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What are we talking about?
• Introductory stuff…like this.
• Resonance and resonant conditions

– What is it?
– Tune

• Integer Tune
• Tune Diagrams

• Chromaticity
– Relationship to Tune
– Chromaticity Correction

• Dispersion
– Relationship to chromaticity and tune
– IF TIME: FODO Dispersion and Dispersion Correction
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Obligatory Introductory Stuff
• Been working on accelerators in some way, shape, or 

form since 2004.
– SRF technology, then beam dynamics, then beamline design, 

now feedback system simulation.
– Always worked on linear machines.
– Gave this lecture last year, tried to adjust after feedback.

• There’s a lot to talk about, and only an hour to talk about 
it
– I’ll do what I can, but I HIGHLY recommend you check out:

• Helmut Wiedemann – Particle Accelerator Physics (AKA the Bible of 
Accelerator Physics Textbooks)

• S.Y. Lee – Accelerator Physics (some treatments are excellent, 
others are confusing)

• www.toddsatogata.net – USPAS instructor, current professor and 
senior research staff scientist at Jefferson Lab

• http://uspas.fnal.gov/ - Website for USPAS, which contains many 
class notes and useful information.
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Resonant Conditions: What are they?

• A resonance can be excited through various imperfections in the 
beamline.

• The phase advance of the betatron oscillation around the 
machine will repeat itself after a certain number of turns around 
the machine.
• Ex/ If phase advance/turn = 120°, repeats after 3 turns
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Resonant Conditions: What are they?

• Simply put, let’s say we have a Q = 3.333
• This can also be stated as 3Q = 10
• We can define the order of a resonance as “n” where

n x Q = integer
• For Q = 3.333:

• 3 x Q = 10
• q = 0.333

• On the normalized
phase ellipse:
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Resonant Conditions: A bit more detail

• Synchrotron is a periodic focusing system, often made up of 
smaller periodic regions.
• Can write down a periodic one-turn matrix as 

• Tune is defined as the total betatron phase advance in one 
revolution around the ring, divided by 2π
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Resonant Conditions: A bit more detail

• Tunes are both horizontal and vertical
• They are a direct indication of the amount of focusing in an 

accelerator
• Higher tune means tighter focusing, lower < 𝛽𝑥,𝑦 𝑠 >

• Tunes are critical for accelerator performance
• Linear stability depends upon phase advance
• Resonant instabilities can occur when 𝑛𝑄𝑥 +𝑚𝑄𝑦 = 𝑘

• Often adjusted using groups of quadrupoles

• There’s another way to describe all this…
• http://www.toddsatogata.net/2013-USPAS/2013-01-23-

Resonances1.pdf

𝑀𝑜𝑛𝑒−𝑡𝑢𝑟𝑛 = 𝐼 cos(2𝜋𝑄) + 𝐽 sin(2𝜋𝑄)
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Resonant Conditions: Integer resonance
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Resonant Conditions: Integer resonance
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Resonant Conditions: Blown Up!
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Resonant Conditions: Integer Resonance = BAD

• Putting it more simply:
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Before the ugly math, here’s what I’m describing

• Various imperfections in the beamline will alter the tune in a 
periodic machine.

• One way to visualize the influence of these imperfections is by 
looking at what happens on the normalized phase space plot.
• However, without knowing what is happening, it is hard to 

understand WHY these are helpful.
• For example, a dipole may have the following:

Note: deflection is 
independent of 
position.
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A bit more visualization

• For a quadrupole • For a sextupole

Note: deflection is 
proportional to 
position.

Note: deflection is 
proportional to the 
square of the 
position.
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Resonant Conditions: Some math

• If you include linear coupling between the planes (small amount, 
due to the slight roll of a quadrupole by angle θ (and trying to 
avoid most of the math).

• Assuming ε is small, and making some substitutions:
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Resonant Conditions: A bit more math

• Running through somewhat obscene amounts of mathematics, 
you can eventually find your way to the resonance conditions

Linear Sum Resonance

Linear Difference Resonance

• Let’s take an uncoupled one-turn matrix:
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Resonant Conditions: I know…too much math

• If the last element in T is a thin lens quadrupole with a small roll:
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Resonant Conditions: This is leading somewhere

• Some unavoidable math:

• And then accepting (let’s just call it a definition):

• We can find that for both resonant conditions, cos 𝜇1 = cos 𝜇2, so 
the 𝑇𝑟(𝒖1)=Tr(𝒖2)
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Resonant Conditions: Almost there

• A bit more ugliness:
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Resonant Conditions: See? Makes a little sense.

• So, as θ increases, the degenerate eigenvalues separate:
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So, that’s why I showed you that math

• Various imperfections in the beamline will alter the tune in a 
periodic machine.

• One way to visualize the influence of these imperfections is by 
looking at what happens on the normalized phase space plot.
• However, without knowing what is happening, it is hard to 

understand WHY these are helpful.
• For example, a dipole may have the following:

Note: deflection is 
independent of 
position.
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Worthwhile, right?

• For a quadrupole • For a sextupole

Note: deflection is 
proportional to 
position.

Note: deflection is 
proportional to the 
square of the 
position.
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I know you’re confused

• Because of the various imperfections due to the many different 
elements in the beamline, making sure you do not excite a 
resonant condition gets very difficult to control.

• Instead of keeping track of these circles for each case, and 
remembering which resonances you excite for each element, a 
tune plot is often used (sometimes called the necktie diagram).

• Avoiding the mathematical derivation for each case (see the 
MacKay lecture of which I am drawing much of this), one can 
construct these necktie diagrams as demonstrated on the 
following slides.
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The results!

