# Lecture 10 Beams and Imperfections

Some slides swiped from Professor Emmanuel Tsesmelis Others stolen with no remorse from Professor Todd Satogata Some taken from Professor Waldo MacKay I even did some by myself!

Dr Ryan Bodenstein Graduate Accelerator Physics Course John Adams Institute for Accelerator Science 2016/11/2

# What are we talking about?

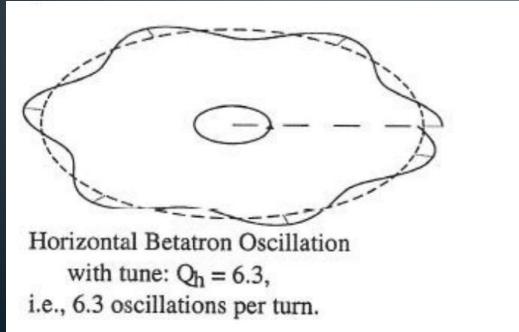
- Introductory stuff...like this.
- Resonance and resonant conditions
  - What is it?
  - Tune
    - Integer Tune
    - Tune Diagrams
- Chromaticity
  - Relationship to Tune
  - Chromaticity Correction
- Dispersion
  - Relationship to chromaticity and tune
  - IF TIME: FODO Dispersion and Dispersion Correction

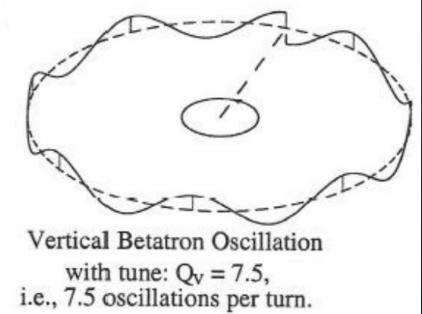
# **Obligatory Introductory Stuff**

- Been working on accelerators in some way, shape, or form since 2004.
  - SRF technology, then beam dynamics, then beamline design, now feedback system simulation.
  - Always worked on linear machines.
  - Gave this lecture last year, tried to adjust after feedback.
- There's a lot to talk about, and only an hour to talk about it
  - I'll do what I can, but I HIGHLY recommend you check out:
    - Helmut Wiedemann Particle Accelerator Physics (AKA the Bible of Accelerator Physics Textbooks)
    - S.Y. Lee Accelerator Physics (some treatments are excellent, others are confusing)
    - <u>www.toddsatogata.net</u> USPAS instructor, current professor and senior research staff scientist at Jefferson Lab
    - <u>http://uspas.fnal.gov/</u> Website for USPAS, which contains many class notes and useful information.

### Resonant Conditions: What are they?

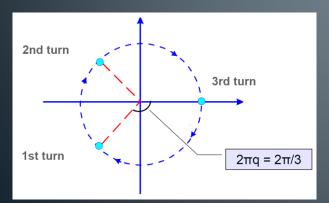
- A resonance can be excited through various imperfections in the beamline.
- The phase advance of the betatron oscillation around the machine will repeat itself after a certain number of turns around the machine.
  - Ex/ If phase advance/turn =  $120^{\circ}$ , repeats after 3 turns

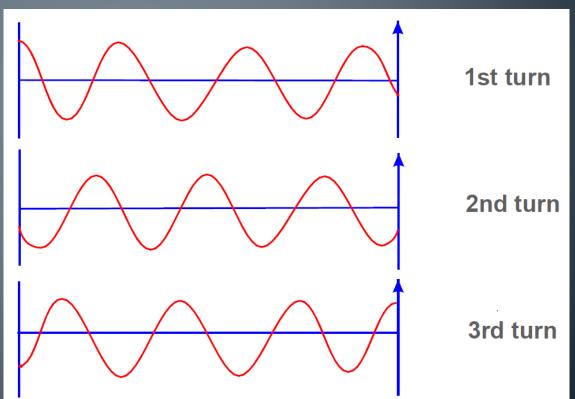




### Resonant Conditions: What are they?

- Simply put, let's say we have a Q = 3.333
  - This can also be stated as 3Q = 10
  - We can define the order of a resonance as "n" where n x Q = integer
- For Q = 3.333:
  - 3 x Q = 10
  - q = 0.333
- On the normalized phase ellipse:





#### Resonant Conditions: A bit more detail

- Synchrotron is a periodic focusing system, often made up of smaller periodic regions.
  - Can write down a periodic one-turn matrix as

$$M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix}$$

• Tune is defined as the total betatron phase advance in one revolution around the ring, divided by  $2\pi$ 

$$Q_{x,y} = \frac{\Delta \phi_{x,y}}{\Delta \theta} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$$
Horizontal Betatron Oscillation  
with tune: Q<sub>h</sub> = 6.3,  
i.e., 6.3 oscillations per turn.  

$$\frac{\Delta \phi_{x,y}}{\Delta \theta} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$$
Vertical Betatron Oscillation  
with tune: Q<sub>h</sub> = 6.3,  
i.e., 7.5 oscillations per turn.

### **Resonant Conditions: A bit more detail**

- Tunes are both horizontal and vertical
- They are a direct indication of the amount of focusing in an accelerator
  - Higher tune means tighter focusing, lower  $< \beta_{x,y}(s) >$
- Tunes are critical for accelerator performance
  - Linear stability depends upon phase advance
  - Resonant instabilities can occur when  $nQ_x + mQ_y = k$
  - Often adjusted using groups of quadrupoles

 $M_{one-turn} = I\cos(2\pi Q) + J\sin(2\pi Q)$ 

- There's another way to describe all this...
  - http://www.toddsatogata.net/2013-USPAS/2013-01-23-Resonances1.pdf

#### **Resonant Conditions: Integer resonance**

#### Integer resonances

Let's start with a simplified formalism for the horizontal motion equation:

$$\frac{d^2x}{d\theta^2} + Q_{\rm H}^2 x = f(\theta),$$

where

- $\theta = s/R$  is the azimuthal angle around the ring with
- *R* being the average radius of the ring,
  i. e. we approximate by a circular ring.
- $f(\theta)$  is some source of perturbations from errors.

