Bunch Compressor Options – preliminary results

FCC injector meeting

Tessa Charles

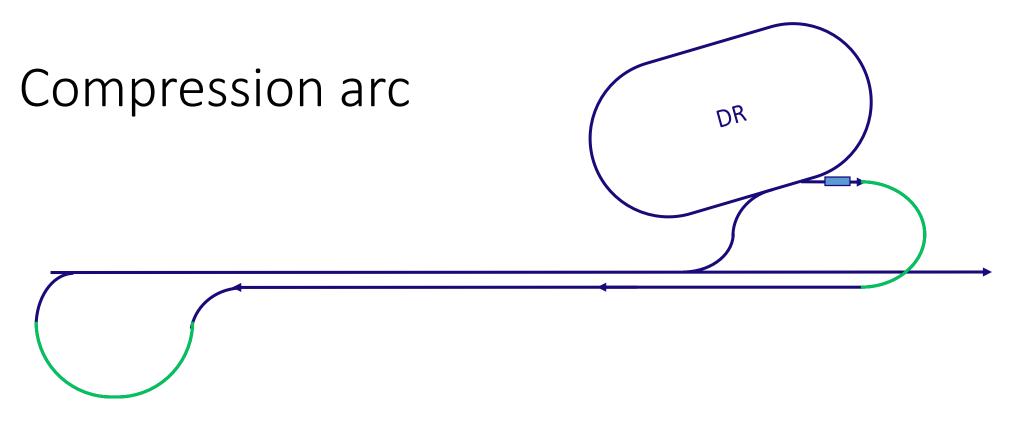
6/10/17

Outline

- 1. Bunch compressor options
 - 1. Compression arc
 - 2. Dogleg designs
- 2. Turnaround loops
- 3. CSR cancellation

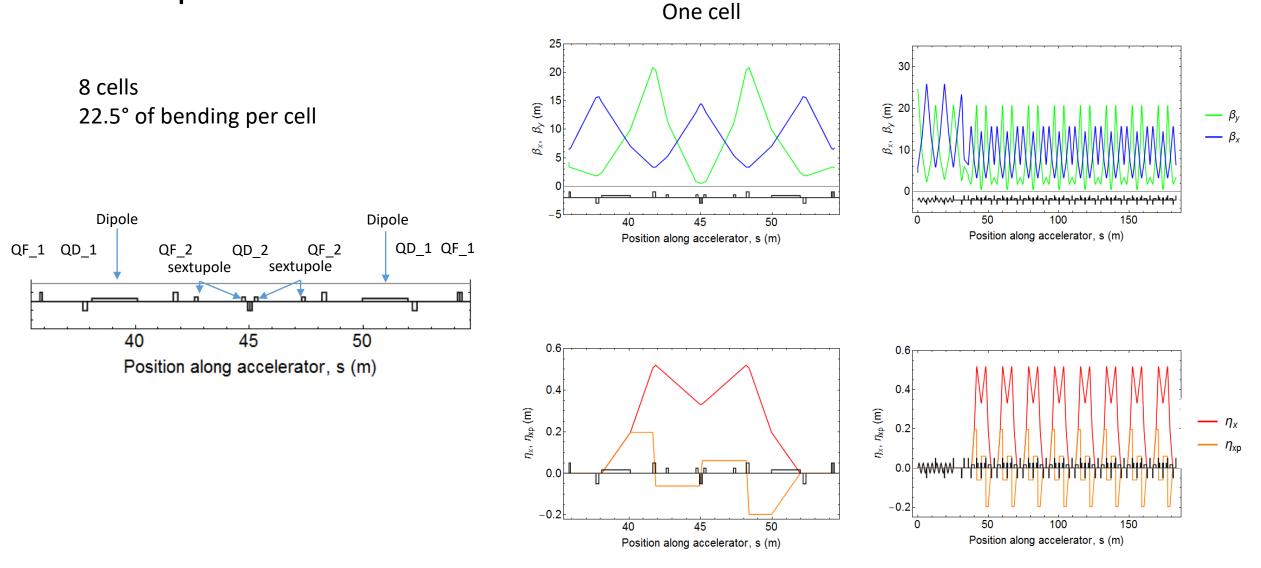
Bunch Compressor option 1

Compression arc



180 deg arc with R56 \neq 0.

