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Electron beam dynamics in storage rings

Synchrotron radiation 

and its effect on electron dynamics

Lecture 1: Synchrotron radiation

Lecture 2: Undulators and Wigglers

Lecture 3: Electron dynamics-I 

Lecture 4: Electron dynamics-II



Outline

Short recap on synchrotron radiation

Radiation damping of synchrotron oscillation

direct computation of damped longitudinal motion

Radiation damping of vertical betatron oscillations

modification of the vertical invariant of betatron oscillations

Radiation damping of horizontal betatron oscillations

modification of the horizontal invariant of betatron oscillations

Damping partition number and Robinson theorem

Modification of damping rates: the damping ring example

Radiation Integrals



Synchrotron radiation in a storage ring

Assuming and substituting the acceleration field 
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When the electron velocity approaches the speed of light the emission 

pattern is sharply collimated forward

cone aperture
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Basic formulae for synchrotron radiation
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Total instantaneous power radiated by one electron

Energy Loss per turn (per electron)
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The RF system will replace the energy lost by synchrotron radiation



Effects of synchrotron radiation on electron 

beam dynamics

The electrons radiate energy: the equations of motion have a dissipative 

term (non conservative system) and Liouville’s theorem does not apply;

The emission of radiation leads to damping of the betatron and 

synchrotron oscillations

Radiation is not emitted continuously but in individual photons. The 

emission time the energy emitted are random variables with a known 

distribution (from the theory of synchrotron radiation: see spectral angular 

distribution of the energy radiated)

This randomness introduces fluctuations which tend to increase the 

betatron and synchrotron oscillations

Damping and growth reach an equilibrium in an electron synchrotron. This 

equilibrium defines the characteristics of the electron beam (e.g. emittance, 

energy spread, bunch size, etc)



Effects of synchrotron radiation on electron 

beam dynamics

We will now look at the effect of radiation damping on the three planes of 

motion

We will use two equivalent formalisms:

damping from the equations of motion in phase space

damping as a change in the Courant-Snyder invariant

The system is non-conservative hence the Courant-Snyder invariant – i.e. 

the area of the ellipse in phase space, is no longer a constant of motion

We will then consider the effect of radiation quantum excitation on the 

three planes of motion (next lecture)

We will use the formalism of the change of the Courant-Snyder invariant



From the lecture on longitudinal motion

We describe the longitudinal dynamics in terms of the variables (, ) 

energy deviation  w.r.t the synchronous particle

and  time delay w.r.t. the synchronous particle

A particle in an RF cavity changes energy 

according to the phase of the RF field 

found in the cavity
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A particle can lose energy because of synchrotron radiation, interaction with 

the vacuum pipe, etc. Assume that for each turn the energy losses are U0

The synchronous particle is the particle that arrives at the RF cavity when the 

voltage is such that it compensate exactly the average energy losses U0

Negative RF slope ensure stability for  > 0 (above transition) 

Veksler 1944 MacMillan 1945: the principle of phase stability



RF buckets recap.





s

c

E
'

 ss
L

qV
 sin)sin(' 0 

Equations for the RF bucket

Linearised equations for the motion in the RF bucket: the phase space 

trajectories become ellipses
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  angular synchrotron frequency

 > 0 above transition

Aide-memoire for stable motion: above transition the head goes up in 
energy, below transition the head goes down in energy

 < 0 below transition



Radiation damping: Longitudinal plane (I)
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The energy loss per turn U0 depends on energy E. The rate of change of 

the energy will be given by two terms
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In presence of synchrotron radiation losses, with energy loss per turn U0, 

the RF fields will compensate the loss per turn and the synchronous phase 

will be such that

)sin(00 seVU 

Assuming E << E and  << T0 we can expand

additional term responsible 

for damping



The derivative

is responsible for the damping 

of the longitudinal oscillations

Radiation damping: Longitudinal plane (II)
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Combining the two equations for (, ) in a single second order differential 

equation
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Computation of dU0/dE

We have to compute the dependence of U0 on energy the E (or rather on 
the energy deviation )
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The time that an off-energy particle spends in the bending element dl is 

given by
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The energy loss per turn is the integral of the power radiated over the time 

spent in the bendings. Both depend on the energy of the particle.

This is an elementary geometric consideration 

on the arc length of the trajectory for different 

energies



Using the dispersion function
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Computing the derivative w.r.t.  at  = 0 we get [Sands]

Computation of dU0/dE

To compute dP/d we use the result obtained in the lecture on synchrotron

radiation, whereby the instantaneous power emitted in a bending magnet 

with field B by a particle with energy E is given by
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Watch out! There is an implicit dependence of  or B on E. Off energy 

particles have different curvatures  or can experience different B if B varies 

with x



we get
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and since P is proportional to E2B2 we can write [Sands]
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We have the final result

check this as an 

exercise !

