


What are we talking about?

Introductory stuff...like this.

Resonance and resonant conditions
— What s it?
— Tune

* Integer Tune
* Tune Diagrams

Chromaticity

— Relationship to Tune

— Chromaticity Correction

Dispersion

— Relationship to chromaticity and tune

— |F TIME: FODO Dispersion and Dispersion Correction



Obligatory Introductory Stuff

* Been working on accelerators in some way, shape, or
form since 2004.

— SRF technology, then beam dynamics, then beamline design,
now feedback system simulation.

— Always worked on linear machines.
— Gave this lecture last year, tried to adjust after feedback.

* There’s a lot to talk about, and only an hour to talk about
it
— I'll do what | can, but | HIGHLY recommend you check out:

* Helmut Wiedemann — Particle Accelerator Physics (AKA the Bible of
Accelerator Physics Textbooks)

* SY. Lee — Accelerator Physics (some treatments are excellent,
others are confusing)

. — USPAS instructor, current professor and
senior research staff scientist at Jefferson Lab
. - Website for USPAS, which contains many

class notes and useful information.


http://www.toddsatogata.net/
http://uspas.fnal.gov/

Resonant Conditions: What are they?

* A resonance can be excited through various imperfections in the
beamline.

* The phase advance of the betatron oscillation around the

machine will repeat itself after a certain number of turns around
the machine.

* Ex/ If phase advance/turn = 120, repeats after 3 turns

Horizontal Betatron Oscillation
with tune: Qp = 6.3,
1.e., 6.3 oscillations per turn.

Vertical Betatron Oscillation

with tune: Qy = 7.5,
1.e., 7.5 oscillations per turn.




Resonant Conditions: What are they?

* Simply put, let’s say we have a Q = 3.333
* This can also be stated as 3Q = 10
 We can define the order of a resonance as “n” where
n X Q = integer

* ForQ=3.333:
e 3xQ=10
* q=0.333

e On the normalized

phase ellipse:
2nd turn

o 3rd turn




Resonant Conditions: A bit more detail

* Synchrotron is a periodic focusing system, often made up of
smaller periodic regions.
* Can write down a periodic one-turn matrix as

1 0
0 1

M = Icos Apc + Jsin Agpe [ = (

* Tune is defined as the total betatron phase advance in one
revolution around the ring, divided by 2mt

Horizontal Betatron Oscillation

, Vertical Betatron Oscillation
. with tune: Qy, = 6.3, with tune: Qy = 7.5, 6
1.e., 6.3 oscillations per turn. i.e., 7.5 oscillations per turn.




Resonant Conditions: A bit more detail

Tunes are both horizontal and vertical
They are a direct indication of the amount of focusing in an
accelerator
* Higher tune means tighter focusing, lower < 3, ,,(s) >
Tunes are critical for accelerator performance
* Linear stability depends upon phase advance
* Resonant instabilities can occur when nQ, + m@,, = k
* Often adjusted using groups of quadrupoles

Mone—turn = 1 €0os(2mQ) + J sin(2mQ)

There’s another way to describe all this...
* http://www.toddsatogata.net/2013-USPAS/2013-01-23-
Resonancesl.pdf



Resonant Conditions: Integer resonance

Integer resonances

Let’s start with a simplified formalism for the horizontal motion equation:

d?x
— + Qur = f(0),
where
e = s/R is the azimuthal angle around the ring with

e I? being the average radius of the ring,

1. e. we approximate by a circular ring.

e f(0) is some source of perturbations from errors.

Fourier transform the function f and let’s look at the m® harmonic term:

d?x

¥T5) + Qi = = cos(mb). (1)
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Resonant Conditions: Integer resonance

Solution to Eq. (1) is of the form

with homogeneous part
T = Acos(Qgf) + Bsin(Qgb),

an inhomogeneous part

=
=

Qg2 — m?

(cos(mé) — cos(Qyb)]

Qu+m 6 sin Qu —m g1 .
(Q )0 2
: g—m 2
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Resonant Conditions: Blown Up!

Linear growth from integer resonance
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Resonant Conditions: Integer Resonance = BAD

e Putting it more simply:

e On an integer resonance, p is a multiple of 27. we expect M = 1.