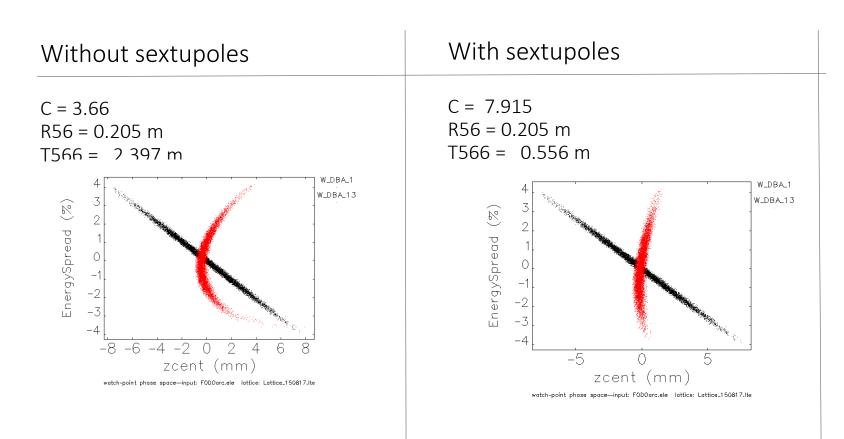
Compression arc



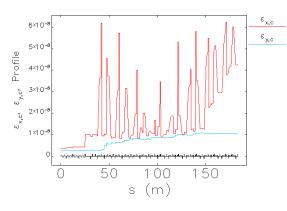
Compression arc

Black = initial distribution Red = final distribution after compression

- Energy chirp established by S-band accelerating section
- The second-order terms (from longitudinal dispersion and RF curvature) can be address through the inclusion of sextupoles in the dispersive region.

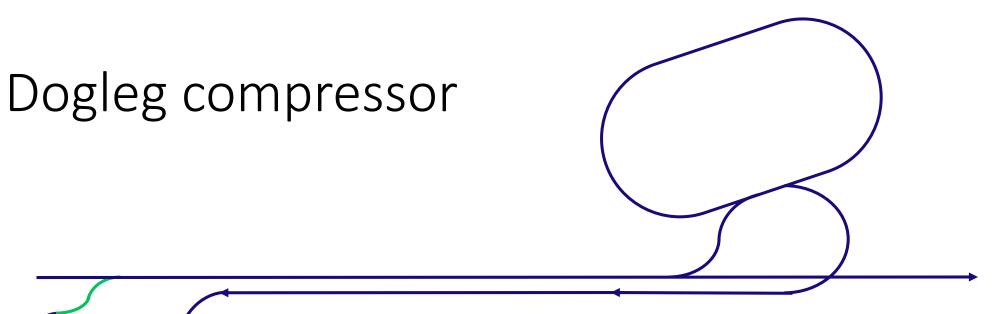


Very large CSR-induced emittance growth from the many dipoles



Bunch Compressor options 2 & 3

Dogleg compressors

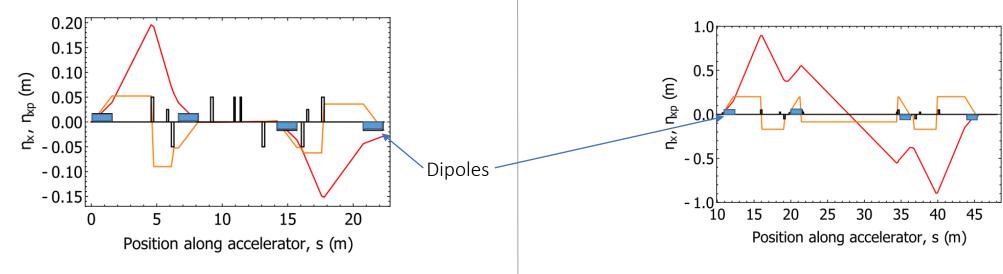


- Isochronous and achromatic loops (after damping ring and near 1.54 GeV section of linac)
- Followed by accelerating structure and dogleg compressor

Two Dogleg designs

Dogleg option 1

Dogleg option 2



Pros:

• Easier to ensure phase advance of π between sextupoles and dipoles.

