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Parity asymmetry and mass for spin-1/2 particles
Ys WLR = PLR

H x it 0y +iypd-vyir + m L Yr

For a massive particle, chirality does not commute with the Hamiltonian, so it cannot
be conserved

Chirality eigenstates of a massive particle cannot be Hamiltonian (physical) eigenstates

Nothing wrong with that in principle .... unless chirality is associated to a conserved
charge!
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The symmetry associated with the conservation of the weak charge
must therefore be broken for leptons and quarks to have a mass

In this process, weak gauge bosons must also acquire a mass. This needs
the existence of new degrees of freedom




S The_SM solution: Higgs mechanism \Q A
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The transition between L and R states, and the absorption of the changes in

weak charge, are ensured by the interaction with a background scalar field, H.
Its “vacuum density” provides an infinite reservoir of weak charge.
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arbitrary otherwise arbitrary
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® The relation between the Higgs phenomenon and the SM is similar to
the relation between superconductivity and the Landau-Ginzburg
theory of phase transitions: a quartic potential for a bosonic order
parameter, with negative quadratic term, and the ensuing symmetry
breaking. If superconductivity had been discovered after Landau-
Ginzburg, we would be in a similar situations as we are in today: an

experimentally proven phenomenological model. But we would still lack
a deep understanding of the relevant dynamics.
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® The relation between the Higgs phenomenon and the SM is similar to
the relation between superconductivity and the Landau-Ginzburg
theory of phase transitions: a quartic potential for a bosonic order
parameter, with negative quadratic term, and the ensuing symmetry
breaking. If superconductivity had been discovered after Landau-
Ginzburg, we would be in a similar situations as we are in today: an
experimentally proven phenomenological model. But we would still lack
a deep understanding of the relevant dynamics.

® For superconductivity, this came later, with the identification of e7e~
Cooper pairs as the underlying order parameter, and BCS theory. In
particle physics, we still don’t know whether the Higgs is built out of
some sort of Cooper pairs (composite Higgs) or whether it is
elementary, and in both cases we have no clue as to what is the
dynamics that generates the Higgs potential. With Cooper pairs it
turned out to be just EM and phonon interactions.With the Higgs, none
of the SM interactions can do this,and we must look beyond.



Decoupling of high-frequency modes

E&M

/ VV, -dd =4mq, VR
2R

short-scale physics does not alter
the charge seen at large scales




Decoupling of high-frequency modes

E&M Vo (H) = —p? |HI* + X |H|*

/ VV, -dd =4mq, VR
2R

short-scale physics does not alter
the charge seen at large scales




Decoupling of high-frequency modes

E&M

/ VV, -dd =4mq, VR
2R

short-scale physics does not alter
the charge seen at large scales

Vanm(H) = —p® [H + A |HI*

o™ N
’ A
---'---: ----- + --1W’H"--- + ---@--l
‘
« u?

HZ ren Hz gZ _ ),tZ
Ap?~ (ce mp2—cr me?) x (A ] v)?



Decoupling of high-frequency modes

E&M
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short-scale physics does not alter
the charge seen at large scales
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high-energy modes can change size and sign
of both p2 and A, dramatically altering the
stability and dynamics



bottom line

To predict the properties of EM at large scales, we don’t need
to know what happens at short scales

The Higgs dynamics is sensitive to all that happens at any scale

larger than the Higgs mass !!! A very unnatural fine tuning is
required to protect the Higgs dynamics from the dynamics at
high energy

This issue goes under the name of hierarchy problem

Solutions to the hierarchy problem require the introduction of
new symmetries (typically leading to the existence of new
particles), which decouple the high-energy modes and allow the
Higgs and its dynamics to be defined at the “natural” scale
defined by the measured parameters v and mn

= naturalness
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Extra-dimensions: Planck scale closer than in 4-D, or Higgs as 4-D
scalar component of a higher-dim gauge vector (KK modes, etc)
Little Higgs: Higgs as a pseudo-Nambu-Goldstone boson of a larger
symmetry, mass protected by global symmetries (top partners)

Neutral naturalness: top contributions canceled by triplets of new
particles neutral under SM gauge groups, but sharing the Higgs
couplings with SM fermions (Higgs portals). Typically comes with
doubling of (part of) SM gauge group (eg SU(3)a*SU(3)B).
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e folded SUSY (SU(3)g stops cancel Higgs couplings to SU(3)a tops)



The LHC experiments have been exploring a vast multitude
of scenarios of physics beyond the Standard Model

In search of the origin of known departures from the SM

Dark matter, long lived particles
Neutrino masses

Matter/antimatter asymmetry of the universe

To explore alternative extensions of the SM

New gauge interactions (Z’, W’) or extra Higgs bosons
Additional fermionic partners of quarks and leptons, leptoquarks, ...
Composite nature of quarks and leptons

Supersymmetry, in a variety of twists (minimal, constrained, natural,
RPY, ...)