If there is a small path-length error 4/ in one drift section, then the 1-turn matrix

o (1 ol 1 0\ (1 &l
M(n 1)(() 1)((} 1)'

becomes

Any particle with 25, # 0 will propagate as
\ 0

(J‘n) B (1 ol ) " (J'U) B (;ro + nxg (‘U)
, 0 1 i __ T '

This grows linearly with turn number n.
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Before the ugly math, here’s what I’'m describing

* Various imperfections in the beamline will alter the tune in a
periodic machine.
* One way to visualize the influence of these imperfections is by
looking at what happens on the normalized phase space plot.
* However, without knowing what is happening, it is hard to
understand WHY these are helpful.
* For example, a dipole may have the following:

Note: deflection is
independent of
position.

For Q = 2.00: Oscillation induced by the dipole kick grows on
each turn and the particle is lost (15t order resonance Q = 2).

For Q = 2.50: Oscillation is cancelled out every second turn,
and therefore the particle motion is stable. 12




A bit more visualization

* For a quadrupole

For @ = 2.50: Oscillation induced by the guadrupole kick grows
on each turn and the particle is lost

(2nd order resonance 2Q = 5)

For Q = 2.33: Oscillation is cancelled out every third turn, and
therefore the particle motion is stable.

Note: deflection is
proportional to
position.

* For a sextupole

—

3 turn
4th

5t tumn

For Q = 2.33: Oscillation induced by the sextupole kick grows on
each turn and the particle is lost

3 order resonance 3Q =7

For Q = 2.25: Oscillation is cancelled out every fourth turn, and
therefore the particle motion is stable.

Note: deflection is
proportional to the
square of the
position.
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Resonant Conditions: Some math

* |f you include linear coupling between the planes (small amount,
due to the slight roll of a quadrupole by angle 8 (and trying to
avoid most of the math).

+ Qg 2r=¢ cos(mé)y

— £ (:.DS[ HIH) r

—c, [cos(Qy + m)f + cos(m — Qg )b
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Resonant Conditions: A bit more math

* Running through somewhat obscene amounts of mathematics,
you can eventually find your way to the resonance conditions

Linear Sum Resonance

Linear Difference Resonance

e Let’s take an uncoupled one-turn matrix:

COS [11 + vq Sin f1q (31 sin 11 ) 0
—y1 Sin jiq COS f11 — (1 SIN i1 ] 0
0 0 COS [12 + g sin [

0

3o sin 119

0 —"y9 SN /19 COS [1g — (xo SIN U9

e Diff. res. condition: sinjpy =  sin s,

e Sum res. condition: sinjq = —sin jo.
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Resonant Conditions: | know...too much math

* |fthe last elementin T is a thin lens quadrupole with a small roll:

Estimate effect of rolled thin quad:

, (M n\ 11
= N)RQR QLT

[ Tcosf TIsin# F 0 Icosf —Isiné D o u; 0O
\ —Isinf Icost 0O D Isinf Icosé 0 F 0 uy/°

Fast forward skipping a bit of algebra:

T — (Icos2f +D2sin’f)u; (I — F2)uy cosfsiné
—\ (D2 —I)ujcosfsing (Icos?8+ F?sin?6)us

1 0 0 0
%511129 1 %cos@sinﬂ 0/ "2

0 0
2 cosfsing 0 )M —




Resonant Conditions: This is leading somewhere

e Some unavoidable math:

,  2sin%6 [ 0 0
M = uqcos® 8 + - ) . )
f COS 11 + vy sIn 11 [P S0 fiq

|') -
N = uscos”f —

2sin” @ ( 0 0

COS [lo + (vo SIN f1o B9 SIN fig

f

0 0 sin 26
m = . oo —,
COs iy + vy SN fig 51 8in g f

0 0 sin 26
n = : P —.
COS [l + (vg SIN Ly [39 SIN fL9 f

* And then accepting (let’s just call it a definition):

1w

—

K=A+A"

* We can find that for both resonant conditions, cos y; = cos u,, so
the Tr(uq)=Tr(u,)
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Resonant Conditions: Almost there

* A bit more ugliness:

tr(M — N 31 8in (1 — (3o sin it
( ):'1 Hi—P2% ’ugsingﬂ,

2 f

m+n| = 2 sin 2(20) sin ju1 sin pio,

e Notice that |m + n| # 0 if there is a slight roll of the quadrupole.

e The sign of |m + n| is determined solely by the product sin g sin jo.
For the slightly coupled T’. the argument of the radical is

A, — (tr(M2 N)

) + |m +n|

’31 32
f‘ 2

sin?(26) sin® ju1

sin g

(1 sin jtg — Po sin jig)? + - sin?(26) sin i1 sin pio

_ 31 39
(B % Bo)?sin® py - [z

02 for small 6.