Cons:

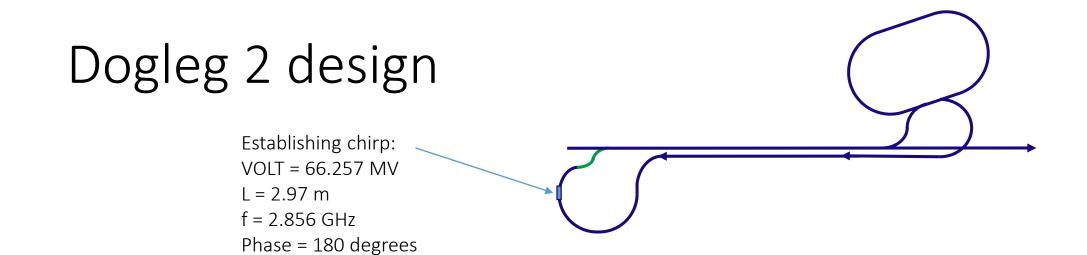
• Difficult to achieve the R56 value required.

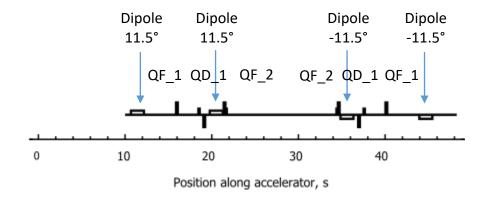
Pros:

• Easier to enable a larger R56 value.

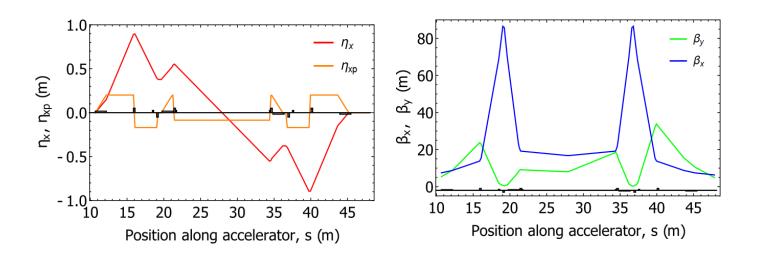
Cons:

• Beta_x and dispersion functions follow each other, making it difficult to ensure phase advance.