-1-

Fourier transform the function f and let's look at the  $m^{\text{th}}$  harmonic term:

$$\frac{d^2x}{d\theta^2} + Q_{\rm H}^2 x = \varepsilon \cos(m\theta). \tag{1}$$



#### **Resonant Conditions: Integer resonance**

Solution to Eq. (1) is of the form

 $x = \tilde{x} + \bar{x},$ 

with homogeneous part

$$\tilde{x} = A\cos(Q_{\rm H}\theta) + B\sin(Q_{\rm H}\theta),$$

an inhomogeneous part

$$\bar{x} = \frac{\varepsilon}{Q_{\rm H}^2 - m^2} [\cos(m\theta) - \cos(Q_{\rm H}\theta)]$$
$$\bar{x} = \frac{\varepsilon\theta}{Q_{\rm H} + m} \sin\left(\frac{Q_{\rm H} + m}{2}\theta\right) \frac{2}{(Q_{\rm H} - m)\theta} \sin\left(\frac{Q_{\rm H} - m}{2}\theta\right).$$

which reduces to

$$\simeq \frac{\varepsilon \theta}{2Q_{\rm H}} \sin(Q_{\rm H}\theta), \qquad {\rm for} \ Q_{\rm H} = m.$$

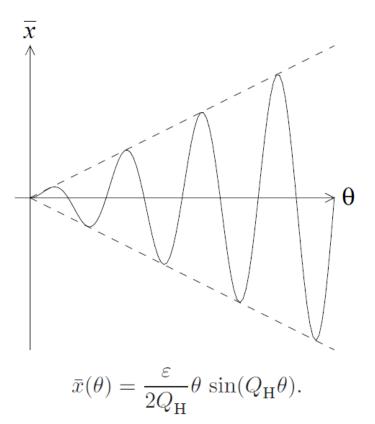


🍆 2 🎿

 $\bar{x}$ 

#### Resonant Conditions: Blown Up!

Linear growth from integer resonance





منے 4 سے

#### Resonant Conditions: Integer Resonance = BAD

• Putting it more simply:

• On an integer resonance,  $\mu$  is a multiple of  $2\pi$ , we expect  $\mathbf{M} = \mathbf{I}$ .

If there is a small path-length error  $\delta l$  in one drift section, then the 1-turn matrix becomes

$$\mathbf{M} = \begin{pmatrix} 1 & \delta l \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \delta l \\ 0 & 1 \end{pmatrix}.$$

Any particle with  $x'_0 \neq 0$  will propagate as

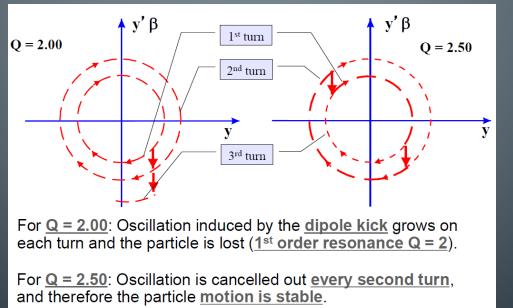
$$\begin{pmatrix} x_n \\ x'_n \end{pmatrix} = \begin{pmatrix} 1 & \delta l \\ 0 & 1 \end{pmatrix}^n \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} = \begin{pmatrix} x_0 + n \, x'_0 \, \delta l \\ x'_0 \end{pmatrix}.$$

This grows linearly with turn number n.

#### Before the ugly math, here's what I'm describing

- Various imperfections in the beamline will alter the tune in a periodic machine.
- One way to visualize the influence of these imperfections is by looking at what happens on the normalized phase space plot.
  - However, without knowing what is happening, it is hard to understand WHY these are helpful.
- For example, a dipole may have the following:

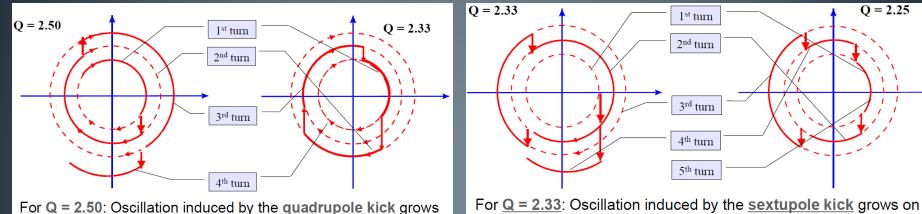
Note: deflection is independent of position.



## A bit more visualization

• For a quadrupole

• For a sextupole



For Q = 2.50: Oscillation induced by the <u>quadrupole kick</u> grow on each turn and the particle is lost

(2<sup>nd</sup> order resonance 2Q = 5)

For Q = 2.33: Oscillation is cancelled out <u>every third turn</u>, and therefore the particle <u>motion is stable</u>.

Note: deflection is proportional to position.

each turn and the particle is lost

(3<sup>rd</sup> order resonance 3Q = 7)

For  $\underline{Q} = 2.25$ : Oscillation is cancelled out <u>every fourth turn</u>, and therefore the particle <u>motion is stable</u>.

Note: deflection is proportional to the square of the position.

### **Resonant Conditions: Some math**

 If you include linear coupling between the planes (small amount, due to the slight roll of a quadrupole by angle θ (and trying to avoid most of the math).

$$\frac{d^2x}{d\theta^2} + Q_{\rm H}^2 x = \varepsilon \cos(m\theta) y$$
$$\frac{d^2y}{d\theta^2} + Q_{\rm V}^2 y = \varepsilon \cos(m\theta) x$$

• Assuming ε is small, and making some substitutions:

$$\begin{aligned} &\frac{d^2x}{d\theta^2} + Q_{\rm H}{}^2x = \frac{1}{2}\varepsilon_y \left[\cos(Q_{\rm V} + m)\theta + \cos(m - Q_{\rm V})\theta\right] \\ &\frac{d^2y}{d\theta^2} + Q_{\rm V}{}^2y = \frac{1}{2}\varepsilon_x \left[\cos(Q_{\rm H} + m)\theta + \cos(m - Q_{\rm H})\theta\right] \end{aligned}$$

### Resonant Conditions: A bit more math

 Running through somewhat obscene amounts of mathematics, you can eventually find your way to the resonance conditions

Linear Sum Resonance Linear Difference Resonance

$$\begin{aligned} Q_{\rm H} + Q_{\rm V} &= m \\ |Q_{\rm H} - Q_{\rm V}| &= m \end{aligned}$$

• Let's take an uncoupled one-turn matrix:

$$\mathbf{T} = \begin{pmatrix} \mathbf{u}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{u}_{2} \end{pmatrix} = \begin{pmatrix} \cos \mu_{1} + \alpha_{1} \sin \mu_{1} & \beta_{1} \sin \mu_{1} & 0 & 0 \\ -\gamma_{1} \sin \mu_{1} & \cos \mu_{1} - \alpha_{1} \sin \mu_{1} & 0 & 0 \\ 0 & 0 & \cos \mu_{2} + \alpha_{2} \sin \mu_{2} & \beta_{2} \sin \mu_{2} \\ 0 & 0 & -\gamma_{2} \sin \mu_{2} & \cos \mu_{2} - \alpha_{2} \sin \mu_{2} \end{pmatrix}$$

• Diff. res. condition:  $\sin \mu_1 = \sin \mu_2$ ,

• Sum res. condition:  $\sin \mu_1 = -\sin \mu_2$ .

