## Beyond the Standard Model

Alex Pomarol (Univ. Autonoma Barcelona)

#### Outline:

- The Standard Model: symmetries, consistency, and reasons for improvement
- Grand Unified Theories
- The strong CP-problem and axions
- The hierarchy problem
- Supersymmetry
- Composite/PGB Higgs and Higgsless models
- Extra dimensions

#### What you must know:

There is a relatively simple QFT that explains "almost" all data:

The SM:



Gauge symmetry:

SU(3)xSU(2)xU(1)

Matter:

3 families of

 $u_R: (3,1,4/3)$   $d_R: (3,1,-2/3)$   $l_L: (1,2,-1)$ 

 $Q_L: (3,2,1/3)$ 

 $e_R: (1,1,-2)$ 

H: (1,2,1)

Scalar:

+ Gravity (General Relativity)

 $Q=Y/2+T_3$ 

#### Relatively simple lagrangian for the SM:

$$\mathcal{L}_{SM} = -\frac{1}{4g'^2} B^{\mu\nu} B_{\mu\nu} - \frac{1}{4g^2} W^{\mu\nu} W_{\mu\nu} - \frac{1}{4g^2} G^{\mu\nu} G_{\mu\nu}$$

$$+ i \bar{Q}_L^i D Q_L^i + i \bar{u}_R^i D u_R^i + i \bar{d}_R^i D d_R^i + i \bar{l}_L^i D l_L^i + i \bar{e}_R^i D e_R^i$$

$$+ |D_\mu H|^2$$

$$+ Y_u^{ij} \bar{Q}_L^i \tilde{H} u_R^j + Y_d^{ij} \bar{Q}_L^i H d_R^j + Y_e^i \bar{l}_L^i H e_R^i + h.c.$$

$$+ V(H)$$

+ we are, for the moment, neglecting neutrino masses!

#### Apart from kin. terms + masses, it gives interactions:



Self-Higgs:



g,Yf,  $\lambda$ = dimensionless couplings

#### Only one unknown parameter:

#### The Higgs mass

(or  $\lambda$ )

#### **Experimental bounds:**

LEP searches + EW Precision Tests







#### SM Lagrangian dictated by symmetries:

Gauge + (local) Poincare symmetries

when gravity is included

Can explain "almost" everything from the biggest to the smallest...

"Symmetries are the keystone of the universe"



## The SM has also extra "accidental" symmetries: We didn't ask for them, but they are there!

Are Global Symmetries:  $\psi \rightarrow e^{iB\theta}\psi$ 

I) Baryon number B:

Proton B=1: Cannot decay to leptons



caveat: This symmetry is "anomalous" and proton could decay but with an extremely small rate

2) Lepton number Le, Lμ, Lτ:

Le = I (for e), 
$$L\mu$$
= I,(for  $\mu$ ),  $L_{\tau}$ = I,(for  $\tau$ ) (zero for the rest)



## Some **accidental** symmetries are approximate (broken by small couplings)

#### I) Custodial symmetry:

• In the limit  $Y_f = 0$  and g' = 0

Extra global SU(2): H being a doublet

when it gets a VEV:  $SU(2) \perp \times SU(2) \rightarrow SU(2)_c$ 

 $(W^+,W^-,Z)$  are a triplet of  $SU(2)_c \implies m_W = m_Z$ 

• For Yf  $\neq$  0 and g'  $\neq$  0:  $\frac{m_W^2}{m_Z^2 c_{\theta_W}^2} \equiv \rho \simeq 1.0$ 

#### 2) Family symmetry:

In the limit all  $Y_f = 0$ :

$$U(3)_Q \times U(3)_u \times U(3)_d \times U(3)_L \times U(3)_e$$

In the limit  $Y_f = 0$  for 1st + 2nd family:

$$U(2)_Q \times U(2)_u \times U(2)_d \times U(2)_L \times U(2)_e$$

■ Small K-K mixing

...but these **accidental symmetries** of the SM are only symmetries of the dimension-4 operators:

Dimensional analysis ( $\hbar = c = 1$ ) tell us that

$$[S = \int \mathcal{L} d^4 x] = M^0$$
  
 $[\mathcal{L}] = M^4$   
 $[\partial_{\mu}] = M$   
 $[H] = [A_{\mu}] = M$   
 $[\psi] = M^{3/2}$ 



Why we don't include terms like

e.g. 
$$(W^{\mu\nu}W_{\mu\nu})^2$$
 ?

They are allowed by symmetries!