2
434 39 sin® [11
+ 2




Resonant Conditions: See? Makes a little sense.

* So, as O increases, the degenerate eigenvalues separate:

1. In the case of a difference resonance, A_ > 0. and the degenerate
A; eigenvalue pairs split apart by moving along the unit circle in the
complex plane. Since the eigenvalues stay on the circle, the motion

remains stable with /\;-‘ — Aj_l.

. For a sum resonance, A, < 0, and the \; eigenvalues move away
from the unit circle out into the complex plane resulting in unstable

: . . —1
motion with AT £ A, .

stable unstable

Difterence Resonance Sum Resonance




So, that’s why | showed you that math

* Various imperfections in the beamline will alter the tune in a
periodic machine.
* One way to visualize the influence of these imperfections is by
looking at what happens on the normalized phase space plot.
* However, without knowing what is happening, it is hard to
understand WHY these are helpful.
* For example, a dipole may have the following:

Note: deflection is
independent of
position.

For Q = 2.00: Oscillation induced by the dipole kick grows on
each turn and the particle is lost (15t order resonance Q = 2).

For Q = 2.50: Oscillation is cancelled out every second turn,
and therefore the particle motion is stable. 20




Worthwhile, right?

* For a quadrupole

For @ = 2.50: Oscillation induced by the guadrupole kick grows
on each turn and the particle is lost

(2nd order resonance 2Q = 5)

For Q = 2.33: Oscillation is cancelled out every third turn, and
therefore the particle motion is stable.

Note: deflection is
proportional to
position.

* For a sextupole

—

3 turn
4th

5t tumn

For Q = 2.33: Oscillation induced by the sextupole kick grows on
each turn and the particle is lost

3 order resonance 3Q =7

For Q = 2.25: Oscillation is cancelled out every fourth turn, and
therefore the particle motion is stable.

Note: deflection is
proportional to the
square of the
position.
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| know you’re confused

* Because of the various imperfections due to the many different
elements in the beamline, making sure you do not excite a
resonant condition gets very difficult to control.

* Instead of keeping track of these circles for each case, and
remembering which resonances you excite for each element, a
tune plot is often used (sometimes called the necktie diagram).

* Avoiding the mathematical derivation for each case (see the
MacKay lecture of which | am drawing much of this), one can
construct these necktie diagrams as demonstrated on the
following slides.
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The results!

* A normal quadrupole excites half-integer resonances:

20y = £m, and 2@, = m.

* A normal octopole: A normal decapole:

=ZTAMEER N © A normal sextupole: — =@ ME==p @M
+40Q), = 30m +50Qy
+2Qy 1O, = 3Qy + 2Qy
+30Qy =

+20y
+2Q £ 2Qy =

+0Qy + 20y O 110
+Qy + 20y,
+Qy =

23



The results!

* A normal quadrupole excites half-integer resonances:

* A normal octopole: A normal decapole:

+m, and

* Anormal sextupole:  ERI@ M E={ONES
+5Qy

TOq £ 2Qy

+2Qy + 2Qy

24



Translating to a graphical means...
Lines from normal multipoles

I+l =

—
Tt e '
LT Al ORI,
b Bl ol

I,, - ol - ~ 1'2 .\-r__.
1 I+1 I

a) A tune plot showing the resonance lines driven by a normal quadrupole
perturbation (heavy lines), and a normal octopole perturbation (all lines).
I and Iy are arbitrary integers

b) A tune plot showing the resonance lines driven by a normal sextupole (heavy
lines), and a normal decapole (heavy and dashed lines).

e Typically: Positive slopes (diff res) OK; Negative slopes (sum res) bad.