#### Resonant Conditions: I know...too much math

• If the last element in T is a thin lens quadrupole with a small roll:

Estimate effect of rolled thin quad:

$$\begin{aligned} \mathbf{T}' &= \begin{pmatrix} \mathbf{M} & \mathbf{n} \\ \mathbf{m} & \mathbf{N} \end{pmatrix} = \mathbf{R} \mathbf{Q} \mathbf{R}^{-1} \mathbf{Q}^{-1} \mathbf{T} \\ &= \begin{pmatrix} \mathbf{I} \cos \theta & \mathbf{I} \sin \theta \\ -\mathbf{I} \sin \theta & \mathbf{I} \cos \theta \end{pmatrix} \begin{pmatrix} \mathbf{F} & \mathbf{0} \\ \mathbf{0} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{I} \cos \theta & -\mathbf{I} \sin \theta \\ \mathbf{I} \sin \theta & \mathbf{I} \cos \theta \end{pmatrix} \begin{pmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{F} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{u}_2 \end{pmatrix} \end{aligned}$$

Fast forward skipping a bit of algebra:

$$\mathbf{T}' = \begin{pmatrix} (\mathbf{I}\cos^2\theta + \mathbf{D}^2\sin^2\theta)\mathbf{u}_1 & (\mathbf{I} - \mathbf{F}^2)\mathbf{u}_2\cos\theta\sin\theta \\ (\mathbf{D}^2 - \mathbf{I})\mathbf{u}_1\cos\theta\sin\theta & (\mathbf{I}\cos^2\theta + \mathbf{F}^2\sin^2\theta)\mathbf{u}_2 \end{pmatrix} \\ = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{2}{f}\sin^2\theta & 1 \end{pmatrix}\mathbf{u}_1 & \begin{pmatrix} 0 & 0 \\ \frac{2}{f}\cos\theta\sin\theta & 0 \end{pmatrix}\mathbf{u}_2 \\ \begin{pmatrix} 0 & 0 \\ \frac{2}{f}\cos\theta\sin\theta & 0 \end{pmatrix}\mathbf{u}_1 & \begin{pmatrix} 1 & 0 \\ -\frac{2}{f}\sin^2\theta & 1 \end{pmatrix}\mathbf{u}_2 \end{pmatrix}$$

#### Resonant Conditions: This is leading somewhere

• Some unavoidable math:

$$\mathbf{M} = \mathbf{u}_1 \cos^2 \theta + \frac{2 \sin^2 \theta}{f} \begin{pmatrix} 0 & 0\\ \cos \mu_1 + \alpha_1 \sin \mu_1 & \beta_1 \sin \mu_1 \end{pmatrix},$$
  
$$\mathbf{N} = \mathbf{u}_2 \cos^2 \theta - \frac{2 \sin^2 \theta}{f} \begin{pmatrix} 0 & 0\\ \cos \mu_2 + \alpha_2 \sin \mu_2 & \beta_2 \sin \mu_2 \end{pmatrix},$$
  
$$\mathbf{m} = \begin{pmatrix} 0 & 0\\ \cos \mu_1 + \alpha_1 \sin \mu_1 & \beta_1 \sin \mu_1 \end{pmatrix} \frac{\sin 2\theta}{f},$$
  
$$\mathbf{n} = \begin{pmatrix} 0 & 0\\ \cos \mu_2 + \alpha_2 \sin \mu_2 & \beta_2 \sin \mu_2 \end{pmatrix} \frac{\sin 2\theta}{f}.$$

• And then accepting (let's just call it a definition):

$$\kappa = \lambda + \lambda^{-1} = \frac{\operatorname{tr}(\mathbf{M} + \mathbf{N})}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(\mathbf{M} - \mathbf{N})}{2}\right)^2 + |\mathbf{m} + \tilde{\mathbf{n}}|}.$$

• We can find that for both resonant conditions,  $\cos \mu_1 = \cos \mu_2$ , so the  $Tr(u_1)$ =Tr $(u_2)$ 

#### **Resonant Conditions: Almost there**

• A bit more ugliness:

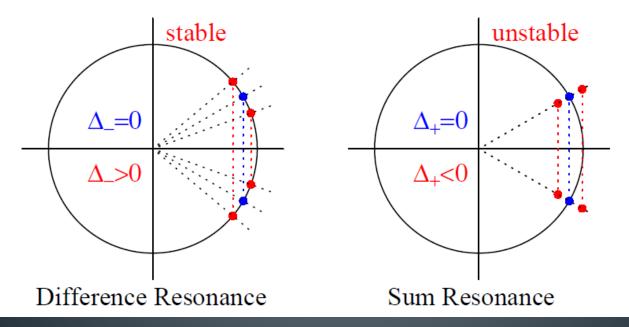
$$\frac{\mathbf{r}(\mathbf{M} - \mathbf{N})}{2} = \frac{\beta_1 \sin \mu_1 - \beta_2 \sin \mu_2}{f} \sin^2 \theta,$$
$$|\mathbf{m} + \tilde{\mathbf{n}}| = \frac{\beta_1 \beta_2}{f^2} \sin^2(2\theta) \sin \mu_1 \sin \mu_2,$$

- Notice that  $|\mathbf{m} + \tilde{\mathbf{n}}| \neq 0$  if there is a slight roll of the quadrupole.
- The sign of  $|\mathbf{m} + \tilde{\mathbf{n}}|$  is determined solely by the product  $\sin \mu_1 \sin \mu_2$ . For the slightly coupled  $\mathbf{T}'$ , the argument of the radical is

$$\begin{split} \Delta_{\pm} &= \left(\frac{\operatorname{tr}(\mathbf{M} - \mathbf{N})}{2}\right)^2 + |\mathbf{m} + \tilde{\mathbf{n}}| \\ &= \frac{\sin^4 \theta}{f^2} (\beta_1 \sin \mu_1 - \beta_2 \sin \mu_2)^2 + \frac{\beta_1 \beta_2}{f^2} \sin^2(2\theta) \sin \mu_1 \sin \mu_2 \\ &= \frac{\sin^4 \theta}{f^2} (\beta_1 \pm \beta_2)^2 \sin^2 \mu_1 \mp \frac{\beta_1 \beta_2}{f^2} \sin^2(2\theta) \sin^2 \mu_1 \\ &\simeq \mp \frac{4\beta_1 \beta_2 \sin^2 \mu_1}{f^2} \theta^2, \quad \text{for small } \theta. \end{split}$$

#### Resonant Conditions: See? Makes a little sense.

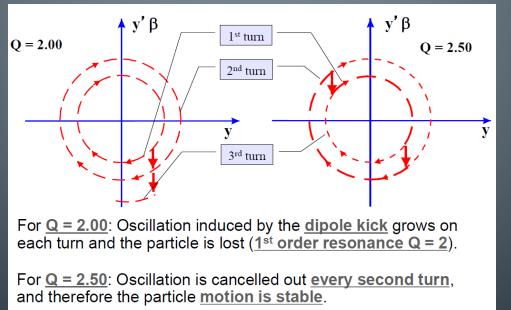
- So, as θ increases, the degenerate eigenvalues separate:
  - 1. In the case of a **difference resonance**,  $\Delta_{-} > 0$ , and the degenerate  $\lambda_{j}$  eigenvalue pairs split apart by moving along the unit circle in the complex plane. Since the eigenvalues stay on the circle, the motion remains **stable** with  $\lambda_{j}^{*} = \lambda_{j}^{-1}$ .
  - 2. For a sum resonance,  $\Delta_+ < 0$ , and the  $\lambda_j$  eigenvalues move away from the unit circle out into the complex plane resulting in **unstable** motion with  $\lambda_j^* \neq \lambda_j^{-1}$ .