Computation of dU0/dE



Radiation damping: Longitudinal plane (V)

Longitudinal damping time
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 depends only on the magnetic lattice; typically it is a small positive 

quantity

 is approximately the time it takes an electron to radiate all its energy 

(with constant energy loss U0 per turn)

For separated function magnets with constant dipole field:
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Tracking example: longitudinal plane

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns); 

and a radiation damping of 6000 turns:

start ¼ of synch period ½ of synch period 1 synch period

10 synch periods 50 synch periods

After 50 synchrotron periods (2 

radiation damping time) the longitudinal 

phase space distribution has almost 

reached the equilibrium and is matched 

to the RF bucket



Tracking example: longitudinal plane

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns); 

negligible radiation damping:

start ¼ of synch period ½ of synch period 1 synch period

10 synch periods 50 synch periods

After 50 synchrotron periods the 

longitudinal phase space distribution is 

completely filamented (decoherence).

Any injection mismatch will blow up 

the beam



Transverse plane: vertical oscillations (I)

We now want to investigate the radiation damping in the vertical plane. 

Because of radiation emission the motion in phase space is no longer 

Conservative and symplectic, i.e. the area of the ellipse defining the Courant-

Snyder invariant is changing along one turn. We want to investigate this 

change.
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The ellipse in the vertical phase space is upright. The Courant-Snyder 

invariant reads

We assume to simplify the calculations that we are in a section of the ring
where (z = 0), then



Transverse plane: vertical oscillations (II)
Effect of the emission of a photon:

The photon is emitted in the direction of the 
momentum of the electron (remember the cone 
aperture is 1/)

The momentum p is changed in modulus by dp

but it is not changed in direction

neither z nor z’ change

and

the oscillation pattern is not affected 
since Dz = 0 

(see later case where Dx  0 as for the horizontal 
plane)

… however the RF cavity must replenish the energy lost by the electron

Therefore the Courant-Snyder invariant does not change as result of the 
emission of a photon



Transverse plane: vertical oscillations (III)

The momentum variation is no longer

parallel to the momentum 

this leads to a reduction of the betatron

oscillations amplitude

The angle
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In the RF cavity the particle sees a longitudinal accelerating field therefore 

only the longitudinal component is increased to restore the energy

 gained in the RF cavity



Transverse plane: vertical oscillations (IV)
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The change in the Courant-Snyder invariant depends on the angle z’ for this 

particular electron. Let us consider now all the electrons in the phase space 

travelling on the ellipse, and therefore having all the same invariant A

For each different z’ the change in the invariant will be different. However

averaging over the electron phases, assuming a uniform distribution along 

the ellipse, we have
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After the passage in the RF cavity the expression for the vertical invariant 

becomes
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and therefore

The average invariant decreases.



The synchrotron radiation emission combined with the compensation 
of the energy loss with the RF cavity causes the damping.

Transverse plane: vertical oscillations (V)
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Let us consider now all the photons emitted in one turn. The total energy lost is

The RF will replenish all the energy lost in one turn.

Summing the contributions , we find that in one turn:
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The average invariant decreases exponentially with a damping time z

z  half of longitudinal damping time always dependent on 1/3.

This derivation remains true for more general distribution of electron in 

phase space with invariant A (e.g Gaussian)
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Transverse plane: vertical oscillations (VI)

The betatron oscillations are damped in presence of synchrotron radiation
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Since the emittance of a bunch of particle is given by the average of the 

square of the betatron amplitude of the particles in the bunch taken over 

thebunch distribution in phase space
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the emittance decays with a time constant which is half the radiation 

damping time
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Transverse plane: horizontal oscillations (I)

The damping of the horizontal oscillation can be treated with the same 

formalism used for the vertical plane, e.g.

• consider the electron travelling on an ellipse in phase space with invariant A 

• compute the change in coordinates due to the emission of one photon 

• compute the change of coordinates due to the passage in the RF

• averaging over all electron with the same invariant

• compute the change in the average invariant for all photons emitted in one 

turn

The new and fundamental difference is that in the horizontal plane we do not 

neglect the dispersion, i.e. Dx  0

The reference orbit changes when a quantum is emitted because of Dx in the 

bendings. The electron will oscillate around its new off-energy orbit. In details:



Transverse plane: horizontal oscillations (II)

After the emission of a photon, the physical  position and the angle of 
the electron do not change. However they must be referenced to a new 
orbit: 

This is the off-energy orbit corresponding to the new energy of the 
electron 

With respect to the off-energy orbit, the emission  of a photon appears 
as an offset (and an angle)

x = 0, x’ = 0 but x + x = 0 (and likewise x’ + x’ = 0)



Transverse plane: horizontal oscillations (III)

We follow the same line as done for the vertical plane. The equations of 

motion in the horizontal plane (x = 0) are
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Invariant in the horizontal plane

After the photon emission position and angle do not change but with 
respect to the new (off energy) orbit
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The new invariant in the horizontal plane (with respect to the new orbit) 

reads



Transverse plane: horizontal oscillations (IV)
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The change in the Courant-Snyder invariant due to x and x’ to first 
order in  reads

As before the change in the Courant Snyder invariant depends on the 
specific

betatron coordinates x and x’ of the electron .

We want to average of all possible electron in an ellipse with the same 
Courant- Snyder invariant and get

If for each photon emission the quantity  is independent on x and x’, 
then averaging the previous expression over the phases of the betatron 
oscillations would give zero.

