# Measurements program and user specifications for the movable test bench

G Bellodi-BE/ABP/HSL

### Functionality

#### modular commissioning of RFQ, MEBT and DTL Tank1: see EDMS 1004908

|                          | Commissioning scenario                  | Nominal operation |  |  |  |
|--------------------------|-----------------------------------------|-------------------|--|--|--|
|                          | (nominal/probe)                         |                   |  |  |  |
| Pulse length             | 50-100 μs                               | 400 μs            |  |  |  |
| Rep rate                 | 1Hz                                     | 2 Hz              |  |  |  |
| Beam current             | 5-65mA                                  | 65mA              |  |  |  |
| Beam energy              | 3MeV (RFQ, MEBT                         | ), 12 MeV (Tank1) |  |  |  |
| Beam emittances at       | RFQ - 0.3 mm mrad<br>MEBT - 0.3 mm mrad |                   |  |  |  |
| structure                |                                         |                   |  |  |  |
| output planes (RMS norm) | DTL tank1 - 0.3 mm mrad                 |                   |  |  |  |

#### **Transverse measurements**

- Beam profiles
- Beam emittances
- Transverse halo
- Beam position

#### Longitudinal measurements

- Transmission
- Average energy
- Chopping efficiency
- Energy spread
- Bunch shape profile
- Longitudinal emittance?

#### Nominal envelopes



## **Block layout**



## What/where/when



### **Measurements program/specifications**

#### **General:**

alignment tolerances: <0.5mm with a center positioning accuracy of 0.1mm

time resolution: pulse to pulse (1Hz), with a gating resolution of  $\sim 20 \mu s$ 

#### 1) Beam intensity and transmission

Two transformers, one inline and one on spectrometer line downstream of bending magnet

|                  | S | pecs     |        |  |
|------------------|---|----------|--------|--|
| Min/max current  |   |          | 0-80mA |  |
| Resolution       |   | 1mA      |        |  |
| Max pulse length |   | 500 μsec |        |  |
| Accuracy         |   |          | 1mA    |  |
| Time resolution  |   |          | 2 μsec |  |

#### 2) Beam position/phase

Measure

- absolute beam position
- relative beam intensity between pick-ups
- absolute beam intensity through calibration with BCM
- absolute beam phase
- average energy (TOF technique)

#### Resolution

| Beam position              | 0.1 mm          |
|----------------------------|-----------------|
| Beam intensity             | 1% peak current |
| Beam phase                 | 1 degree        |
| Energy<br>resolution (TOF) | 1 per mille     |

TOF measurements are intended to complement/cross-check average energy measurements with spectrometer line (PUs calibration).

PUs to be installed at locations where beam is not already debunched. Current beam phase widths vary between 20 and 100 deg RMS at proposed locations (<u>define max</u> <u>beam spread for PU reading</u>).

<u>Minimum intensity threshold</u> should allow operation with pencil beam with reduced current (a few mA).

## **TOF** measurement

PUs at 582, 1291, 2416 mm (from start of diagnostics test bench)

Case1 :  $d\phi$ =2deg, dL=0 Case2 :  $d\phi$ =1deg dL=0.3mm

#### **PUs** 3 MeV 12 MeV Case1 Case2 Case2 Case1 1-2 4.1 3.01 28.5 16.9 2-3 2.58 1.9 18 10.7 1-3 1.58 1.16 11 6.54

#### Resolution in keV (analytical)

~ok for case2 and 1 per mille sensitivity requirement



#### 3) Spectrometer line

#### a) Average energy measurements and RF cavities set-up

Use pencil beam, slit in retracted position and quadrupoles switched off.

Measure beam centroid displacement on SEM grid when changing RF settings Beam is swept across entire monitor width :  $\Delta p/p=\pm 1\%$  corresponds to a deviation of  $\pm 13.5$ mm

Need <u>0.5-0.75mm screen resolution and 20 µs gating time</u> to measure variation of beam energy in time

A <u>magnetic field measurement</u> (NMR probe) is needed to monitor the dipole B field (at ~1 per mille stability level).

#### Ex: MEBT buncher1 tuning





#### 3) Spectrometer line

#### b) Energy spread measurement

Beam energy spread is derived from measurements of the beam sizes at the SEM grid by knowledge of the local dispersion function.

Nominal simulation results - slit closed to 0.2mm half aperture, sector bend, downstream quadrupole focusing (-2.8/1.6 T/m at 3 MeV , -5.6/3.2 T/m at 12 MeV)

| 5 rms values | ∆E at exit | $\Delta E$ at slit [keV] | ∆x at SEM  | ∆x at SEM | Resolution |
|--------------|------------|--------------------------|------------|-----------|------------|
|              | [ [keV]    |                          | [mm], ∆E=0 | [ [mm]    | [keV/mm]   |
| RFQ          | ±23        | ±41                      | ±1.6       | ±7.7      | 5.3        |
| MEBT         |            | ±52                      | ±2.7       | ±11       | 4.7        |
| DTL Tank1    |            | ±72                      | ±2         | ±4.5      | 16         |



#### 4) Beam profiles/emittances (slit+SEM grid)

#### Nominal distributions at the slit





#### Simulations assumptions/requirements

- Slit half aperture=0.2mm, total height=5cm, to be scanned through whole beam width (range of movement ±3cm)
  - Motor minimum step ~ 0.2mm (relative positional accuracy 0.05mm)
    - SEM wire spacing  $\leq 0.75$  mm

• Measurements should be performed pulse to pulse (or integrated over several pulses if scanning over the beam width), with ~20 $\mu$ s gating resolution to synchronize acquisitions at different points along the beam pulse.