### So, that's why I showed you that math

- Various imperfections in the beamline will alter the tune in a periodic machine.
- One way to visualize the influence of these imperfections is by looking at what happens on the normalized phase space plot.
  - However, without knowing what is happening, it is hard to understand WHY these are helpful.
- For example, a dipole may have the following:

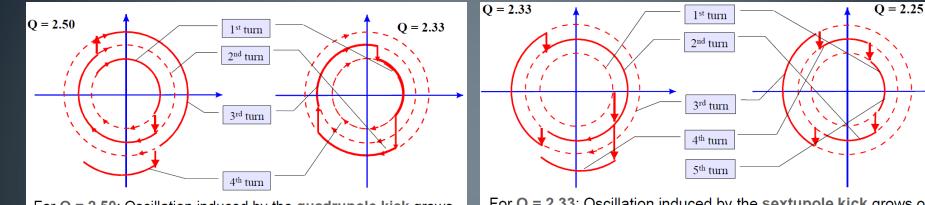
Note: deflection is independent of position.



## Worthwhile, right?

• For a quadrupole

• For a sextupole



For Q = 2.50: Oscillation induced by the <u>quadrupole kick</u> grows on each turn and the particle is lost

(2<sup>nd</sup> order resonance 2Q = 5)

For Q = 2.33: Oscillation is cancelled out <u>every third turn</u>, and therefore the particle <u>motion is stable</u>.

Note: deflection is proportional to position.

For Q = 2.33: Oscillation induced by the <u>sextupole kick</u> grows on each turn and the particle is lost

(3<sup>rd</sup> order resonance 3Q = 7)

For  $\underline{Q} = 2.25$ : Oscillation is cancelled out <u>every fourth turn</u>, and therefore the particle <u>motion is stable</u>.

Note: deflection is proportional to the square of the position.

### I know you're confused

- Because of the various imperfections due to the many different elements in the beamline, making sure you do not excite a resonant condition gets very difficult to control.
- Instead of keeping track of these circles for each case, and remembering which resonances you excite for each element, a tune plot is often used (sometimes called the necktie diagram).
- Avoiding the mathematical derivation for each case (see the MacKay lecture of which I am drawing much of this), one can construct these necktie diagrams as demonstrated on the following slides.

### The results!

A normal quadrupole excites half-integer resonances:

$$2Q_{\rm H} = \pm m$$
, and  $2Q_{\rm V} = \pm m$ .

al sextupole:

• A normal octopole:

| $\pm 4Q_{\rm H} = m,$            | A normal sextupole                  |
|----------------------------------|-------------------------------------|
| $\pm 4Q_{\rm V} = m,$            | $\pm 3Q_{\rm H} = m,$               |
| $\pm 2Q_{\rm H} = m,$            | $\pm Q_{\rm H} = m,$                |
| $\pm 2Q_{\rm V} = m,$            | $\pm Q_{\rm H} \pm 2Q_{\rm V} = m.$ |
| $2Q_{\rm H} \pm 2Q_{\rm V} = m.$ |                                     |

• A normal decapole:

 $\pm 5Q_{\rm H} \pm 2Q_{\rm V} = m,$  $\pm 5Q_{\rm H} = m,$  $\pm 3Q_{\rm H} \pm 2Q_{\rm V} = m,$  $\pm 3Q_{\rm H} = m,$  $\pm Q_{\rm H} \pm 4Q_{\rm V} = m,$  $\pm Q_{\rm H} \pm 2Q_{\rm V} = m,$  $\pm Q_{\rm H} = m.$ 

### The results!

• A normal quadrupole excites half-integer resonances:

$$2Q_{\rm H} = \pm m$$
, and  $2Q_{\rm V} = \pm m$ .

• A normal octopole:

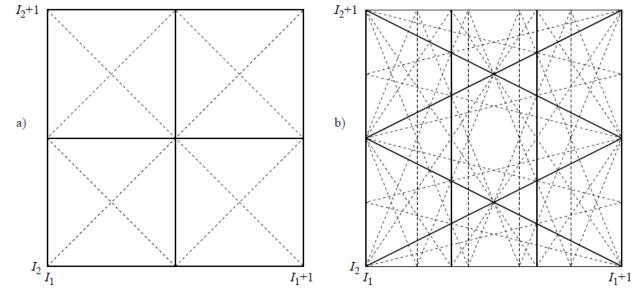
• A normal decapole:

$$\begin{split} \pm 4Q_{\mathrm{H}} &= m, \\ \pm 4Q_{\mathrm{V}} &= m, \\ \pm 2Q_{\mathrm{H}} &= m, \\ \pm 2Q_{\mathrm{V}} &= m, \\ \pm 2Q_{\mathrm{H}} &\pm 2Q_{\mathrm{V}} &= m. \end{split}$$

• A normal sextupole:  $\begin{array}{c} \pm 3Q_{\mathrm{H}} = m, \\ \pm Q_{\mathrm{H}} = m, \\ \pm Q_{\mathrm{H}} \pm 2Q_{\mathrm{V}} = m. \end{array}$ 

$$\begin{split} \pm 5Q_{\mathrm{H}} \pm 2Q_{\mathrm{V}} &= m, \\ \pm 5Q_{\mathrm{H}} &= m, \\ \pm 3Q_{\mathrm{H}} \pm 2Q_{\mathrm{V}} &= m, \\ & \pm 3Q_{\mathrm{H}} = m, \\ \pm 2Q_{\mathrm{H}} \pm 4Q_{\mathrm{V}} &= m, \\ & \pm Q_{\mathrm{H}} \pm 2Q_{\mathrm{V}} = m, \\ & \pm Q_{\mathrm{H}} \pm 2Q_{\mathrm{V}} = m, \\ & \pm Q_{\mathrm{H}} = m. \end{split}$$

### Translating to a graphical means... Lines from normal multipoles

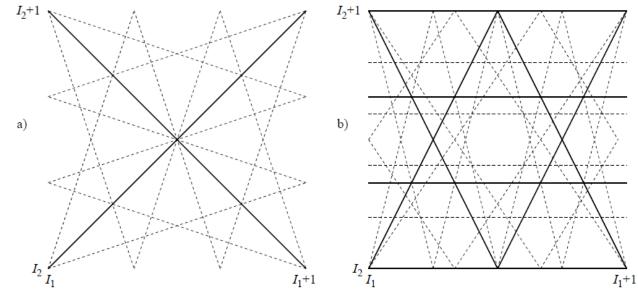


- a) A tune plot showing the resonance lines driven by a normal quadrupole perturbation (heavy lines), and a normal octopole perturbation (all lines).  $I_1$  and  $I_2$  are arbitrary integers.
- b) A tune plot showing the resonance lines driven by a normal sextupole (heavy lines), and a normal decapole (heavy and dashed lines).
  - Typically: Positive slopes (diff res) OK; Negative slopes (sum res) bad.





