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Figure: The observed CMB temperature anisotropy gets a contribution
from the last scattering surface, (δT/T )intr = Θ(t∗, "xls, q̂) and from
along the photon’s journey to us, (δT/T )jour.



The CMB anisotropy is small

RMS temperature variation ∼ 100µK



Relative variation ∼ 4 × 10−5

1st order perturbation theory
around a homogeneous and isotropic model of the Universe
(background model)
background + perturbation

ρ = ρ̄ + δρ = (1 + δ)ρ̄



Background universe

Friedmann-Robertson-Walker (flat case)

ds2 = −dt2 + a(t)2
(

dx2 + dy2 + dz2
)

a(t) the scale factor describes the expansion of the universe
In the early universe (radiation dominated) a ∝ t1/2

Later (matter dominated) a ∝ t2/3

Late times: dark energy (?) causes the expansion to accelerate

H(t) =
1

a

da

dt
Hubble parameter gives the expansion rate



The “perturbed” (real) universe

ds2 = −(1 + 2Φ)dt2 + a2(1 − 2Ψ)(dx2 + dy2 + dz2)

Φ(x , y , z) Newtonian potential
Ψ(x , y , z) Curvature perturbation



Matter and energy components

ρ = ργ + ρν + ρcdm + ρb =
∑

ρi

p = pγ + pν + pcdm + pb = ργ/3 + ρν/3 + pb =
∑

pi

ρi = (1 + δi )ρ̄i

pi = p̄i + δpi

Fluid perturbation variables: δi , δpi , "vi

If ρ is perfect fluid ⇒ Φ = Ψ
(get ∼ 10% differences due to neutrinos)
Fluid description is not enough for photons (and neutrinos)



Photon distribution function

f (t, "x , "q)

dN =
2

(2π)3
fdVd3q

Here "q ≡ qq̂ is the photon momentum
In the background model, photons have the blackbody spectrum

f̄ (t, "q) =
1

eq/T (t) − 1

In the perturbed universe

f = f̄ + δf =
1

exp
{

q
T (t)[1+Θ(t,#x ,#q)]

}

− 1

any function f (t, "x , "q) can be written in this form, but the physics
result is that to 1st order, Θ does not develop any q-dependence!



Brightness function

Θ = Θ(t, "x , q̂)

depends only on the photon direction, not on the photon energy
(in general, this holds for massless particles)

δγ = 4Θ0, where Θ0(t, "x) ≡
1

4π

∫

Θ(t, "x , q̂)dΩ

"vγ = 3"Θ1, where "Θ1(t, "x) ≡
1

4π

∫

q̂Θ(t, "x , q̂)dΩ

Θij
2(t, "x) ≡

1

4π

∫ (

q̂i q̂j −
1

3
δij

)

Θ(t, "x , q̂)dΩ

local monopole, dipole, and quadrupole of the photon perturbation



Boltzmann Equation

Liouville theorem: If there are no collisions, f = const. along
trajectory in phase space

df

dt
≡

∂f

∂t
+

∂f

∂x i

dx i

dt
+

∂f

∂qi

dqi

dt
= 0

With collisions,
df

dt
= C [f ]

where C [f ] is the collision term.
In the curved spacetime, photons travel on lightlike geodesics.

dx i

dt
=

q̂i

a

geodesic equation ⇒
dqi

dt

df

dt
=

∂f

∂t
+

q̂i

a

∂f

∂x i
+ p

∂f

∂p

[

−H −
q̂i

a

∂Φ

∂x i
+

∂Ψ

∂t

]

= C [f ]



df

dt
=

∂f

∂t
+

q̂i

a

∂f

∂x i
︸ ︷︷ ︸

kinematics

+p
∂f

∂p








−H
︸︷︷︸

expansion

−
q̂i

a

∂Φ

∂x i
+

∂Ψ

∂t
︸ ︷︷ ︸

spacetime perturbations








= C [f ]

Separate this into a background equation

df̄

dt
=

∂ f̄

∂t
− Hp

∂ f̄

∂p
= 0

(the effect of collisions can be ignored at the background level)

. . . ⇒ T ∝ 1/a

and the perturbation equation

. . . ⇒
∂Θ

∂t
+

q̂i

a

∂Θ

∂x i
+

q̂i

a

∂Φ

∂x i
−

∂Ψ

∂t
= C [Θ]



Collision term: Thomson scattering

Photons scatter on electrons

dσ

dΩ
=

σT

4π

3

4

(

1 + cos2 θ
)

∂Θ

∂t
+

q̂i

a

∂Θ

∂x i
+

q̂i

a

∂Φ

∂x i
−

∂Ψ

∂t
= neσT

[

Θ0 − Θ(q̂) + q̂ · "vb +
3

4
q̂i q̂jΘij

2

]

This is called the Brightness equation

(Boltzmann equation for photons)



