

NXCALS in SWAN

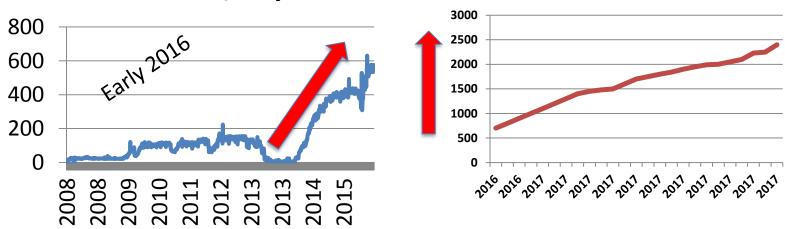
Jakub Wozniak

BE/CO/DS

Agenda

- What is CALS & why to build NXCALS?
- Project status
- Why do we need SWAN?

CERN Accelerator Logging Service


- Mandate
 - Stores data from scelerator complex related devices
 - Information for accordence improvement
 - Decision support system for anagement
 - Avoids duplicate logging entry
- CALS in numbers
 - Built for **1 TB / year** throughput
 - Currently 1.2 TB / day for all DBs
 - 1,500,000 signals
 - 5,000,000,000 dp/day, 1.6E12 dp/year
 - 6,000,000 extraction requests per day
 - Soon reaching Peta Bytes (BigData) stored (~0.5PB)
 - Over 1000 users

Why NXCALS?

1.5 years later...

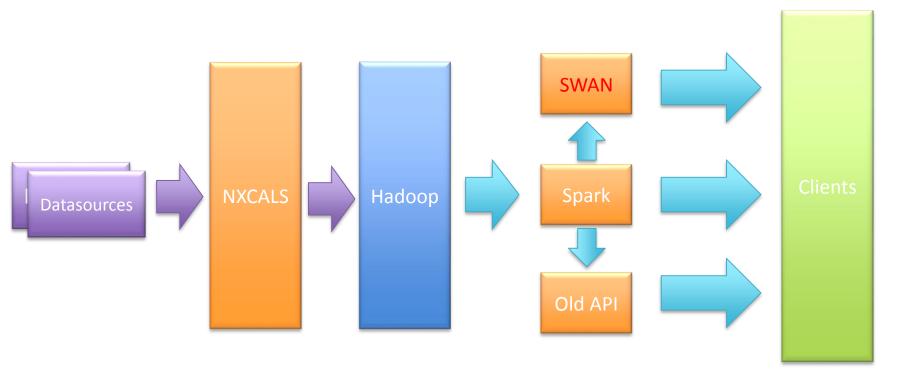
- Aging and non-scalable technology
- Not designed for TBs / day data rates (large vectors, high frequency data)
- Main stream analytic techniques not available (streaming, cluster exec.)

Size in GB / day

NXCALS & SWAN

- Spark Web Notebooks (like Jupyter):
 - Web interface with built-in Spark integration
 - Data visualisation (tables, charts / tc.
 - Dynamic input forms and can vilgets
 - Support work in alla in tion and publishing results online
 - Natural and requirer-friendly for ata elentists

Very productive collaboration. Big THANK YOU to our EP-SFT and IT-DB colleagues !



Benefits

- Open door for **BigData Queries**, **Tools & Techniques**
 - Bring the computation to the data (reverse of paradigm)
- More generic & accommodating NXCALS system...
 - ... that just stores rows {f1,f2...} of arbitrary structure
 - Avoids many scattered "logging" systems
 - Keeps together & shares all data
 - Acc. Devices, Industrial Controls, Tracing, Post-Mortem, MDs, Analysis Results, Alarms, etc
 - Allows client-oriented data governance (policy per client)
- Spark analytics
 - **Python & Notebooks/Dashboards**, Machine Learning, R, ...
- **Horizontal scaling** to cover ever growing needs
- Cost & maintenance reduction
- Strengthen conaborations between groups
- "Attractive" technology -> easier to recruit for

NXCALS Architecture

Overall Status

- Core of NXCALS ready
- Taking data from CMW devices
- Ready to accept clients (early adopters)
 - PM clients (ongoing)
 - ABP (for MDs, LHC Luminosity, etc) waiting for SWAN to have production grade SLA

Next Activities (until LS2)

- Client use-cases (i.e. for analytics) (WIP)
 main driving factor!
- Data migration from CALS (WIP)
- Low latency Streaming API from Kafka (WIP)
- Simplified Extraction API & backport of old CALS API
- WinCCOA integration & datasources
- Installation on **new hardware** (CO and Hadoop in IT)
- Storing analysis results back to NXCALS as entities
- **Timber** rewrite to web, incorporate Web Statistics App?
- **Reporting** System?
- NXCALS Configuration Application (needed for Variables)
- Gobblin replacement?

SWAN Summary

- NXCALS uses SWAN to target Python/Jupyter users
 - ~10 users for starters, will grow to around 30-40 or more depending on the success rate
- Requirements for SWAN:
 - pySpark (demonstrated) & other already available Python packages (numPy, pandas, etc)
 - Security with Kerberos
 - At least 4GB memory for the driver/kernel (TBD)
 - Best effort 24/7 support required (like for NXCALS)
 - Stability == Good publicity == Success