### And including skews... Lines from skew multipoles

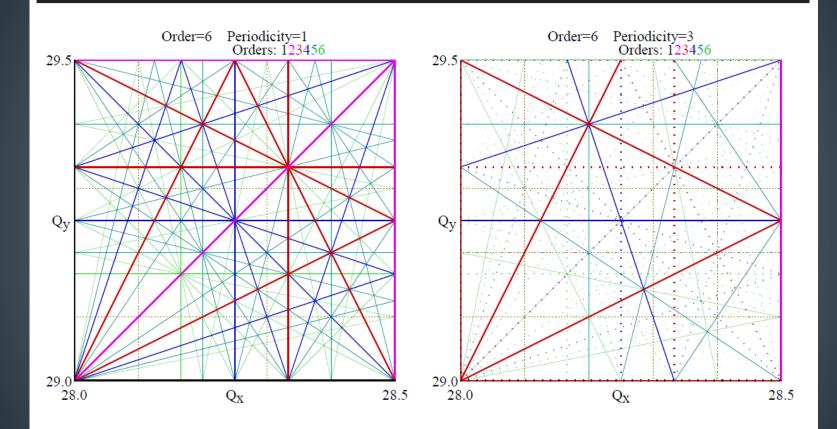


- a) Skew quad lines (solid) and skew octopole lines (bold and dashed).
- b) Skew sextupole (bold) and skew decapole (bold and dashed) lines.
- Again: Positive slopes (diff res) OK; Negative slopes (sum res) bad.