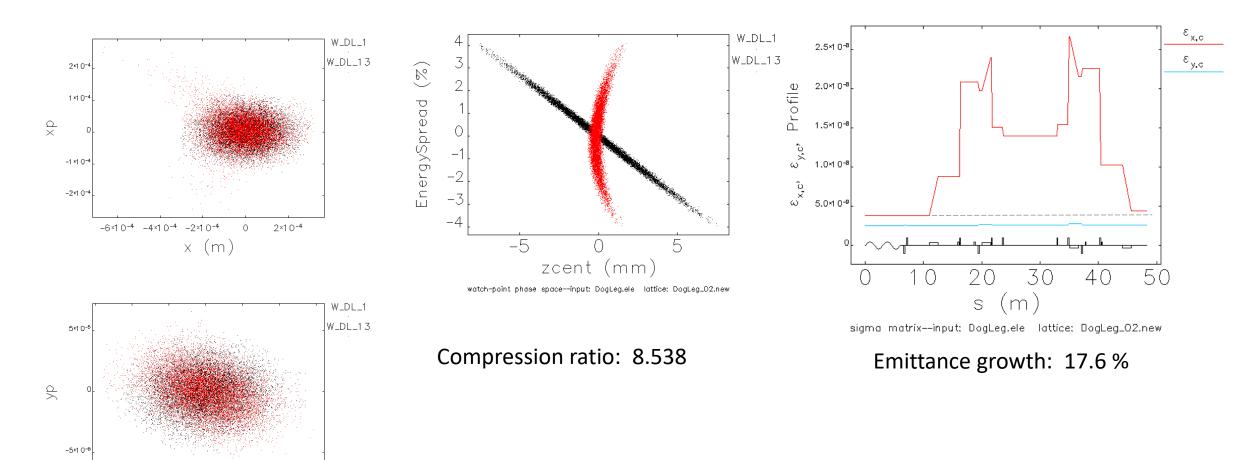


"QF_1": QUAD,L=0.2,K1=2.0557 "QD_1": QUAD,L=0.2,K1=-2.1601 "QF_2": QUAD,L=0.2,K1=2.5613



R56 = 190.15 mm T566 = 0.98 m

Black = initial Red = final



-6×10⁻⁴ -4×10⁻⁴

-2×10-4

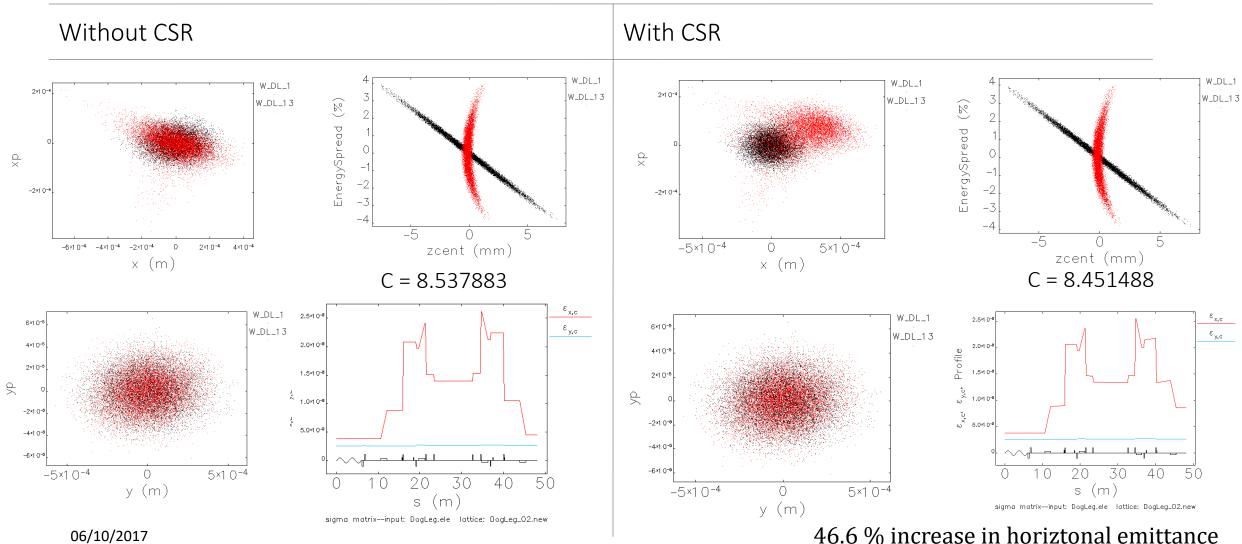
2×10-4

' ⁰ y (m) 4×10-4

6×10-4

Dogleg compressor - CSR

Black = before dogleg **Red** = after dogleg

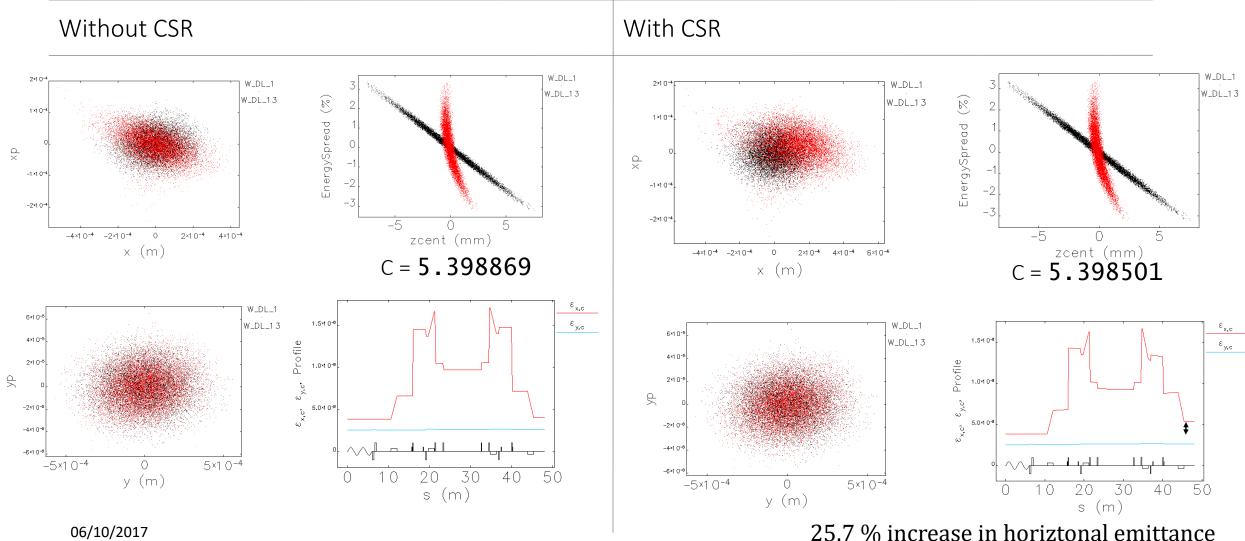


06/10/2017

Dogleg compressor - CSR

Black = before dogleg **Red** = after dogleg

Easing off on the compression



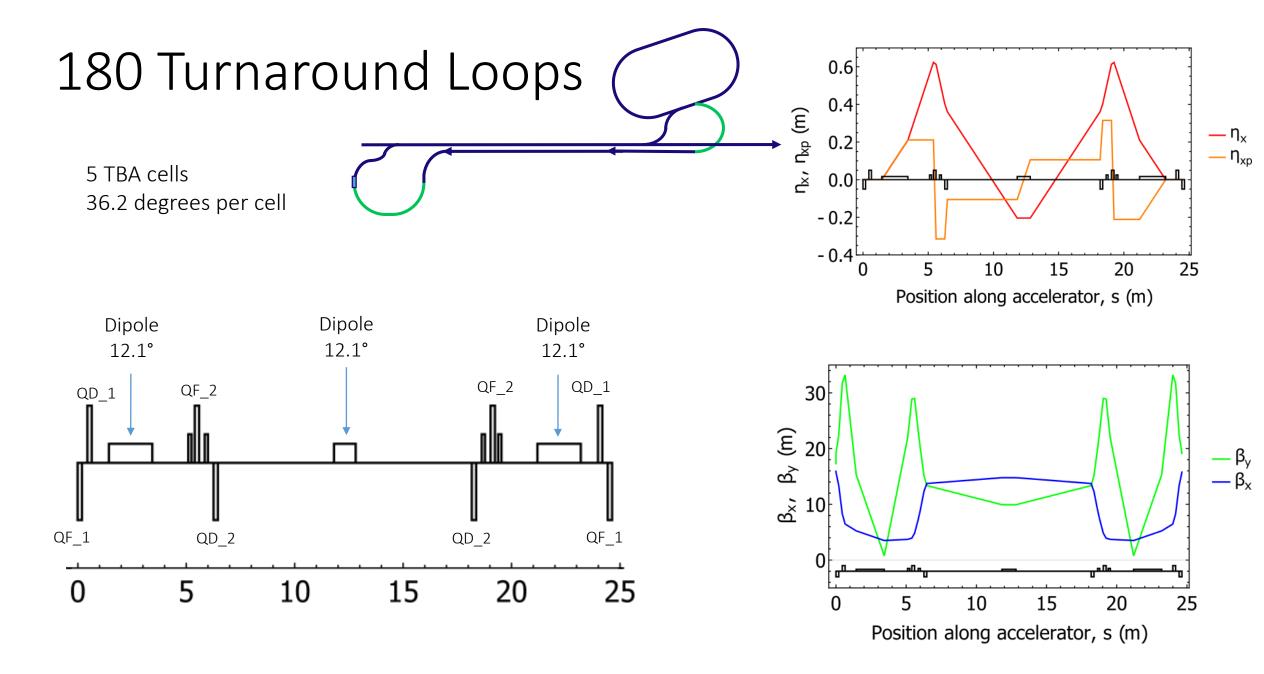
06/10/2017

CSR-induced emittance growth estimate

CSR Quit[] $\ln[1023] = r_e = 2.8179403227 \pm 10^{-15}$; $\ln[1036] = \left(\frac{\epsilon}{\epsilon 0}\right)$ $N_{b} = 2.66 \pm 10^{10};$ $En = 1.54 \pm 10^{9};$ $\text{egrowth} = \text{Sqrt} \left[1 + \frac{(0.22)^2}{16} \frac{r_e^2 N_b^2}{\chi \in N_b} \psi \left(\frac{\text{Abs}[\theta]^5 L_B}{\sigma_e f^4} \right)^4 (3/2) \right]$ $\gamma = 1.54 \pm 10^9 / (0.511 \pm 10^6);$ $\epsilon_v = 2.66 \pm 10^{-9};$ Out[1037]= 57.0815 % $\epsilon_{*} = 3.9 \pm 10^{-9};$ 0 = 0.200713; (* rad *) $L_{B} = 1.5; (* m *)$ $\sigma_{\rm sf} = 2. \pm 10^{-3};$ ISR $\beta = 10;$ $\ln[954] = \sigma_{\delta ISR} = \operatorname{Sqrt}\left[\frac{55}{24 \operatorname{Sqrt}[3]} \frac{\mathbf{r}_{e} \operatorname{hbarc}}{(\operatorname{mc}^{2})^{6}} \frac{\mathrm{E}^{5} \mathrm{L}_{B}}{\rho}\right]$ $\alpha = 0;$ $\psi = L_{B}^{2} (1 + \alpha^{2}) + 4 \beta^{2} + 4 \alpha \beta L_{B};$ Which equals approx... $\epsilon_{\rm N} = \epsilon_{\rm x} \gamma;$ $\ln[1038] = \sigma_{\delta ISR} = \frac{1}{L_{P}} \operatorname{Sqrt}[(4.13 \pm 10^{-11}) (\operatorname{En} \pm 10^{-9})^{5} \operatorname{Abs}[\theta]^{3}]$ In[932]:= 🎖 Out[1038]= 1.13383×10⁻⁶ Out[932]= 3013.7 In[933]:= Ex Y $Out[933] = 8.01644 \times 10^{-6}$ Equations from Chao "Handbook of Accelerator Physics and Engineering" 2nd Ed. p 336 In[934]:= N_b + 1.6 + 10 ^ - 19 Out[934]= 4.256×10⁻⁹