Extra dimensions
New flavour phenomena

unanticipated surprises ...
12



So far, no conclusive signal of physics beyond the SM

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

TeV

ATLAS Preliminary

Status: July 2017 [£dt = (3.2-37.0)fb"! Vs =8,13TeV
Model Ly Jetsi ET™ [raqm) Limit Reference
Al L ' L L Al Al Ll L Ll L Al Ll L ' L Ll Al Al
ADD Gyx + g/q Qe 1-4) Yos 36.1 My 7.75 TeV ne2 ATLAS-CONF-2017.080
ADD non-resonant yy 2y - - 367 My n = IHLZNLO CERN.EP-2017132
ADD QBH - 2] - 37.0 M, neb 170300217
ADD BH high ¥ pr zlep z2j - az M, n=6 My = 3TV, ro1 BH 1606.02265
ADD BH multijet - z3j - a6 My, n =6, My = 3 TeV,ro1 BH 1512.02585
RS1 Gy —= vy 2y - - 8.7 /My =01 CERN-EP-2017132
Bulk RS Gy ~+ WW s gqiv 1o 1J Yos 36.1 k/Mp =10 ATLAS-CONF-2017-051
2UED/RPP lepy 22b,23) Yes 13.2 Tiee (1,1), S{ATY s pt) =1 ATLAS-CONF 2016104
SSM 2’ s (! 2e,p - - 36.1 ATLAS-CONF-2017-027
SSMZ' w11 2r - - 36.1 ATLAS-CONF-2017-050
Leptophobic Z° — bb - 2b - 3.2 160308791
Leplophobic Z° — tt e =21b 2102 Yes 32 Fim = 3% ATLAS-CONF-2016-014
SSM W' — Iy 1eu - Yes 36.1 170604726
HVT V' = WV — gqoq model B O e, p 2J - 36.7 gv =3 CERN-EP-2017-147
HVT V'« WH/ZH model B multi-channed 36.1 gv =3 ATLAS-CONF-2017-055
LRSM W, — tb 1eu 20,01  Yes 20.3 14104103
LRSM W), — tb Qe 21b1J - 203 IS0
Cl qagq - 2 - 370 218TeV 1, 1703.09217
. Clitqq 2e.u - - 36.1 401 TeV v, ATLAS- CONF- 2017027
Cl wurtt 2(SS)z3 e 210,21 Yos 203 [Coml =1 1504.04608
Axial-vector mediator (Dirac DM) Oe, p 1-4j Yos 36.1 Mo TeV £,70.25, g, »1.0, m(y) < 400 GeV | ATLAS-CONF-2017-080
. Vector mediator (Dirac DM) Oe 1y <1j Yes 36.1 Mosed 12 £,70.25, g, =1.0, m(y) < 480 GeV 1704.03848
VVyy EFT (Dirac DM) Oe, u 1J21]  Yes a2z M 700 GeV miy) < 150 GeV 1608.02372
Scalar LQ 1 gen 2e 2 2j - 32 LO mass 1.1 Bl 1605,06035
- Scalar LQ 2™ gen 2p 2 2j - 32 |LOmass 1.05 p= 160506035
Scalar LQ 3™ gen Tep 21b23) Yes 203 |G p=0 1508.04735
VIQTT - Mt 4+ X Oorten 220, 23| Yos 13.2 T mass 12 BT — Ht) =1 ATLAS-CONF-2016-104
VIQTT = Zt + X e 21b23| Yes 361 T mass 1.16 BT —2t)=1 1705.10751
VIQTT - Wb+ X lep 21b 2102 Yos 36.1 T mass 1 v BT — Wh) « 1 CERN.EP-2017.094
VLOBB —+ Hb + X e 220, 23] Yes 203 BB — Mb) « 1 1505.04306
VIOBB «+ Zb+ X 223e.u4 22210 - 203 BB - 2Z6) =1 14095500
VIO BB « Wt 4+ X ley z1b 213 Yos 36.1 B mass BB W) =1 CERN-EP-2017-0%4
VL QQ —+ WgWg Ve u z4) Yos 203 1509.04261
Exched quark ¢° — qg - 2 - 370 |q" mass 6.0 TeV cnly o' and ", A = m(q") 1703.09127
Excited quark ¢ — qy 1y 1) - 26.7 5.3 TeV ooy o' and " A = m(q") CERN-EP-2017-148
Excited quark b" —» by - 16,1} - 133 ATLAS-CONF-2016-060
Excited quark b* -+ We lor2e,p 10,20 Yes 20.3 fgmlimie=l 151002604
Excited lepton (* Jep - - 20.3 A« 30TV 14112921
Excited lepton v* Je1 - - 203 Aw16TV 14112921
LRSM Majorana v 2e.p 2j - 20.3 m{ W) « 2.4 TeV, no mixing 1506,06020
Higgs triplet H** — {( 234e,u(SS) - - 36.1 O peoduction ATLAS-CONF-2017-053
Higgs triplet H** s (1 KN - - 203 OF production, B{H* — () =1 14112921
Monotop (non-res prod) leu ib Yes 20.3 dga-ves ™ 02 14105404
Multi-charged particles - - - 20.3 O production, |g| « Se 150404128
Magnetic monopoles - - - 7.0 O production, |g « 1gp. 5pin 12 1509.08055