### And then including periodicity...

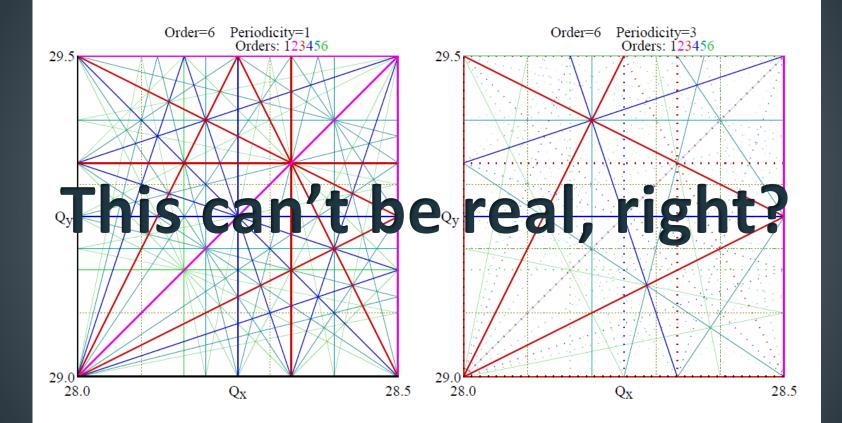
#### Periodicity





### And then including periodicity...

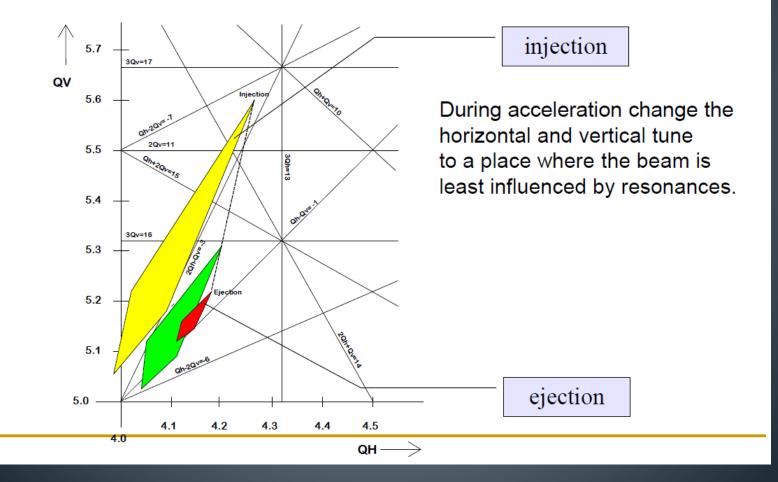
#### Periodicity





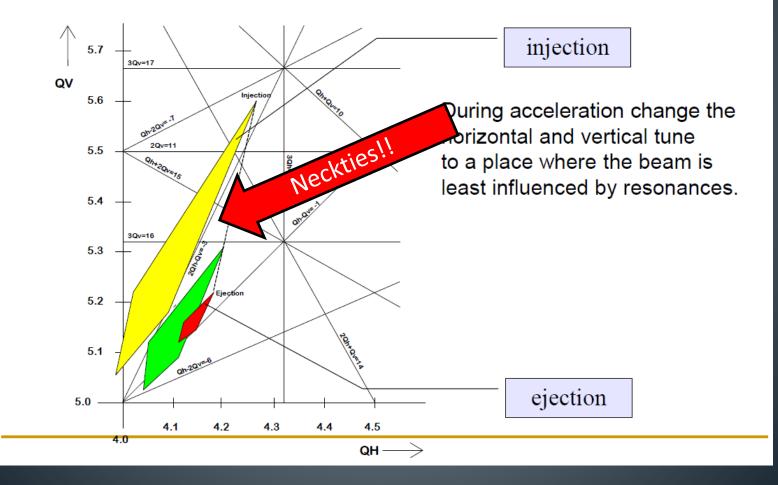
#### It's real, and here's an example

### P.S. Booster Tune Diagramme

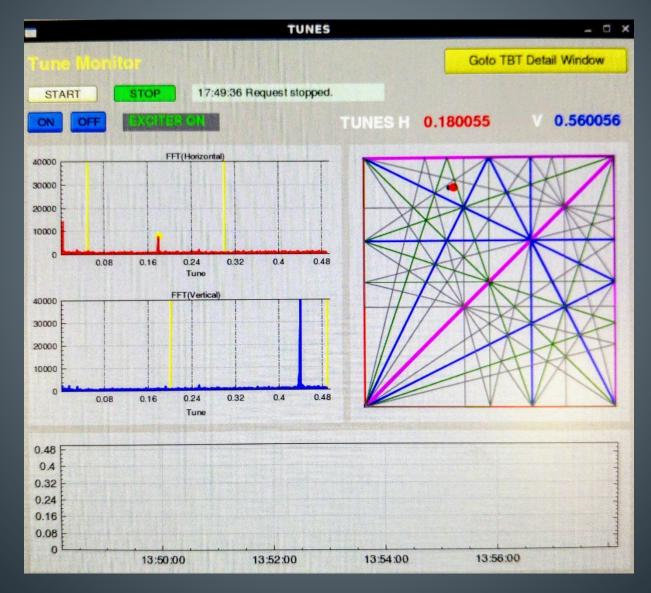


#### It's real, and here's an example

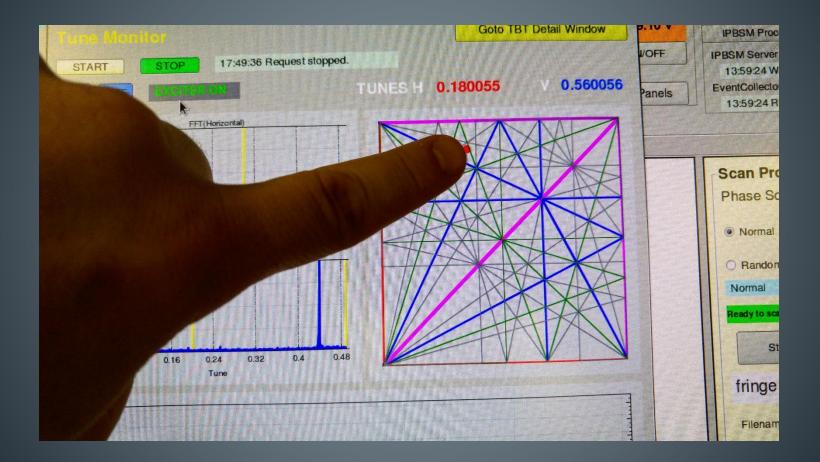
P.S. Booster Tune Diagramme



# At KEK in Tsukuba, Japan



# At KEK in Tsukuba, Japan



### One more thing before moving on...

- The tune does not stay constant in the machine. This leads to a variation of Q for each turn.
- This variation can go up and down, giving a range of possible values for Q, which we can call ΔQ.
- This range of values has a width, which is called the stopband of the resonance.
- Not only do you want to avoid the resonances, but you want to avoid being in the stopband of a resonance as well, as it may pull you into the resonance itself.

### Another Imperfection: Chromaticity

- The focusing in a machine (and thus tune) depends on the momentum.
- The variation of the tune with momentum offset ( $\delta \stackrel{\text{def}}{=} \frac{\Delta p}{p_0}$ ) is called chromaticity.
  - Inserting a momentum perturbation is akin to adding a bit of extra focusing to the one-turn matrix which depends on the unperturbed focusing, K<sub>0</sub>.

$$M_{\text{one turn}}(\delta) = \begin{pmatrix} 1 & 0\\ K_0 \delta ds & 1 \end{pmatrix} \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q)\\ -\gamma \sin(2\pi Q) & \cos(2\pi Q) - \alpha \sin(2\pi Q) \end{pmatrix}$$
$$M_{\text{one turn}}(\delta) = \begin{pmatrix} \cos(2\pi Q) + \alpha \sin(2\pi Q) & \beta \sin(2\pi Q)\\ -\gamma \sin(2\pi Q) + K_0 \delta [\cos(2\pi Q) + \alpha \sin(2\pi Q)] ds & \cos(2\pi Q) - \alpha \sin(2\pi Q) + K_0 \delta \beta \sin(2\pi Q) ds \end{pmatrix}$$

• The trace is related to the new tune:

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \operatorname{Tr} M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$

## Chromaticity and Tune

• Going through a bit of math:

$$\cos(2\pi Q_{\text{new}}) = \frac{1}{2} \operatorname{Tr} M = \cos(2\pi Q) + \frac{K_0 \delta}{2} \beta \sin(2\pi Q) ds$$

$$\cos(2\pi Q_{\text{new}}) = \cos(2\pi (Q + dQ)) \approx \cos(2\pi Q) - 2\pi \sin(2\pi Q) dQ$$

• Last two terms must be equal, therefore

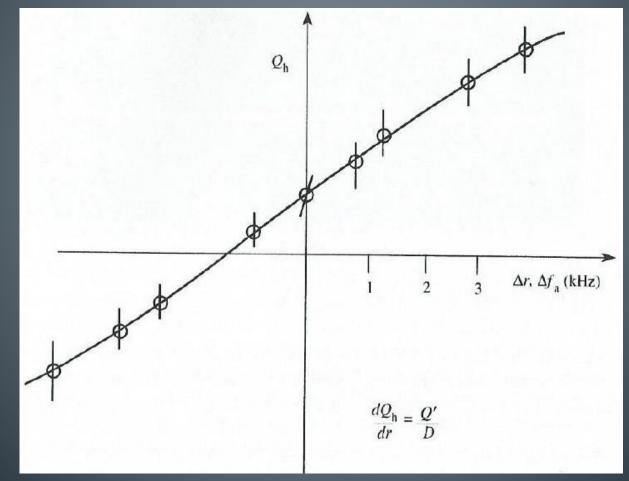
$$dQ = -\frac{K(s)\delta}{4\pi}\beta(s)ds \text{ Integrate around ring} \quad \Delta Q = -\frac{\delta}{4\pi}\oint K(s)\beta(s)\,ds$$

 The tune will always have a bit of a spread due to the momentum spread. You can define the natural chromaticity as:

$$\xi_N \equiv \left(\frac{\Delta Q}{Q}\right) / \left(\frac{\Delta p}{p_0}\right) = -\frac{1}{4\pi Q} \oint K(s)\beta(s) \, ds$$

### Chromaticity is measureable

• Steering the beam to a new mean radius, and adjusting the RF frequency to vary the momentum, you can measure the Q



## Chromaticity is correctable

- Need a way to connect the momentum offset,  $\delta$ , to focusing.
- We can do this using sextupoles, which give us nonlinear focusing (dependent on position) and dispersion (momentum-dependent position).
- This is going to require an aside, so we can discuss dispersion, which actually deserves more than an aside.

### More than a small aside: Dispersion

- Dispersion,  $\eta(s)$ , is defined as the change in particle position with fractional momentum offset,  $\delta$ .
  - This originates from the momentum dependence of dipole bends.
- Add explicit momentum dependence to EOM:  $x'' + K(s)x = \frac{\sigma}{\rho(s)}$

$$x(s) = C(s)x_0 + S(s)x'_0 + D(s)\delta_0$$
  

$$x'(s) = C'(s)x_0 + S'(s)x'_0 + D'(s)\delta_0$$

x

$$D(s) = S(s) \int_0^s \frac{C(\tau)}{\rho(\tau)} d\tau - C(s) \int_0^s \frac{S(\tau)}{\rho(\tau)} d\tau$$

Particular sol'n inhomog. DE w/ periodic  $\rho(s)$ .

