ ellipse

s
x

x’

x

x’

εβ

ε / β

A = π εβ ε / β = πε

Ellipse area:

Ellipse can change shape but not area! 
Emittance is conserved. (cf. ’Louiville’s theorem’)



Transfer matrices

x
!
(s) =

x(s)
′x (s)

⎛

⎝
⎜

⎞

⎠
⎟

Express solution in matrix form…

x
!
(s) = M (s | s0 )x

!
(s0 )

Where M is the ‘transfer matrix’.

We already know (because we showed)

x = w ε cos(φ(s)+φ0 )

Take derivative for x’…

x ' = w ' ε cos(φ(s)+φ0 )−
ε
w
sin(φ(s)+φ0 )

dφ(s)
ds

= 1
w2

d(cos( f (x))
dx

= −sin( f (x)) df (x)
dx

reminder…



φ = 0‘cosine like’

x(s2 )
′x (s2 )

⎛

⎝
⎜

⎞

⎠
⎟ =

a b
c d

⎛
⎝⎜

⎞
⎠⎟

x(s1)
′x (s1)

⎛

⎝
⎜

⎞

⎠
⎟

‘sine like’

x = w ε cos(φ(s)+φ0 )

x ' = w ' ε cos(φ(s)+φ0 )−
ε
w
sin(φ(s)+φ0 )

φ = π / 2
Trace two rays…

Yields 4 simultaneous equations so we can solve for a,b,c,d…
µ = φ2 −φ1

M12 =

w2
w1
cosµ −w2w1′ sinµ w1w2 sinµ

−1+w1w1
′w2w2′

w1w2
sinµ − w1′

w2
− w2

′
w1

⎛

⎝
⎜

⎞

⎠
⎟ cosµ

w1
w2
cosµ +w1w2′ sinµ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟



Mperiod =
cosµ −ww′ sinµ w2 sinµ

−1+w
2w′2

w2 sinµ cosµ +ww′ sinµ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Simplify by considering a period or ‘turn’, and w’s are equal.

β = w2 α = − 1
2

′β γ = 1+α
β

Mperiod =
cosµ +α sinµ β sinµ

−γ sinµ cosµ −α sinµ

⎛

⎝
⎜

⎞

⎠
⎟

If we define the so-called ‘Twiss’ or ‘Courant-Snyder’ parameters:

(sorry that we are reusing symbols again… these are NOT 
the relativistic parameters)



Evolution of beta in a lattice…



How do we measure a ‘tune’?
Measure the turn-by-turn oscillations of a bunch

Main frequency = revolution frequency 
‘Sideband’ frequency gives the tune

Tune measurement example from 
Kyoto University 150 MeV proton FFAG 



Transfer matrices
x
!
(s) =

x(s)
′x (s)

⎛

⎝
⎜

⎞

⎠
⎟x

!
(s) = M (s | s0 )x

!
(s0 )

Where M is the ‘transfer matrix’.

The effect of a succession of drifts & lenses can 
be found by multiplying their transfer matrices… 

x
!
(sn ) = Mn (sn | sn−1)…M 3(s3 | s2 )M 2 (s2 | s1)M1(s1 | s0 )x

!
(s0 )

We could do this for a whole ring, but usually can 
exploit some symmetry (superperiod or cell)



AG focusing

M (s, s0 ) =

cos Kl 1
K
sin Kl

− K sin Kl cos Kl

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

K > 0,

1 l
0 1

⎛
⎝⎜

⎞
⎠⎟

K = 0,

cosh K l 1
K
sinh K l

− K sinh K l cosh K l

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

K < 0.

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

Focusing quad

Defocusing quad

Drift space

Transfer matrix (x, x’) for a 
quadrupole:



Tr(M ) ≤ 2
So let’s test this out…

This solution is ‘stable’ in periodic system when there is a  
real betatron phase advance or tune, such that:

3.1. Design Strategy

The equations for horizontal and vertical motion are given in Eqn. 3.3 and the

function f(✓) can be used to describe basic FD alternating gradient focusing, as in

Eqn. 3.4, where ✓ is the azimuthal position in one cell of total angle ✓0, ±f0 is the

average focusing strength in the horizontal/vertical plane respectively and f1 is the

strength of alternating gradient focusing. The focusing term in Hill’s equation is

normalised so that the solution is independent of machine radius and is given by

K =


2⇡

l

�2

f(✓), where l is the total length of the cell.

x00 + Kx = 0

y00 � Ky = 0
(3.3)

f(✓) =

8
><

>:

f0 + f1 = const., 0 < ✓ < 1
2✓0

f0 � f1 = const., 1
2✓0 < ✓ < ✓0.

(3.4)

The solution to the linear second order di↵erential Hill’s equation in the matrix

formulation takes the form of Eqn. 3.5 in which x0(s) is the derivative of x(s) and the

same form of solution holds in the vertical y(s) plane.

X(s) =

2

64
x(s)

x0(s)

3

75 = M(s|s0)X(s0) =

2

64
a b

c d

3

75

2

64
x(s0)

x0(s0)

3

75 (3.5)

The focusing function f(✓) is piecewise constant and the matrix M(s|s0) is simply

the product of the matrices for the sub-intervals in which f(✓) is constant. The

matrices for each sub-interval for constant focusing take a di↵erent form depending

on whether f(✓) is greater, less than or equal to 0, as in Eqns. 3.6 to 3.8.