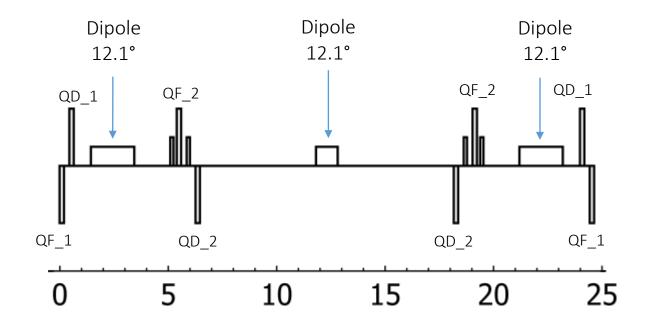
Turnaround loops

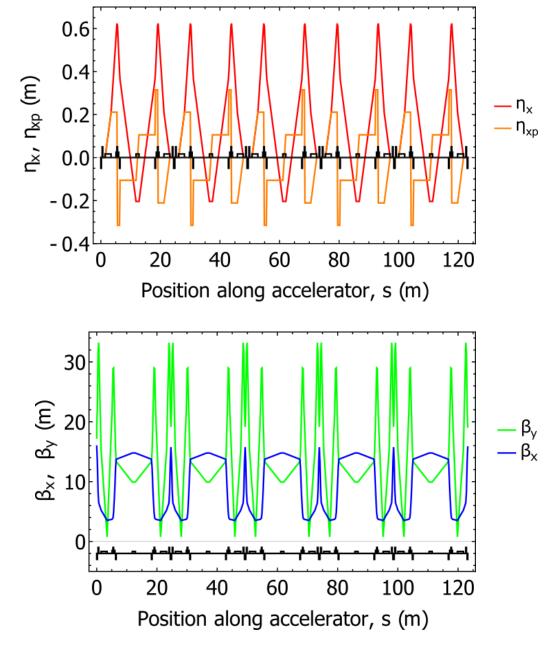
Isochronous and acromatic 180 deg. loops



180 Turnaround Loop

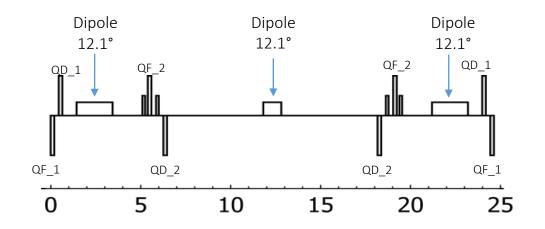
5 TBA cells 36.2 degrees per cell

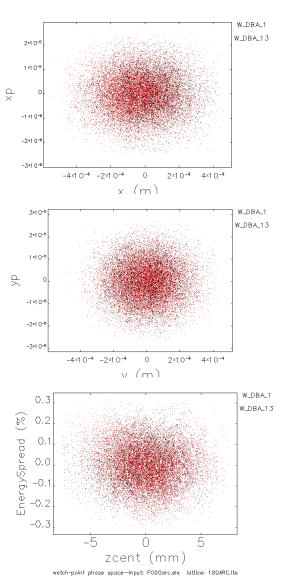


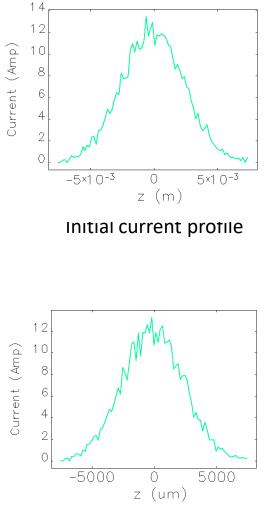


180 Turnaround Loop

Black = initial distribution **Red** = final distribution







Final current profile

180 Turnaround Loop

Initial distribution		With CSR		With CSR	
enx eny	3.550834 mm mrad 3.466103 mm mrad	Com enx eny	oression Ratio 1.000016 3.649786 mm mrad 3.466121mm mrad	enx eny	pression Ratio 0.9992598 3.691573 mm mrad 3.465129 mm mrad