• A normal quadrupole excites half-integer resonances:

• A normal octopole:

• A normal sextupole:

• A normal decapole:
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The results!

• A normal quadrupole excites half-integer resonances:

• A normal octopole:

• A normal sextupole:

• A normal decapole:
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Translating to a graphical means…
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And including skews…
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And then including periodicity…
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And then including periodicity…

This can’t be real, right?
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It’s real, and here’s an example
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It’s real, and here’s an example
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At KEK in Tsukuba, Japan
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At KEK in Tsukuba, Japan
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One more thing before moving on…

• The tune does not stay constant in the machine. This leads to a 
variation of Q for each turn.

• This variation can go up and down, giving a range of possible 
values for Q, which we can call ΔQ.

• This range of values has a width, which is called the stopband of 
the resonance.

• Not only do you want to avoid the resonances, but you want to 
avoid being in the stopband of a resonance as well, as it may pull 
you into the resonance itself.
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Another Imperfection: Chromaticity

• The focusing in a machine (and thus tune) depends on the 
momentum.

• The variation of the tune with momentum offset (𝛿 ≝ ൗ∆𝑝
𝑝0) is 

called chromaticity.
• Inserting a momentum perturbation is akin to adding a bit of 

extra focusing to the one-turn matrix which depends on the 
unperturbed focusing, 𝐾0.

• The trace is related to the new tune:
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Chromaticity and Tune

• Going through a bit of math:

• Last two terms must be equal, therefore

Integrate around ring

Total change in tune

• The tune will always have a bit of a spread due to the momentum 
spread. You can define the natural chromaticity as:
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Chromaticity is measureable

• Steering the beam to a new mean radius, and adjusting the RF 
frequency to vary the momentum, you can measure the Q
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Chromaticity is correctable

• Need a way to connect the momentum offset, δ, to focusing.

• We can do this using sextupoles, which give us nonlinear focusing 
(dependent on position) and dispersion (momentum-dependent 
position).

• This is going to require an aside, so we can discuss dispersion, 
which actually deserves more than an aside.
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More than a small aside: Dispersion

• Dispersion, η(s), is defined as the change in particle position with 
fractional momentum offset, δ.
• This originates from the momentum dependence of dipole 

bends.

• Add explicit momentum dependence to EOM:

Particular sol’n inhomog. DE w/ periodic ρ(s).

• The trajectory has two parts:
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More than a small aside: Dispersion

• Noting that dispersion is periodic

• In an achromat, D = D’ = 0. If we let 𝛿0 = 0 we can simplify the 
process and solve to find

• More on this later. 39



So how do we correct the chromaticity?

• Recall that we define the natural chromaticity as 

• And that the trajectory goes as 

• If we describe the sextupole B field as 𝐵𝑦 = 𝑏2𝑥
2, we can then 

break it down as

Nonlinear Like quad: K(s)

• You end up getting a total chromaticity from all sources as

Notice that this means strong focusing (large K) requires large sextupoles!
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Maybe with a bit less math?

• Here, the sextupole field acts to increase the quadrupole 
magnetic field for particles that have a positive displacement, and 
decrease the field for particles with negative displacements.
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Maybe with a bit less math?

• Since the dispersion describes how the momentum changes the 
radial position of the particles, the sextupoles will alter the 
focusing field seen by the particles as a function of momentum.
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How are we for time?

Got some more in you?
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A bit more on Dispersion – For a FODO Cell

• Recall from before

• A periodic lattice without dipoles has no intrinsic dispersion. If we 
consider a FODO lattice with long dipoles and thin quads, which is 
one of many in a large accelerator so that 𝜃𝐶 ≪ 1:
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A bit more on Dispersion – For a FODO Cell

• Since we defined the periodicity based from a focusing quad 
center, we get 

• If we change the periodicity to be based from defocusing quad 
centers, this becomes

• If we plot Τ𝜂𝑚𝑎𝑥
𝐿 and Τ𝜂𝑚𝑖𝑛

𝐿 against the phase advance/cell:
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An example: RHIC FODO Cell
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How to suppress dispersion

• Often, in straight sections, you want to make 𝜂𝑥 = 𝜂′𝑥 = 0.
• Perhaps to keep the beam small in a wiggler in a light source

• However, the FODO dispersion solution is non-zero everywhere. 
In order to address this, you can match between these two 
sections with a non-periodic set of magnets called a dispersion 
suppressor.

• Here we have two FODO cells with different bend angles, but the 
same quad focusing so that β and Δφ remain (mostly) the same.

• The goal is to match 𝜂𝑥 , 𝜂𝑥
′ = ( Ƹ𝜂𝑥 , 0) to 𝜂𝑥 , 𝜂𝑥

′ = (0,0).
• For simplicity, let’s make 𝛼𝑥 = 0 at each end. 47



A little math for the dispersion suppressor

𝜃 = 𝜃1 + 𝜃2

• So, we have two cells, but one FODO bend angle with reduced 
bending.
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What did we talk about?
• Introductory stuff.
• Resonance and resonant conditions

– What is it?
– Tune

• Integer Tune
• Tune Diagrams

• Chromaticity
– Relationship to Tune
– Chromaticity Correction

• Dispersion
– Relationship to chromaticity and tune
– IF TIME: FODO Dispersion and Dispersion Correction
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Wrapping up

• This is only an introduction to what is a very 
complex topic.

– You should DEFINITELY read more about this in 
the references listed before, as well as your 
book.

– Look at these notes, plus Emmanuel’s notes and 
the ones on Todd’s website.

• Hopefully, these overlap well with your 
assignments.
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