#### Nominal beams at inline dump







|   | RFQ (3 MeV)                   |                               |                                | MEBT (3MeV)                      |                                     |                               | DTL Tank1 (12 MeV)               |                                     |                               |
|---|-------------------------------|-------------------------------|--------------------------------|----------------------------------|-------------------------------------|-------------------------------|----------------------------------|-------------------------------------|-------------------------------|
|   | Emit RMS<br>norm<br>[mm mrad] | Emit 93%<br>norm<br>[mm mrad] | 5 rms<br>Beam<br>width<br>[mm] | Emit RMS<br>norm<br>[mm<br>mrad] | Emit<br>93%<br>norm<br>[mm<br>mrad] | 5rms<br>Beam<br>width<br>[mm] | Emit RMS<br>norm<br>[mm<br>mrad] | Emit<br>93%<br>norm<br>[mm<br>mrad] | 5rms<br>Beam<br>width<br>[mm] |
| х | 0.33                          | 1.63                          | 28.6                           | 0.30                             | 1.48                                | 21.7                          | 0.33                             | 1.66                                | 25.8                          |
| У | 0.27                          | 1.33                          | 19.5                           | 0.35                             | 1.77                                | 33.1                          | 0.33                             | 1.63                                | 22.5                          |

#### Inline beam dump specs (3 MeV case)

Similar specs for spectrometer line dump if local interlock in place to prevent quads powering when slit is retracted

|          | Beam parameters            |                                  | Design  | Accident |
|----------|----------------------------|----------------------------------|---------|----------|
|          | Particle energy            | MeV                              | 3       | 3        |
|          | Avg current at dump        | μΑ                               | 51.2    | -        |
| lump     | Particles/s                | 10 <sup>14</sup> s <sup>-1</sup> | 3.2     | -        |
| it o     | No of full power pulses    | -                                | 8       | 4        |
| u a      | Mean power                 | W                                | 154     | -        |
| ear      | Reference bam size at dump | mm x mm                          | 22 x 33 | -        |
| Be       | Minimum beam size at dump  | mm x mm                          | -       | 5 x 5    |
|          | Orthogonal power flux      | MW/m <sup>2</sup>                | 0.068   | -        |
| pulse    | Avg pulse current          | mA                               | 64      | 64       |
|          | Duration                   | μs                               | 400     | 400      |
|          | Spacing                    | ms                               | 500     | 500      |
| cro      | Rep rate                   | Hz                               | 2       | 2        |
| Jac      | Duty cycle                 | %                                | 0.08    | 0.08     |
| 2        | Particles per pulse*       | 1014                             | 1.6     | 1.6      |
|          | Avg micropulse current     | mA                               | 64      | 64       |
| cropulse | Bunch duration             | ns                               | 0.24    | 0.24     |
|          | Bunch spacing              | ns                               | 2.84    | 2.84     |
|          | Bunch rep rate             | MHz                              | 352.2   | 352.2    |
| Е        | Bunch duty cycle           | %                                | 8.6     | 8.6      |
|          | Part per bunch             | 10 <sup>9</sup>                  | 1.14    | 1.14     |

\* Chopper off

#### 5) Halo measurements (BSHM)

#### a) Longitudinal:

measure residual H- ions in partially chopped buckets for time resolved commissioning of the chopper performance



#### **Require:**

sensitivity of 10<sup>3</sup> ions, >10<sup>5</sup> dynamic range, gating rate ~1ns beam should not be debunched

#### b) Transverse:

to assess general beam quality and matching inter-structures

#### 6) Bunch shape measurements (Feshenko monitor)

• Check longitudinal quality of the beam and matching to the DTL; acquire experience for later use when diagnostics is permanently installed after Linac4

• Possibility of longitudinal emittance measurement (3-points bunch rotation method) after chopper line (to be investigated)

• Possibility of calibration with pencil beam scans of longitudinal acceptance

• Possibility of longitudinal halo studies (if dynamic range of electron multiplier gain allows)

#### Specs:

pulse-to-pulse acquisitions 1 deg phase resolution at position where beam is not debunched

### 7) Software applications wishlist

- Transformers : simple readout
- PUs: trajectories, TOF
- BSHM : stand-alone
- Feschenko: stand-alone
- Emittance scanner:
  - $\odot$  emittance reconstruction
  - $\circ$  select profiles within time window
  - o plot beam width and centre as f(t) to study evolution through pulse
  - $\circ$  mountain range plots
- Spectrometer SEM grid application
- General purpose dual parameter scanner
- •....
- •...

to be finished ...