CSR has a very small effect

s (m)

Thoughts on CSR cancellation

... an idea for consideration

CSR kicks

As the bunch passes through dipole, CSR causes a change in energy. The particle starts a betatron oscillation around a new reference trajectory, increasing its Courant-Snyder invariant.

$$X_{k} = \begin{pmatrix} x_{k} \\ x'_{k} \end{pmatrix} = \begin{pmatrix} \rho^{4/3} [\theta \cos(\theta/2) - 2\sin(\theta/2)] \\ \sin(\theta/2)(2\delta + \rho^{1/3}\theta k) \end{pmatrix}$$

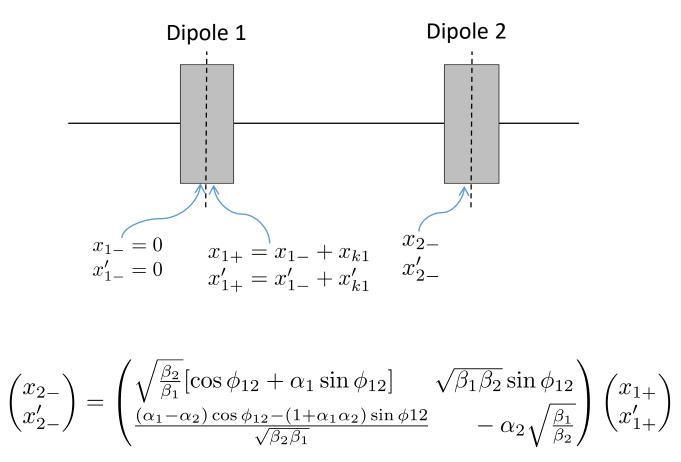
where

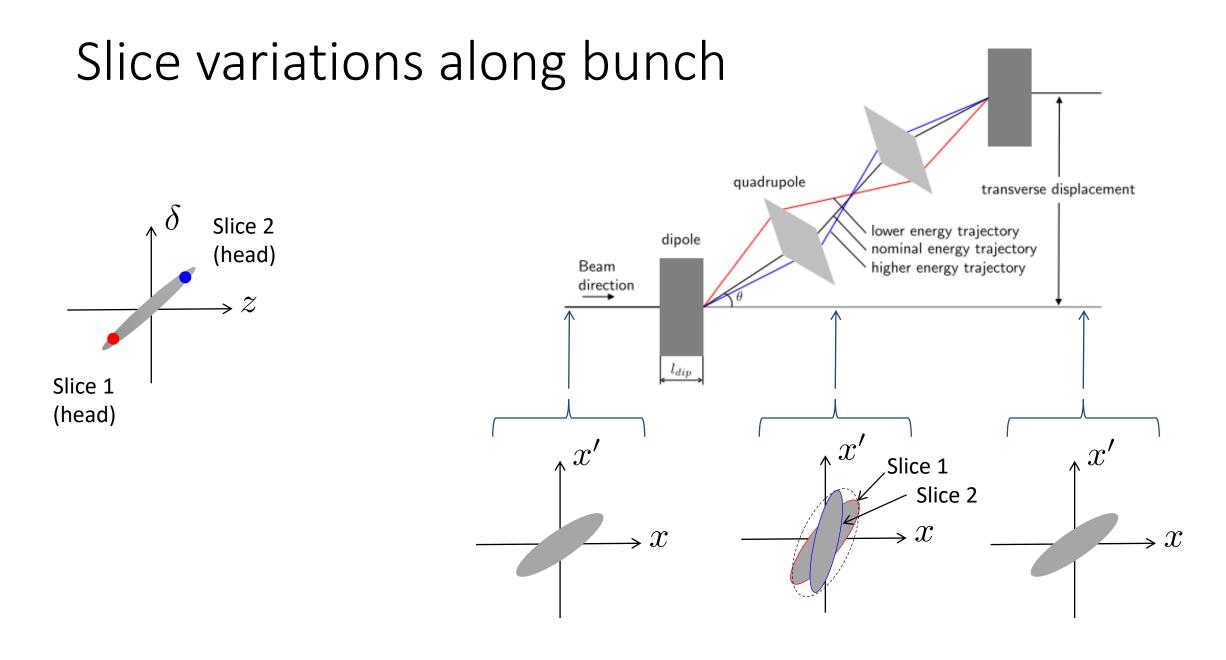
$$k = \delta_{CSR} \frac{R^{2/3}}{L_b}$$