It has dim=8, so in the Lagrangian should be written as

$$\frac{1}{\Lambda^4} (W^{\mu\nu} W_{\mu\nu})^2$$

 $\Lambda$  = some scale suppressing the higher-dim terms

This new terms spoil the predictivity of the SM:

We have infinite of them!

It's OK, for physics at scales smaller than  $\Lambda$ :  $\frac{1}{\Lambda^4}(W^{\mu\nu}W_{\mu\nu})^2 \rightarrow \text{small effects}$ 

... but, even worse, higher-dim terms don't respect the accidental symmetries of the SM:

#### L violation:

$$rac{1}{\Lambda}ar{l}_L^{c\,i}H_i\,H_j l_L^j$$



#### **B** violation:



$$p \rightarrow \pi^0 e^+$$



Exp. 
$$\tau_P > 10^{34}$$
 years  $\wedge > 10^{15}$  GeV

#### Lessons so far:

- The SM Lagrangian (based on local symmetries) has extra global symmetries (B,L,...)
- Extra terms (suppressed by  $\Lambda$ ) could be added (preserving local symmetries) but are dangerous since break the symmetries (B,L,...)

We have to require  $\Lambda$  be very large

→ can we take it to be infinity?

# Is there any need to go beyond the SM $(\land \neq \infty)$ ?

Theoretical: Consistency of the theory?

Experimental: Data that cannot be explained?



#### Could it be the the SM the final theory?

## We must use Einstein "Gedankenexperiment" (thought experiments):

...at the age of sixteen: If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam of light as an electromagnetic field at rest though spatially oscillating.

There seems to be no such thing..."



#### Scattering at high-energies >> Mw



where Q ~ Ecm





"velocity" of growth of  $\lambda(Q)$ 

Espinosa

• If  $\lambda(Q)$  grows, as we increase Q, it can become too large at some scale  $\Lambda$ :

$$\lambda(Q=\Lambda) \sim \pi$$

(perturbation theory not valid anymore)

- If  $\lambda(Q)$  decreases, it can become negative at some scale  $Q = \Lambda$ :
  - Unstable Higgs potential

 $\Lambda$  = "Cut-off scale"  $\rightarrow$  I cannot trust my theory at  $Q > \Lambda$ 

Since 
$$M_h^2 = 2\lambda(Q = M_H)v^2$$

for each Higgs mass there is a scale  $\Lambda$ 



#### ... but as $Q \sim 10^{19}$ GeV, gravitons are also important:



 $G_N$  = Newton's constant

M<sub>P</sub> = Planck's mass ~ 1.2 x 10<sup>19</sup> GeV

SM+GR not a consistent quantum theory at Q> M.!

New physics expected (at least) at energies ~ 10<sup>19</sup> GeV!

#### Very similar to Fermi's theory:





G<sub>F</sub> = Fermi's constant

We know what happened at Q ~  $I/\sqrt{G_F}$  ~ 300 GeV:

There was **New physics** (beyond Fermi's theory):

We discovered the W/Z particles, the SM!



#### Could it be the SM the final theory?

## NO!

#### What could we find at $M_P \sim 10^{19}$ GeV?

A possibility (the only one?): STRINGS



Particles are the lowest-energy modes of a string





gravitons, gauge bosons and matter appear as massless excitations of the strings

\*\*\* theory of unification

#### **Predictions:**

"The only prediction of string theory is that there are no predictions"

Anonymous

- I) The space must be I+9 dimensional
- 2) There are string excitations of higher-energy:



... we will come back later to further explore these implications!



#### Data unexplained by the SM

- I) Neutrino masses
- 2) Dark matter
- 3) Cosmological Inflationary epoch
- 4) Matter/Antimatter asymmetry in the universe



Nevertheless all these evidences **could be** explained by physics close to the Planck Scale

No **deep** reasons for a lower value of  $\Lambda \sim M_P$ 

#### e.g. neutrino masses:

$$\frac{1}{\Lambda}l_LHCl_LH$$

$$m_{\nu} \sim \frac{v^2}{\Lambda} \sim 0.06 \text{ eV} \left(\frac{10^{15} \text{GeV}}{\Lambda}\right)$$

## But there are other important reason to go beyond the SM



Search for a "natural" explanation of SM coupling-constants and masses

# Search for a "natural" explanation of SM coupling-constants and masses:

- I) Cosmological constant:  $\int \Lambda_{cosmo} \sqrt{g} d^4x$  $\Lambda_{cosmo} \sim 10^{-47} \text{ GeV}^4 << \Lambda^4 \sim M_P^4 \sim 10^{76} \text{ GeV}^4$
- 2) Higgs mass term:  $V(H) = \mu^2 |H|^2 + ...$  $\mu^2 \sim v^2 \sim 10^4 \text{ GeV}^2 << \Lambda^2 \sim M_P^2 \sim 10^{38} \text{ GeV}^2$
- 3) Charge quantization:

$$Q_e + Q_p < 10^{-21}$$

**4)** Strong CP problem:  $\int \theta F \tilde{F} d^4x$ 

$$\theta < 10^{-13}$$

5) Fermion masses and mixing angles:

mass→ 2.4 MeV

1.27 GeV

171.2 GeV

6) Gauge couplings:

 $V_{\text{CKM}} = \begin{pmatrix} 0.97419 \pm 0.00022 \\ 0.2256 \pm 0.0010 \\ 0.00874^{+0.00026}_{-0.00037} \end{pmatrix}$ 

$$g' \sim 0.35$$
  $g \sim 0.65$   $g_s \sim 1.12$  at  $Q \sim M_z$ 

7) Number of families:

$$N_f = 3$$

#### Search for a "natural" explanation

New physics scale

| Cosmological constant        | ?                      |
|------------------------------|------------------------|
| Higgs potential              | ~ TeV                  |
| Charge quantization          | ~ 10 <sup>15</sup> GeV |
| Strong CP problem            | ~ 10 <sup>12</sup> GeV |
| Fermion masses/mixing angles | TeV - M <sub>P</sub>   |
| Gauge couplings              | ~ 10 <sup>15</sup> GeV |
| Number of families           | ?                      |

#### Search for a "natural" explanation

To be discussed here

New physics scale

| 1 Tevr priyotes seare        |                        |
|------------------------------|------------------------|
| osmological constant         | ?                      |
| Higgs potential              | ~ TeV                  |
| Charge quantization          | ~ 10 <sup>15</sup> GeV |
| Strong CP-problem            | ~ 10 <sup>12</sup> GeV |
| Fermion masses/mixing angles | TeV - M <sub>P</sub>   |
| Gauge couplings              | ~ 10 <sup>15</sup> GeV |
| Number of families           | ?                      |

# Grand Unified Theories (GUT)

#### We want to explain:

$$|q_p + q_e|/e$$

See DYLLA 73 for a summary of experiments on the neutrality of matter. See also "*n* CHARGE" in the neutron Listings.

| VALUE                                                                                                                                                                                                                        | DOCUMENT ID           |    | COMMENT                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|-------------------------------|--|
| $<1.0 \times 10^{-21}$                                                                                                                                                                                                       | <sup>8</sup> DYLLA    | 73 | Neutrality of SF <sub>6</sub> |  |
| <ul> <li>◆ We do not use the following data for averages, fits, limits, etc.</li> <li>◆ ◆</li> </ul>                                                                                                                         |                       |    |                               |  |
| $< 3.2 \times 10^{-20}$                                                                                                                                                                                                      | <sup>9</sup> SENGUPTA | 00 | binary pulsar                 |  |
| $< 0.8 \times 10^{-21}$                                                                                                                                                                                                      | MARINELLI             | 84 | Magnetic levitation           |  |
| $^8$ Assumes that $q_{m n}=q_{m p}+q_{m e}$ .                                                                                                                                                                                |                       |    |                               |  |
| $^9$ SENGUPTA 00 uses the difference between the observed rate of of rotational energy loss by the binary pulsar PSR B1913+16 and the rate predicted by general relativity to set this limit. See the paper for assumptions. |                       |    |                               |  |

 $\rightarrow$  suggest that the charge is quantized:  $Q_P = -Q_e$ 

$$Q=Y/2+T_3$$
 ur, dr, Ql, el, er:  $Y=(4/3,-2/3, 1/3,-1,-2)$ 



The U(I) hypercharges will be quantized if it is embedded in a **non-abelian group:** 

Minimal case: SU(4)xSU(2)xSU(2) Pati-Salam 74

Simple group: SU(5) Glashow, Georgi 74

### SU(5) model

Embedding:  $SU(3)xSU(2)xU(1) \subset SU(5)$ 



Extra gauge bosons X,Y associated to the new generators: 24-8-3-1=12 fields

Complex fields of SM charges = (3, 2, -5/3)

Not seen  $\rightarrow$  must be massive: mass =  $M_{GUT}$ 

### Matter embedding:

# 15 fields $\subset \overline{5}+10$

10=(5x5)Antisymmetric

$$\bar{5} = \begin{pmatrix} d^{c}_{1} \\ d^{c}_{2} \\ d^{c}_{3} \\ \hline e^{-} \\ -\nu_{e} \end{pmatrix} \qquad 10 = \begin{pmatrix} 0 & u^{c}_{3} & -u^{c}_{2} \\ 0 & u^{c}_{1} \\ \hline 0 & -u_{2} & -d_{2} \\ \hline 0 & -u_{3} & -d_{3} \\ \hline 0 & 0 \end{pmatrix}$$