‘Only a selection of the available mass limits on new slates or phenomena is shown.

- Vi=13TeV

t Small-radius (large-radius) jets are denoted by the letter | (J).
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10 Mass scale [TeV]



® The hierarchy problem, and the search for a natural explanation of
the separation between the Higgs and Planck scales, provided so far an
obvious setting for the exploration of the dynamics underlying the
Higgs phenomenon.
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® The hierarchy problem, and the search for a natural explanation of
the separation between the Higgs and Planck scales, provided so far an
obvious setting for the exploration of the dynamics underlying the
Higgs phenomenon.

® | ack of experimental evidence, so far, for a straightforward answer to
naturalness (eg SUSY), forces us to review our biases, and to take a

closer look even at the most basic assumptions about Higgs
properties

® We often ask “is the Higgs like in SM?” ....The right way to set the
issue is rather, more humbly, “what is the Higgs?” ...

®in this perspective, even innocent questions like whether the Higgs
gives mass also to It and 2"? generation fermions call for
experimental verification.

=> all this justifies the focus on the program of

precision Higgs physics measurements g



The Higgs potential

The Higgs sector is defined in the SM by two parameters, J and A:

V(H)
VSM(H):—/L2 |H‘2—|—)\|H‘4 \U \t’//,
Vs (H), ,  0%Vsy(H) po=
g =0 =0 and my = = = 3 —
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The Higgs potential

The Higgs sector is defined in the SM by two parameters, J and A:

V(H)
VSM(H):—,MZ |H‘2—|—)\|H‘4 \U \‘—’//>
OV (H) B o  0°Vsm(H) po= mg
o M=y =0 and my = Sapee e T my

These relations uniquely determine the strength of Higgs selfcouplings
in terms of the two now-known parameters myand v
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The Higgs potential

The Higgs sector is defined in the SM by two parameters, J and A:

V(H)
VSM(H):—/LZ |H‘2—|—)\|H‘4 \U \‘—’//>
OV (H) B o  0°Vsm(H) po= mg
o M=y =0 and my = Sapee e T my

These relations uniquely determine the strength of Higgs selfcouplings
in terms of the two now-known parameters myand v

. . 2
‘- m
:.. g4H = >\ — —H
S 202

2
2mH

.......... :.:. g3H — 4)\,0 —
. v

These relations between Higgs self-couplings, my and v entirely depend on
the functional form of the Higgs potential. Their measurement is therefore an
important test of the SM nature of the Higgs mechanism

|5



How far have we tested the Higgs potential?

parameters of the potential
V(H)

\ e/
NARt \/ V(H) ~ mi2 (H-v)?

/
v=246 GeV, from
weak decays

16



Events / 2 GeV

Higgs mass, 2017

CMS 359fb"' (13 TeV)
70Illl'lllllIlllIlllllllllIlllllllllIlllllllllllll—
+ Data
60 ] H(125)
[ q9—-2zZ, zy*
50 B 9922, zy*
B z+Xx

0
70 80 90 100 110 120 130 140 150 160 170
m,, (GeV)

arXiv:1706.09936

3D likelihood fit (ma, ZZ bg, om) =

My = 125.26 = 0.203tat =+ 0.0ssyst GeV
= 125.26 = 0.22 GeV

= 2 X 103 precision ....