1Yy USPAS: Lectures on Resonances
I%"[H Waldo MacKay January, 2013
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And including skews...
Lines from skew multipoles

L*1

-\.__‘ I " f d N
I+ 1 I+

a) Skew quad lines (solid) and skew octopole lines (bold and dashed).

b) Skew sextupole (bold) and skew decapole (bold and dashed) lines.

e Again: Positive slopes (diff res) OK; Negative slopes (sum res) bad.

FiYy USPAS: Lectures on Resonances
IS"& Waldo MacKay January, 2013
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And then including periodicity...
Periodicity

Order=6 Periodicity=1 Order=6 Periodicity=3
Orders: 123456 _ Orders: 123456

USPAS: Lectures on Resonances
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And then including periodicity...
Periodicity

Order=6 Periodicity=1 Order=6 Periodicity=3
Orders: 123456 _ Orders: 123456
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It’s real, and here’s an example

P.S. Booster Tune Diagramme

Mo

5.6

mjection

During acceleration change the
horizontal and vertical tune

to a place where the beam is
least influenced by resonances.

gjection




It’s real, and here’s an example

P.S. Booster Tune Diagramme

Mo

5.6

mjection

uring acceleration change the
rizontal and vertical tune
to a place where the beam is
least influenced by resonances.

gjection




At KEK in Tsukuba, Japan

TUNES

Goto TBT Detail Window

17:49:36 Reques! stopped.

0.180055 0.560056

-+
1
1

i d ey
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At KEK in Tsukuba, Japan

17:49:36 Request stopped.

0.180055

=8y
P

32



One more thing before moving on...

The tune does not stay constant in the machine. This leads to a
variation of Q for each turn.

This variation can go up and down, giving a range of possible
values for Q, which we can call AQ.

This range of values has a width, which is called the stopband of
the resonance.

Not only do you want to avoid the resonances, but you want to

avoid being in the stopband of a resonance as well, as it may pull
you into the resonance itself.

33



Another Imperfection: Chromaticity

* The focusing in a machine (and thus tune) depends on the
momentum.

* The variation of the tune with momentum offset (6 & Ap/po) is
called chromaticity.

* |nserting a momentum perturbation is akin to adding a bit of

extra focusing to the one-turn matrix which depends on the
unperturbed focusing, K.

v 5) — 1 0\ [cos(27Q) + asin(27Q) Bsin(2wQ)
Tone turn (9) = Kydds 1 —v8in(27Q) cos(2mQ) — asin(27Q)

Moo (5) cos(27Q) + asin(27Q) Bsin(2rQ)
Aone turn(. — —y 5111(271'@) + IX{,&[COS(T”JTQ) + « ‘3111( Q)]ds COs(zﬂ'Q) o sjn(QqTQ) + ]{Ua‘f)’ Sill(QTFQ)dS

* The trace is related to the new tune:




Chromaticity and Tune

* Going through a bit of math:

1 Koo
cos(2mQnew) = =Tr M = cos(27Q)) + 0

> , Bsin(27Q))ds

cos(2mQnew) = €os(27(Q 4+ dQ)) ~ cos(27Q) — 27w sin(27Q)dQ

e Last two terms must be equal, therefore

K(s)d R
dQ —_ — 4(7(_) ﬁ(S)dS Integrate around ring AQ o A7 fﬁ(S)/B(S) ds

Total change in tune

* The tune will always have a bit of a spread due to the momentum
spread. You can define the natural chromaticity as:

()2
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Chromaticity is measureable

* Steering the beam to a new mean radius, and adjusting the RF
frequency to vary the momentum, you can measure the Q

A,

0,

2 3 Ar| A'fil (kHZ)

36



Chromaticity is correctable

* Need a way to connect the momentum offset, §, to focusing.

* We can do this using sextupoles, which give us nonlinear focusing
(dependent on position) and dispersion (momentum-dependent

position).

* This is going to require an aside, so we can discuss dispersion,
which actually deserves more than an aside.

37



More than a small aside: Dispersion

* Dispersion, n(s), is defined as the change in particle position with
fractional momentum offset, 6.
* This originates from the momentum dependence of dipole
bends.

z(s) = C(s)xo + S(s)xy + D(s) o 806 / Oy s / e
z'(s) = C'(s)xo + S'(s)xy + D'(s)

o P(7)




More than a

small aside: Dispersion

2 (S) C(s) S(s) D(s)
me(s) | = | C'(s) S'(s) D'(s)| | n
o(s) 0 0

* Inan achromat, D =D’
process and solve to find

(r)= (0 5)
-0 (7)) = ()

= Solving gives

e More on this later.