The trajectory has two parts:  $x(s) = betatron + \eta_x(s)\delta$   $\eta_x(s) \equiv$ 

$$\begin{pmatrix} x(s) \\ x'(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta_0 \end{pmatrix}$$

#### More than a small aside: Dispersion

• Noting that dispersion is periodic  $\eta_x(s+C) = \eta_x(s)$ 

$$\begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_x(s) \\ \eta'_x(s) \\ \delta_0 \end{pmatrix}$$

• In an achromat, D = D' = 0. If we let  $\delta_0 = 0$  we can simplify the process and solve to find

$$\begin{pmatrix} \eta_x(s)\\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} C(s) & S(s)\\ C'(s) & S'(S) \end{pmatrix} \begin{pmatrix} \eta_x(s)\\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s)\\ D'(s) \end{pmatrix} = M \begin{pmatrix} \eta_x(s)\\ \eta'_x(s) \end{pmatrix} + \begin{pmatrix} D(s)\\ D'(s) \end{pmatrix}$$
$$(I-M) \begin{pmatrix} \eta_x(s)\\ \eta'_x(s) \end{pmatrix} = \begin{pmatrix} D(s)\\ D'(s) \end{pmatrix} \Rightarrow \qquad \begin{pmatrix} \eta_x(s)\\ \eta'_x(s) \end{pmatrix} = (I-M)^{-1} \begin{pmatrix} D(s)\\ D'(s) \end{pmatrix}$$

Solving gives

$$\eta(s) = \frac{[1 - S'(s)]D(s) + S(s)D'(s)}{2(1 - \cos\Delta\phi)}$$
$$\eta'(s) = \frac{[1 - C(s)]D'(s) + C'(s)D(s)}{2(1 - \cos\Delta\phi)}$$

• More on this later.

#### So how do we correct the chromaticity?

• Recall that we define the natural chromaticity as

$$\xi_N \equiv \left(\frac{\Delta Q}{Q}\right) / \left(\frac{\Delta p}{p_0}\right) = -\frac{1}{4\pi Q} \oint K(s)\beta(s) \, ds$$

• And that the trajectory goes as

$$x(s) = x_{\text{betatron}}(s) + \eta_x(s)\delta$$

• If we describe the sextupole B field as  $B_y = b_2 x^2$ , we can then break it down as

$$B_y(\text{sext}) = b_2 [x_{\text{betatron}}(s) + \eta_x(s)\delta]^2 \approx b_2 x_{\text{betatron}}^2 + 2b_2 x_{\text{betatron}}(s)\eta_x(s)\delta$$

Nonlinear

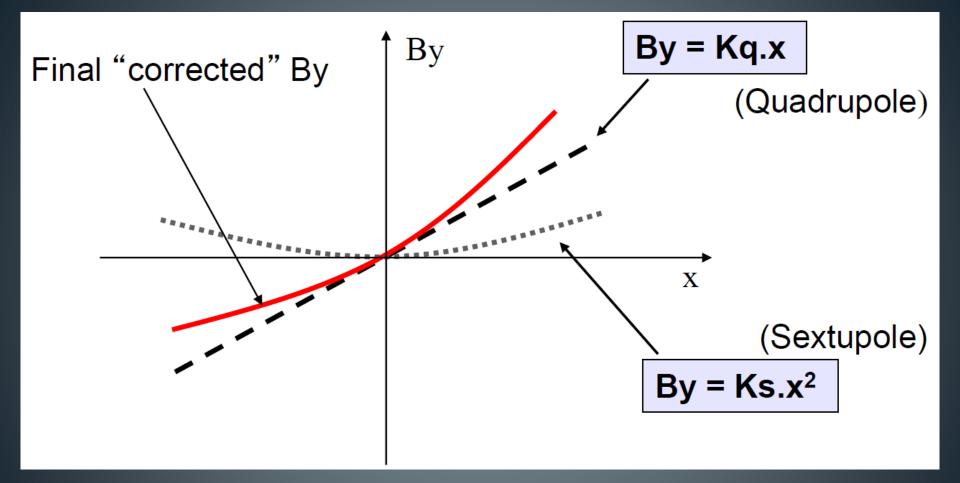
Like quad: K(s)

• You end up getting a total chromaticity from all sources as

$$\xi = -\frac{1}{4\pi Q} \oint [K(s) - b_2(s)\eta_x(s)]ds$$

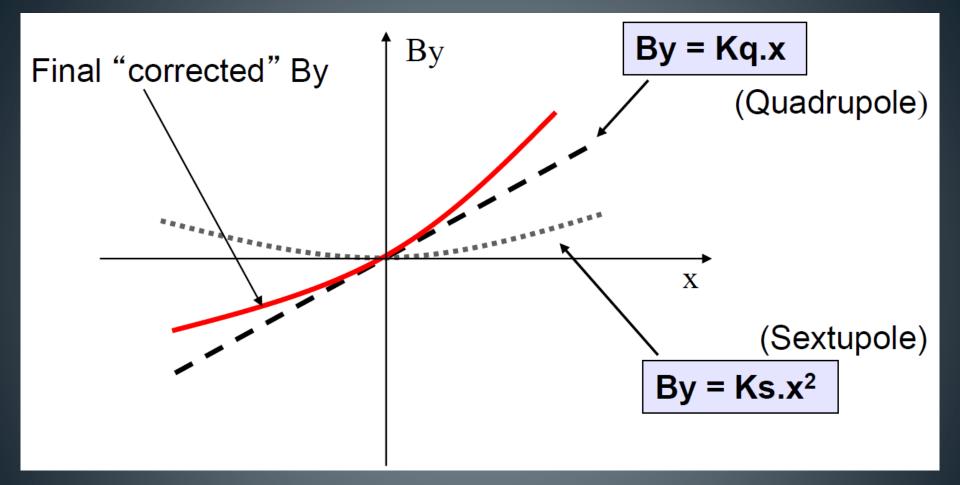
Notice that this means strong focusing (large K) requires large sextupoles!

#### Maybe with a bit less math?



 Here, the sextupole field acts to increase the quadrupole magnetic field for particles that have a positive displacement, and decrease the field for particles with negative displacements.

#### Maybe with a bit less math?



 Since the dispersion describes how the momentum changes the radial position of the particles, the sextupoles will alter the focusing field seen by the particles as a function of momentum.