### Fit like a glove!

**Not** the same simplicity for the Higgs (Doublet-triplet splitting problem)

The GUT-gauge symmetry must be broken (not seen in nature the X,Y bosons):

$$SU(5) \rightarrow SU(3)xSU(2)xU(1)$$

Extra "Higgs" in **24** getting VEV

Give mass only to X,Y bosons:  $M_{X,Y} = M_{GUT}$ 

### SU(5) predictions:

- I) Charge quantization
- 2) Gauge-coupling unification:

$$g_5 = g_s = g = \sqrt{5/3} g'$$
 at  $Q \ge M_{GUT}$ 

3) Proton decay:

$$p \rightarrow \pi^0 e^+$$
: proton  $pion$  Exp.  $\tau_p > 10^{34}$  years  $pion$   $pion$   $m_{GUT} > 3x 10^{15}$  GeV

2) Gauge-coupling unification:

$$g_5 = g_S = g = \sqrt{5/3} g'$$
 at  $Q \ge M_{GUT}$ 

What are the values of the SM gauge-couplings at high-energies?



g dependence with Q dictated by the SM spectrum

can be calculated

RG equations: 
$$\frac{dg_i^{-2}}{d\ln Q} = -\frac{b_i}{8\pi^2}$$

$$g_1 = \sqrt{5/3} g'$$

$$g_2 = g$$

$$g_3 = g_s$$

# b-coefficients depend on the particle spectrum



|                | SM                                                               | MSSM                                                 |
|----------------|------------------------------------------------------------------|------------------------------------------------------|
| ) <sub>i</sub> | $ \begin{bmatrix} \frac{41}{10} \\ -\frac{19}{6} \end{bmatrix} $ | $ \begin{bmatrix} \frac{66}{10} \\ 1 \end{bmatrix} $ |
|                | -7                                                               | $\begin{bmatrix} -3 \end{bmatrix}$                   |



### SM+SUSY partners (to be discussed later):



Too good to be true?



# Search for proton decay

## The Super-Kamiokande detector

- Stainless-steel tank
- 39m diameter and 42m tall
- Filled with 50,000 tons of ultra pure water.
- About 13,000 photo-multipliers on the tank wall
- At 1000 meter underground in the Kamioka-mine, Hida-city, Gifu, Japan.



Present experimental limit:

$$\tau_P > 10^{34} \text{ years}$$

$$\rightarrow$$
 M<sub>GUT</sub> >  $3 \times 10^{15}$  GeV

### Other GUT's beauties:

• Bottom-tau unification: Mb=Mτ at Q≥Mg∪τ

works reasonably well in the Supersymmetric SM

...but don't work for other fermions



for neutrino masses

# Implications: Majorana masses for neutrino

Neutrinoless Double Beta Decay:





# The strong CP Problem

### Dimension 4 operator allowed in QCD:

$$\theta \frac{g_s^2}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} \cdot G_{\rho\sigma}$$

Violates CP and induce a large EDM for the neutron. Experimental limits give:

$$\theta \lesssim 10^{-10}$$

Why so small?

### Peccei-Quinn axion

Promote  $\theta$  to a scalar-field a(x) = axion:

$$a(x) \frac{g_s^2}{32\pi^2 f_a} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu} \cdot G_{\rho\sigma} + \text{kinetic term}$$

No other couplings (possible by global symmetries: a=PGB)

At low-energies (~GeV) a potential will be generated:

$$V(a) \propto a(x)^2 + \cdots$$
  $a(x) = 0$   $\rightarrow$   $\theta=0$ 

The axion gets also a mass: 
$$m_a = \frac{f_\pi}{f_a} \frac{\sqrt{m_u m_d}}{m_u + m_d} m_\pi$$

the larger fa, the smaller its coupling to SM states, and the smaller its mass

#### Main searches through its coupling to 2 photons:



Strong constraints from limits on energy looses in stars, SN,...

SUN 
$$====$$
  $\Rightarrow$  a

If a exists,
the sun will loose energy
by emitting it

### **Excluded regions:**

(slightly model dependent)





## **CAST Experiment**

Detecting axions coming from the sun



## **ADMX Experiment**

#### If axions are DM:



- Halo axions enter cavity
- Axions scatter off B field
- Resonantly convert to microwave photons
- Excess photons observed above thermal noise