= 0. If we let 6, = 0 we can simplify the

(0 (B0 = ar (%0) + (B
) ?7" S
— _1 ‘

_ C(s)|D'(s) + C'(s)D(s
2(1 — cos Ag)

39



So how do we correct the chromaticity?

* Recall that we define the natural chromaticity as

- () (3)-

* If we describe the sextupole B field as B,, = b,x?, we can then
break it down as

Nonlinear Like quad: K(s)
* You end up getting a total chromaticity from all sources as

£ =g PIEE ~ ba(oma(s)lds

Notice that this means strong focusing (large K) requires large sextupoles!

40



Maybe with a bit less math?

By = Kq.x

Final “corrected” By
(Quadrupole)

By = Ks.x?

Here, the sextupole field acts to increase the quadrupole
magnetic field for particles that have a positive displacement, and
decrease the field for particles with negative displacements.




Maybe with a bit less math?

By = Kq.x

Final “corrected” By
(Quadrupole)

By = Ks.x?

Since the dispersion describes how the momentum changes the
radial position of the particles, the sextupoles will alter the
focusing field seen by the particles as a function of momentum.
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A bit more on Dispersion — For a FODO Cell
n(s) = [1—5(s)]D(s) + S(s)D’(s)
e Recall from before 2(1 — cos Ag)

1oy - L= C(8)]D'(s) + C7(s) D(s)
m(s) = 2(1 — cos Ag)

* A periodic lattice without dipoles has no intrinsic dispersion. If we
consider a FODO lattice with long dipoles and thin quads, which is
one of many in a large accelerator so that 6, < 1:

L
2
1

0 0

Mropo = M_of MaiporeM  Maipole M 2 ¢

L2 L L
-4z L(i+d) 4

Mropo = | — L, (1— %) 1 — %
0 O 44




A bit more on Dispersion — For a FODO Cell

Since we defined the periodicity based from a focusing quad
center, we get

If we change the periodicity to be based from defocusing quad
centers, this becomes

-t
n

eta_max/L
eta_min/L

—

<
>
@
EI
o
&
)
.
=~
L
EI
©
]
)

80 100 120 140 160
45

Phase advance/cell [deg]



An example: RHIC FODO Cell

02238 v, = 0.2372

T T T

half
iquadrupole

11.9
11.8

| I A R A By s
.
r
P 4
<
laisasdaas i dassalas s das il iaasd sl oy i i)

quadrupole

Horizontal dispersion

2 4 6 8 10 12 14 18 18 20 =22
S [m]

O pPr———rrvyv—r




How to suppress dispersion

Often, in straight sections, you want to make n,, = n',, = 0.
* Perhaps to keep the beam small in a wiggler in a light source

However, the FODO dispersion solution is non-zero everywhere.
In order to address this, you can match between these two
sections with a non-periodic set of magnets called a dispersion
suppressor.

Here we have two FODO cells with different bend angles, but the
same quad focusing so that B and A remain (mostly) the same.

The goal is to match (1, 1) = (7, 0) to (1, nx) = (0,0).
For simplicity, let’s make a,, = 0 at each end. 47



A little math for the dispersion suppressor

cos2A¢,  Brsin2A¢,  D(s) 0l
) = (% cos 2A¢, D’(s)) (

B
0

* So, we have two cells, but one FODO bend angle with reduced
bending.
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What did we talk about?

Introductory stuff.

Resonance and resonant conditions
— What s it?
— Tune

* Integer Tune
* Tune Diagrams

Chromaticity

— Relationship to Tune

— Chromaticity Correction

Dispersion

— Relationship to chromaticity and tune

— |F TIME: FODO Dispersion and Dispersion Correction
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Wrapping up

* This is only an introduction to what is a very
complex topic.

— You should DEFINITELY read more about this in

the references listed before, as well as your
book.

— Look at these notes, plus Emmanuel’s notes and
the ones on Todd’s website.

* Hopefully, these overlap well with your
assignments.
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Particle
Accelerator

Handbook of Acce
Maury Tigner

uel

ering — Alex Chao,
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