Recombination

The early universe was filled with plasma: electrons, ions, photons,
(neutrinos, CDM particles).
Ar t ∼ 380000 yr, when T ∼ 4000 K, electrons and ions formed
atoms (mainly hydrogen).
The density of free electrons ne dropped by a large factor.
Approximation: instantaneous recombination (photon
decoupling) at t = t∗
t < t∗: tight coupling (ne large)

Θ(q̂) = Θ0 + q̂ · "vb ⇒ "vγ ≡ 3Θ1 = "vb; Θij
2 = 0

t > t∗: no collisions (ne small)

∂Θ

∂t
+

q̂

a

∂Θ

∂x i
︸ ︷︷ ︸

dΘ
dt

+
q̂

a

∂Φ

∂x i
︸ ︷︷ ︸

dΦ
dt

−
∂Φ
∂t

−
∂Ψ

∂t
= 0 ⇒

d

dt
(Θ + Φ) =

∂Φ

∂t
+

∂Ψ

∂t



Line-of-sight integration

Integrate
d

dt
(Θ + Φ) =

∂Φ

∂t
+

∂Ψ

∂t

along the photon path from there (t∗, "xls) to here (t0, "xobs):

Θ(t0, "xobs, q̂)
︸ ︷︷ ︸

δT
T

(θ,φ)

+ Φ(t0, "xobs)
︸ ︷︷ ︸

constant for us

= (Θ + Φ)(t∗, "xls , q̂) +

∫ t0

t∗

(
∂Φ

∂t
+

∂Ψ

∂t

)

dt

= Θ0(t∗, "xls)
︸ ︷︷ ︸

1
4 δγ

+Φ(t∗, "xls)

︸ ︷︷ ︸

monopole term

+q̂ · "vbγ
︸ ︷︷ ︸

−n̂·#vbγ
︸ ︷︷ ︸

dipole term

+

∫ t0

t∗

(
∂Φ

∂t
+

∂Ψ

∂t

)

dt

︸ ︷︷ ︸

Integrated Sachs−Wolfe effect

monopole term = effective temperature perturbation
dipole term = Doppler effect



The full thing

Φ, Ψ affected by all energy components ρb, ρν , ρb, ρcdm

Need their perturbation equations also & the GR equations for Φ,
Ψ
Everything starts from primordial perturbations (initial values for
perturbation eqs.)
apparently produced by some random process (quantum
fluctuations during inflation) in the very early universe



Adiabatic primordial perturbations

Simplest inflation models: one independent quantity: the inflaton
field φ
The homogeneous background value φ̄(t) rolls slowly down its
potential V (φ)
All perturbations originate from δφ ⇒ adiabatic perturbations

δ

(
ni

nγ

)

= 0 ⇒
δni

ni
=

δnγ

nγ
︸︷︷︸

3 δT
T

=
3

4

δργ

ργ
︸︷︷︸

4 δT
T

For baryons, CDM, ρi = mini ⇒
δρi

ρi
︸︷︷︸

δi

= δni
ni

Thus δb = δc ≡ δm = 3
4δγ initially



Outside horizon

Horizon ≡ distance of causal interaction within cosmological time
scale = H−1, the Hubble distance
After inflation, all scales of interest are “beyond horizon” ⇒
they do not evolve
“Superhorizon” perturbations most naturally described in terms of
spacetime curvature: “comoving curvature perturbation” R(t, "x)
Inflation produces close to scale-independent (n = 1) primordial
perturbations

PR(k) ≡
V

2π2
k3 ×〈|R#k |

2〉
︸ ︷︷ ︸

expectation value

=
1

24π2M4
Pl

V (φx)

ε(φx)
≈ const. ≡ A2

or A2

(
k

kp

)n−1

n − 1 = −6ε + 2η



Entering horizon

After inflation, as the universe gets older, the horizon H−1 grows,
and encompasses larger scales (“scales enter the horizon”)
At photon decoupling t = t∗, H−1 ≈ 200 Mpc, about 1◦ on the
CMB sky
At angles > 1◦ we see superhorizon perturbations



Large scales: Still outside horizon at decoupling (t∗)

1
4δγ = 1

3δm ∼ 1
3δ (assume matter domination)

"vbγ ∼ 0

δT

T
(θ, φ) = 1

3δ + Φ +

∫ (
∂Φ

∂t
+

∂Ψ

∂t

)

dt

Friedmann H2 = 8πG
3 ρ̄

Newton ∇2Φ = 4πGδρ = 4πG ρ̄
︸ ︷︷ ︸

3
2H2

·δ ⇒ δ#k = −2
3

(
k
H

)2
Φ#k

GR → δ#k = −
[

2 + 2
3

(
k
H

)2
]