However, in the horizontal plane  depends on x in two ways [Sands]
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Transverse plane: horizontal oscillations (V)

Let us compute the dependence of the energy  of the photon emitted 
in the horizontal plane on x [Sands].

Assuming that the emission of photon is described as a continuous 
loss of energy (no random fluctuations in the energy of the photon 
emitted), we have
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And, since P  B2, to the first order in x
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both P and dt depend on the betatron coordinate of the electron



Transverse plane: horizontal oscillations (V)
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The energy  change reads
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We get

The change in the Courant-Snyder invariant depends on the position and  

angle x and x’ for this particular electron. Let us consider now all the 

electrons in the phase space  travelling on the ellipse, and therefore having all 

the same invariant A



Transverse plane: horizontal oscillations (VI)
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For each different x and x’ the change in the invariant will be different. 

However averaging over the electron phases, assuming a uniform 

distribution  along  the ellipse, we have

Let us consider all the photons emitted in one turn. The total energy lost is

Summing the contributions  in one turn, we find that in one turn:
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The average invariant can now increase or decrease depending on the sign of 

the previous term, i.e. depending on the lattice.



Transverse plane: horizontal oscillations (VII)

Adding the RF contribution (as before assuming Dx = 0 at the RF cavities)

>0 gives an anti-damping term
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As in the vertical plane we must add the contribution due to the RF that will 

replenish all the energy lost.

The change in the horizontal average invariant due to the emission of a photon

The average horizontal invariant decreases (or increases) exponentially with 

a damping time z .z  half of longitudinal damping time always dependent 

on 1/3.

This remains true for more general distribution of electron in phase space  

with invariant A (e.g Gaussian)



Transverse plane: horizontal oscillations (VIII)

As in the vertical plane, the horizontal betatron oscillations are 
damped in presence of synchrotron radiation
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Since the emittance of a bunch of particle is given by the average of the 

square of the betatron amplitude of the particles in the bunch
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the emittance decays with a time constant which is half the radiation 

damping time
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Damping partition numbers (I)

The results on the radiation damping times can be summarized as
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Jx = 1 - ; Jz = 1; J = 2 + ;

The Ji are called damping partition numbers, because the sum of the 

damping rates is constant for any  (any lattice)

Jx + Jz + J = 4

Damping in all planes requires –2 <  < 1

(Robinson theorem)

Fixed U0 and E0 one can only trasfer damping from one plane to another



Adjustment of damping rates

Modification of all damping rates: 

Increase losses U0

Adding damping wigglers to increase U0 is done in damping 
rings to decrease the emittance

Repartition of damping rates on different planes:

Robinson wigglers: increase longitudinal damping time by 
decreasing the horizontal damping (reducing dU/dE)

Change RF: change the orbit in quadrupoles which changes 
 and reduces x



Robinson wiggler at CERN



Example: damping rings

Damping rings are used in linear colliders to reduce the emittance of the 

colliding electron and positron beams: 

The emittance produced by the injectors is too high (especially for positrons 
beams).

In presence of synchrotron radiation losses the emittance is damped  

according to

The time it takes to reach an acceptable emittance will depend on the 
transverse damping time

The emittance needs to be reduced by large factors in a short store time T. If 
the natural damping time is too long, it must be decreased.

This can be achieved by introducing damping wigglers. Note that damping 
wigglers also generate a smaller equilibrium emittance eq (see CAS).
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Example: damping rings
Using ILC parameters

i = 0.01 m f = 10 nm f / i = 10–6

The natural damping time is T ~ 400 ms while it is required that T/x ~ 15, i.e. a 
damping time x ~ 30 ms (dictated by the repetition rate of the following chain 
of accelerators – i.e. a collider usually)

Damping wigglers reduce the damping time by increasing the energy loss per 
turn
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With the ILC damping ring data

E = 5 GeV,  = 106 m, C = 6700 m,

we have

U0 = 520 keV/turn x = 2ET0/U0 = 430 ms



Example: damping rings

The damping time x has to be reduced by a factor 17 to achieve e.g. 25 ms.

Damping wigglers provide the extra synchrotron radiation energy losses 

without changing the circumference of the ring.

The energy loss of a wiggler Ew with peak field B and length L and

are given by (see lecture on wigglers)
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A total wiggler length of 220 m will provide the required damping time.
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or in practical units the energy loss per electron reads



Radiation integrals
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Many important properties of the stored beam in an electron 

synchrotron are determined by integrals taken along the whole ring:
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Energy loss per turn
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  Damping times
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Summary

Synchrotron radiation losses and RF energy replacement generate a 

damping of the oscillation in the three planes of motion

The damping times can be modified, but at a fixed energy losses, the 

sum of the damping partition number is conserved regardless of the 

lattice type

Radiation damping combined with radiation excitation determine the 

equilibrium beam distribution and therefore emittance, beam size, 

energy spread and bunch length.

The damping times depend on the energy as 1/3 and on the magnetic 

lattice parameters (stronger for light particles)
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