## How are we for time?

## Got some more in you?

#### A bit more on Dispersion – For a FODO Cell

• Recall from before

$$\eta(s) = \frac{[1 - S'(s)]D(s) + S(s)D'(s)}{2(1 - \cos\Delta\phi)}$$
$$\eta'(s) = \frac{[1 - C(s)]D'(s) + C'(s)D(s)}{2(1 - \cos\Delta\phi)}$$

• A periodic lattice without dipoles has no **intrinsic** dispersion. If we consider a FODO lattice with long dipoles and thin quads, which is one of many in a large accelerator so that  $\theta_C \ll 1$ :

$$M_{-2f} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad M_{dipole} = \begin{pmatrix} 1 & \frac{L}{2} & \frac{L\theta_C}{8} \\ 0 & 1 & \frac{\theta_C}{2} \\ 0 & 0 & 1 \end{pmatrix} \qquad M_{f} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{f} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$M_{FODO} = M_{-2f} M_{dipole} M_f M_{dipole} M_{-2f}$$
$$M_{FODO} = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L \left(1 + \frac{L}{4f}\right) & \frac{L}{2} \left(1 + \frac{L}{8f}\right) \theta_C \\ -\frac{L}{4f^2} \left(1 - \frac{L}{4f}\right) & 1 - \frac{L^2}{8f^2} & \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right) \theta_C \\ 0 & 0 & 1 \end{pmatrix}$$

#### A bit more on Dispersion – For a FODO Cell

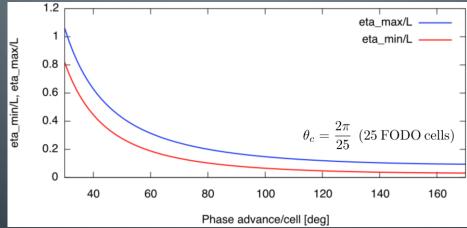
 Since we defined the periodicity based from a focusing quad center, we get

$$\hat{\eta}_x = \frac{L\theta_C}{4} \left[ \frac{1 + \frac{1}{2}\sin\frac{\Delta\phi}{2}}{\sin^2\frac{\Delta\phi}{2}} \right] \qquad \eta'_x = 0 \text{ at max}$$

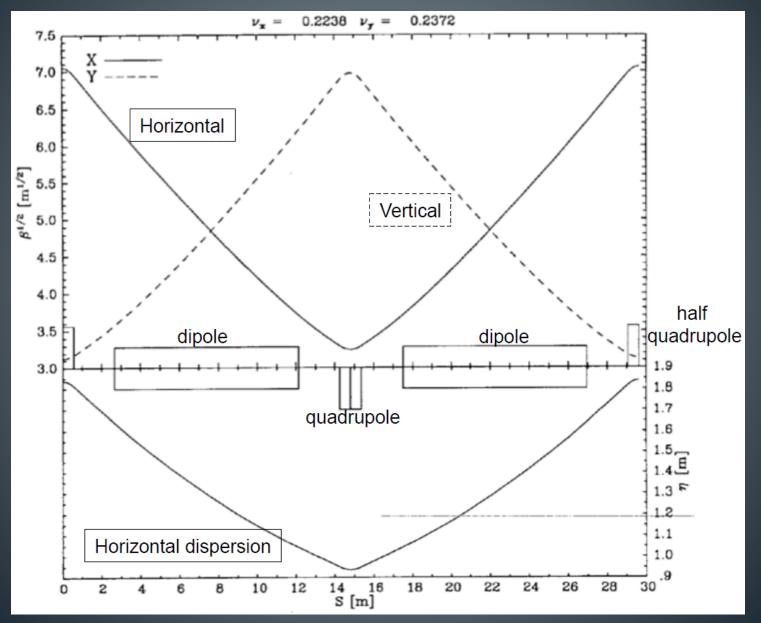
 If we change the periodicity to be based from defocusing quad centers, this becomes

$$\check{\eta}_x = \frac{L\theta_C}{4} \left[ \frac{1 - \frac{1}{2}\sin\frac{\Delta\phi}{2}}{\sin^2\frac{\Delta\phi}{2}} \right]$$

• If we plot  $\eta_{max}/L$  and  $\eta_{min}/L$  against the phase advance/cell:



#### An example: RHIC FODO Cell



#### How to suppress dispersion

• Often, in straight sections, you want to make  $\eta_{\chi} = \eta'_{\chi} = 0$ .

- Perhaps to keep the beam small in a wiggler in a light source
- However, the FODO dispersion solution is non-zero everywhere. In order to address this, you can match between these two sections with a non-periodic set of magnets called a dispersion suppressor.

- Here we have two FODO cells with different bend angles, but the same quad focusing so that β and Δφ remain (mostly) the same.
- The goal is to match  $(\eta_x, \eta'_x) = (\hat{\eta}_x, 0)$  to  $(\eta_x, \eta'_x) = (0, 0)$ .
- For simplicity, let's make  $\alpha_{\chi} = 0$  at each end.

### A little math for the dispersion suppressor

$$\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \cos 2\Delta\phi_x & \beta_x \sin 2\Delta\phi_x & D(s)\\ -\frac{\sin 2\Delta\phi_x}{\beta_x} & \cos 2\Delta\phi_x & D'(s)\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{\eta}_x\\0\\1 \end{pmatrix}$$

$$D(s) = \frac{L}{2} \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L^2}{4f^2} \right) \theta_1 + \theta_2 \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \left( 3 - \frac{L}{8f} \right) \left( 3 - \frac{L}{8f} \right) \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \right] \quad D'(s) = \left( 1 + \frac{L}{8f} \right) \left[ \left( 3 - \frac{L}{8f} \right) \left( 3 - \frac{L}{8f}$$

$$D'(s) = \left(1 - \frac{L}{8f} - \frac{L^2}{32f^2}\right) \left[\left(1 - \frac{L^2}{4f^2}\right)\theta_1 + \theta_2\right]$$

$$\hat{\eta}_x = \frac{4f^2}{L} \left(1 + \frac{L}{8f}\right) \left(\theta_1 + \theta_2\right)$$

$$\theta_1 = \left(1 - \frac{1}{4\sin^2\frac{\Delta\phi_x}{2}}\right)\theta \qquad \theta_2 = \left(\frac{1}{4\sin^2\frac{\Delta\phi_x}{2}}\right)\theta$$

$$\theta = \theta_1 + \theta_2$$

• So, we have two cells, but one FODO bend angle with reduced bending.

## What did we talk about?

- Introductory stuff.
- Resonance and resonant conditions
  - What is it?
  - Tune
    - Integer Tune
    - Tune Diagrams
- Chromaticity
  - Relationship to Tune
  - Chromaticity Correction
- Dispersion
  - Relationship to chromaticity and tune
  - IF TIME: FODO Dispersion and Dispersion Correction

# Wrapping up

- This is only an introduction to what is a very complex topic.
  - You should DEFINITELY read more about this in the references listed before, as well as your book.
  - Look at these notes, plus Emmanuel's notes and the ones on Todd's website.

Hopefully, these overlap well with your assignments.

## References

- Lecture notes from MePAS 2011, Lectures 4, 5, 6, and 7 http://www.toddsatogata.net/2011-MePAS/
- Lecture notes from USPAS 2013 (Waldo MacKay), Lecture "Resonances I" - <u>http://www.toddsatogata.net/2013-</u> <u>USPAS/2013-01-23-Resonances1.pdf</u>
- JAI Graduate Physics 2015 Lecture 8 Notes from Emmanuel Tsesmelis
- Particle Accelerator Physics Helmut Wiedemann
- Accelerator Physics SY Lee
- Handbook of Accelerator Physics and Engineering Alex Chao, Maury Tigner