Φ#k

For superhorizon (k , H) scales, δ ≈ −2Φ
Thus 1

3δ + Φ ≈ −2
3Φ + Φ = 1

3Φ (Φ = −3
5R, δ = 6

5R)
Sachs–Wolfe effect:
(

δT
T

)

obs
= 1

3Φ
︸︷︷︸

ordinary

+

∫ (
∂Φ

∂t
+

∂Ψ

∂t

)

dt

︸ ︷︷ ︸

integrated



Angular Power Spectrum C(

δT

T
(θ, φ) =

∑

(m

a(mY(m(θ, φ)

a(m =

∫

dΩY ∗
(m(θ, φ)

δT

T
(θ, φ)

The a(m depend linearly (through linear physics of 1st order
perturbation theory) on primordial perturbations
Result of random process ⇒ predict statistical properties only

〈a(m〉 = 0 〈a(ma∗(′m′〉 = 0 for + -= +′ or m -= m′

but C( ≡ 〈|a(m|
2〉 -= 0 same for all m

+ ∼ structure at angular scale 180◦/+ (half-wavelength)

〈(
δT

T

)2 〉

=
∑

(

2+ + 1

4π
C( (temperature variance)





Figure: A plane wave intersecting the last scattering sphere.



C( from ordinary SW for large scales (small +, where dominates)

a(m =

∫

Y ∗
(m(x̂)

δT

T
(x̂)dΩx

δT

T
(x̂) = 1

3Φ(t∗, "xls) = −1
5R("xls)

R("xls) =
∑

#k

R#ke i#k·#xls

e i#k·#xls = 4π
∑

(′m′

i (j((kxls)Y(′m′(x̂)Y ∗
(′m′(k̂)

C( ≡
1

2+ + 1

∑

m

〈|a(m|
2〉 = . . .

=
4π

25

∑

#k

〈|R#k |
2〉j((kx)2

=
4π

25

∫
dk

k
PR(k)j((kx)2



For n = 1 (PR(k) = const.),

C( =
4π

25
PR

∫
dk

k
j((kx)2 =

PR

25
·

2π

+(+ + 1)

+(+ + 1)

2π
C( =

PR

25
=

1

600π2M4
Pl

V (φx)

ε(φx)
≈

1000µK2

2.7K2 ≈ 1.3 × 10−10

V (φx)

ε(φx)
≈ 8 × 10−7M4

Pl ≈ (0.03MPl )
4

gives upper limit to inflation scale:
V (φx)1/4 < 0.03MPl = 7 × 1016 GeV (ε , 1)



C( for larger + (smaller scales)

δT

T
(θ, φ) = Θ0 + Φ − n̂ · "v +

∫ (
∂Φ

∂t
+

∂Ψ

∂t

)

Smaller scales entered horizon before t∗
CDM perturbations grow ⇒ dominate Φ
baryon+photon perturbations oscillate

Θ0#k + (1 + R)Φ#k ∝ cos cskt R ≡
3

4

ρb

ργ

c2
s =

1

3

1

1 + R
sound speed

Expansion: cst → rs(t) ≡
∫ t
0

cs (t)
a(t) dt sound horizon

(Θ0 + Φ)#k(t∗) = −RΦ#k(t∗) + A#k cos krs(t∗)

Maximal at scales k: krs = mπ
Strong structure at multipoles + = kdA(t∗) = mπ dA

rs
≡ m+A

where +A ≡ π dA(t∗)
rs(t∗) ≡ π

θs



Figure: Acoustic oscillations. The top panel shows the time evolution of
the Fourier amplitudes Θ0!k , Φ!k

, and the effective temperature Θ0!k + Φ!k
.

The Fourier mode shown corresponds to the fourth acoustic peak of the
C" spectrum. The bottom panel shows δbγ("x) for one Fourier mode as a
function of position at various times (maximum compression, equilibrium
level, and maximum decompression).



dA(t∗) angular diameter distance to last scattering
+A acoustic scale in multipole space
θs sound horizon angle
The Doppler effect −n̂ · "v oscillates too, but off-phase
C( is quadratic in δT/T ⇒ has also cross terms of Θ0 + Φ,
−n̂ · "v , and

∫ (
∂Φ
∂t + ∂Ψ

∂t

)

Diffusion damping: Actually photon decoupling is not
instantaneous ⇒ photon diffusion partially erases photon
perturbations at scales comparable or smaller than the photon
mean free path
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Figure: The angular power spectrum C", calculated both with and
without the effect of diffusion damping. The spectrum is given for four
different values of ωm, with ωb = 0.01. (This is a rather low value of ωb,
so +D < 1500 and damping is quite strong.) Figure and calculation by
R. Keskitalo.
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Figure: The full C" spectrum calculated for the cosmological model
Ω0 = 1, ΩΛ = 0, ωm = 0.2, ωb = 0.03, A = 1, n = 1, and the different
contributions to it. (The calculation involves some approximations which
allow the description of C" as just a sum of these contributions and is not
as accurate as a CMBFAST or CAMB calculation.) Here Θ1 denotes the
Doppler effect. Figure and calculation by R. Keskitalo.