For f(✓) > 0 where � =
p

K(s � s0):

M(s|s0) =

2

64
cos �

1p
K

sin �

�
p

K sin � cos �

3

75 . (3.6)

60

F D

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f0

f 1

nb. no drift space & no edge focusing in this case

‘stability region’

I parameterise it in terms of f, think of f as focal length

Stability: an example



AG focusing: thin lens

M = 1 d
0 1

⎛
⎝⎜

⎞
⎠⎟

1 0
1/ f 1

⎛

⎝⎜
⎞

⎠⎟
1 d
0 1

⎛
⎝⎜

⎞
⎠⎟

1 0
−1/ f 1

⎛

⎝⎜
⎞

⎠⎟

In the ‘thin lens’ approximation, for a ‘FODO’ lattice:

=
1− d

f
− d

2

f 2
2d + d

2

f

− d
f 2

1+ d / f

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Focusing & defocusing with a drift between doesn’t cancel out. 
This is what gives us ‘alternating gradient’ focusing

For infinitesimally short lenses, we can recover most of the physics
K(s) = ±δ (s) / f where f is the focal length.



MFODO =
1− d

f
− d

2

f 2
2d + d

2

f

− d
f 2

1+ d / f

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Mperiod =
cosµ +α sinµ β sinµ

−γ sinµ cosµ −α sinµ

⎛

⎝
⎜

⎞

⎠
⎟

Equating these two:

We find:
cosµ = m11 +m22( ) / 2 = 1− d 2

2 f 2

βCS = 2d
1+ sin(µ / 2)

sinµ

µ(s) = ds
β s( )0

s

∫ ν = µ / 2πPhase advance ‘tune’

Beta function



nb. sector magnet focusing

Mx =
 cos θ  , ρ sin θ
− 1
ρ

 sin θ, cos θ
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 



Summary

• Equations of motion in transverse co-ordinates 

• Check Solution of Hill’s equation 

• Transfer matrices 

• Stability and AG focusing 

• Physical meaning of tune and beta
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Equation of motion in a cyclotron

◆  Non relativistic

◆  Cartesian

◆  Cylindrical

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ]xy

z

zx
y

yz
x

ByBxq
dt
zmd

dt
mvd

BxBzq
dt
ymd

dt
mvd

BzByq
dt
xmd

dt
mvd

!!!

!!
!

!!
!

−==

−==

−==

( ) [ ]
( ) [ ]

( ) [ ]r

zr

z

BrrBq
dt
zmd

BrBzqrm
dt
mrd

BzBrqmr
dt
rmd

θ−=

−=θ+θ

−θ=θ−

θ

θ

!!

!!!!
!

!!!!

2

2

[ ]Bvv ×= q
dt
md )(( ) Fv =

dt
md
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◆  For non-relativistic particles (m = m0) and 
with an axial field Bz = -B0

◆  The solution is a closed circular trajectory 
which has radius

◆  and an angular frequency

◆  Take into account special relativity by

◆  And increase B with �  to stay synchronous!

Cyclotron orbit equation

   

m0 !!r − r !θ 2( ) = −qr !θBz

m0 r !!θ + 2r !θ( ) = q !rBz

m0!!z = 0

z

pR
qB

=

w =
q
m0

B0

0
z

q B
m

ω =

0
00 E
Emmm =γ=

Note: Ted Wilson’s cyclotron derivation
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Cyclotron focusing – small deviations

◆  See earlier equation of motion

◆  If all particles have  the same velocity:

◆  Change independent variable and substitute for small 
deviations

◆  Substitute 

◆  To give 

2
0

0 0z
mvd dm ev B

dt dt
ρ

ρ
⎛ ⎞+ + =⎜ ⎟⎝ ⎠

   ρ !θ = v0 = !z

   

d m !r( )
dt

+ mr !θ 2 + q r !θBz − !zBθ⎡⎣ ⎤⎦ = 0

000 -    x,     ,  ρρΔ =−== BBB
ds
dv

dt
d

zz

00 mvp =

0 2
0 0 0 0

1 1 0zBd dx x
p

mv ds ds Bρ ρ
Δ⎛ ⎞+ + =⎜ ⎟⎝ ⎠
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◆  From previous slide

◆  Taylor expansion of field about orbit

◆  Define field index (focusing gradient)

◆  To give horizontal focusing

Cyclotron focusing – field gradient

0 2
0 0 0 0

1 1 0zBd dx x
p

mv ds ds Bρ ρ
Δ⎛ ⎞+ + =⎜ ⎟⎝ ⎠

........
!2
1 2

2

2

0 +++= x
x
Bx

x
BBB zz

z ∂
∂

∂
∂

( ) x
B

B
k z

∂
∂

ρ00

1−=

011
20

0

=⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ xk

ds
dx

p
ds
d

p ρ
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Cyclotron focusing!
 – betatron oscillations

◆  From previous slide - horizontal focusing:

◆  Now Maxwell�s

◆  Determines

◆  hence
◆  In vertical plane

◆  Simple harmonic motion with a number of 
oscillations per turn: 

◆  These are �betatron� frequencies

◆  Note vertical plane is unstable if  

011
20

0

=⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ xk

ds
dxp

ds
d

p ρ

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

x
B

z
B zx

∂
∂

∂
∂

0

0=×∇ B

kzBBx 00ρ−=

01
0

0

=+⎟
⎠
⎞⎜

⎝
⎛ kz

ds
dzp

ds
d

p

kQkQ zx =−=       ,1
2ρ

yx QQ ωω    ,

2
1
ρ

>k