$$= 0.2459 \frac{r_e Q}{e \gamma \sigma^{4/3}}$$

where δ_{CSR} is from the steady-state solution.

from Y. Jiao et. al (2014) Phys. Rev. ST AB 17 060701

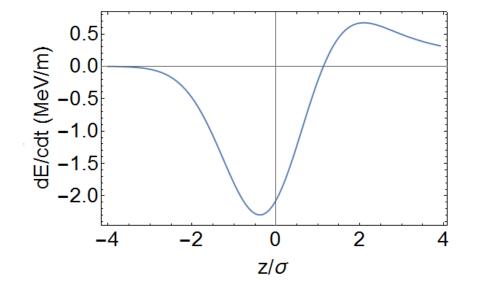




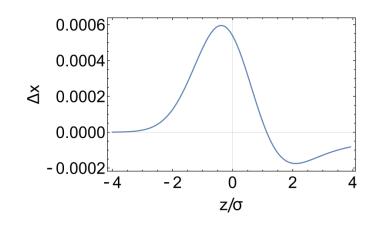
CSR kick cancellation idea

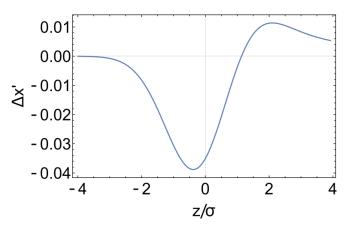
$$\frac{dE}{cdt} = \frac{-2e^2}{4\pi\epsilon_0 (3R^2)^{1/3}} \left[\int_{\tilde{z}-z_L}^{\tilde{z}} \frac{d\lambda}{dz} \left(\frac{1}{\tilde{z}-z}\right)^{1/3} dz \right]$$

For a Gaussian bunch



$$X_{k} = \begin{pmatrix} x_{k} \\ x'_{k} \end{pmatrix} = \begin{pmatrix} \rho^{4/3} [\theta \cos(\theta/2) - 2\sin(\theta/2)] \\ \sin(\theta/2) (2\delta + \rho^{1/3} \theta k) \end{pmatrix}$$
$$k = \delta_{CSR} \frac{R^{2/3}}{L_{b}}$$





CSR kick cancellation idea

If $\phi_{12} = \pi$

$$\binom{x_{2-}}{x_{2-}'} = \begin{pmatrix} -\sqrt{\frac{\beta_2}{\beta_1}} \rho^{4/3} k [\theta \cos(\theta/2) - 2\sin(\theta/2)] \\ \frac{(\alpha_2 - \alpha_1)}{\sqrt{\beta_2 \beta_1}} \rho^{4/3} k [\theta \cos(\theta/2) - 2\sin(\theta/2)] - \alpha_2 \sqrt{\frac{\beta_1}{\beta_2}} \sin(\theta/2) (2\delta + \rho^{1/3} \theta k) \end{pmatrix}$$

Vary (or can vary) along the length of the bunch Could be used vary relative strengths of the two parts of the sum.

If $\phi_{12} = \pi/2$

$$\begin{pmatrix} x_{2-} \\ x'_{2-} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} \alpha_1 \rho^{4/3} k \left[\theta \cos(\theta/2) - 2\sin(\theta/2) \right] + \sqrt{\beta_1 \beta_2} \sin(\theta/2) (2\delta + \rho^{1/3} \theta k) \\ \frac{(1+\alpha_1 \alpha_2)}{\sqrt{\beta_1 \beta_1}} \rho^{4/3} k \left[\theta \cos(\theta/2) - 2\sin(\theta/2) \right] - \alpha_2 \sqrt{\frac{\beta_1}{\beta_2}} \sin(\theta/2) (2\delta + \rho^{1/3} \theta k) \end{pmatrix}$$

Thanks