ATLAS

- e
ATLAS Preliminary
Vs =13 TeV, 36.1 fb"

l LJ L] L L] l L] L L L] ] LJ L] L] L l

—e—4 Total Stat.

Total Stat. Syst.

[ Syst

|

ATLAS-CONF-2017-046

vy and 42 combination, run 1+2 =

My = 124.98 =+ 0.195tat = 0.21syst Gev
=124.98 = 0.26 GeV

LHC Run 1 - — 125.09 £ 0.24 ( £ 0.21+0.11) GeV
H—2Z" 4] . { 124.88 £+ 0.37 ( £ 0.37 £ 0.05) GeV
H—yy — . == 125.11+ 0.42 ( + 0.21+ 0.36) GeV
Combined - T — 12498 + 0.28( £ 0.19 £ 0.21) GeV
A l A L l A A A A l A 'S A A l A ' A ' l ' A l A
124 124.5 125 125.5 126 126.5
my, [GeV]

it took over 6 years from 1983 discovery to get below 5 x 10-3 on mz (1989: CDF, SLC, LEP) |7



How far have we tested the Higgs mechanism?

parameters of the potential
V(H)

\ e/
NN \/ V(H) ~ my2 (H-v)?
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How far have we tested the Higgs mechanism?

parameters of the potential
V(H) =

NARt > V(H) ~mu2 (H=v)?2  + 7?77

18
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What will HL-LHC tells us about the Higgs potential?

®Strong negative interference between

d e 5 = ° - the two diagrams near threshold
t S + LY 1 e Selfcoupling diagram suppressed well
g ~h 9 »—----h above threshold, due to |/S behaviour

® => it’s hard!!

. - 3 ; — s e
Vs=14 TeV, PU=140 D [ ' ' Non: t HH prediction -
F 120 Siteeen = LATLAS Expocted Limit (95% CL)
— | CMS Phase |l Simulation ] >~ o gL.Simulation Preliminary s Expected+ 1o ]
@ ~ Preliminary 1 i Expected + 26 _
= 1000 CMS-PAS-FTR-16-002 s ek omon” :
& ank 4 r & B
Eﬂ_ — T — _
: ] 1 15 :
L - e | =
5 604 - é - 1
-E‘ | 7 o) B R
& . ] 1—
§ 400 —
5 ¢ 1
% onl Nominal Luminosity - 0.5
z 20 ]
£ [ 1
g [ ] o) EPEPE N . — < S I R
0 - | -10 -5 0 5 10 15 20
1 2 3 4 5 6 e
Integrated Luminosity [1 0’ fb"] ATL-PHYS-PUB-2017-001 M/ M

Barely |1-20 evidence for Higgs pair production, but no quantitatively significant

determination of \: —0.8 < A/Asm < 7.7 @95%CL 20.2 < MAsw < 2.6

w. kinematical analysis



Higgs couplings: global fit of run | (2010-12) data

- o ATLAS and CMS -®- ATLAS+CMS
AH Y, Ypr gHV"V, LHC Run 1 ~ ATLAS
-+ CMS
B ' — +10
M = OxBR / [OxBR]sm Mgg,_- —"-—_:*_ — 20
o ] o e
assuming SM BR’s in data _ g
Hyer =
MWH Z —
e S
ATLAS+CMS K E=
JHEP 1608 (2016) 045 o
u=1.09=%0.11 u JE——
ttH : . n
W el
llllIIllIIIlllIIlllllllllllIIIIIIIIIIIIIIIIIllIll

-1-050 05 1 156 2 25 3 35 4
Parameter value

- combination of different production and decay channels, explicit constraints on
individual couplings are much less precise than 10% !!

- essential to establish couplings individually, through combinations of different
production and decay channels 20


http://arxiv.org/pdf/1606.02266.pdf

Since run 2 started in 2015:

H—T1T, bb, Htt coupling, all established at >50

H—pu: limits at < 2.8 SM (ATLAS) and 2.6 SM (CMS)

= s0 far, so good, the Higgs behaves as predicted
by the SM, why do we need to do better?

21



Sensitivity of various Higgs couplings
to examples of
beyond-the-SM phenomena

arXiv:1310.8361

Model Ky Kb K~y
Singlet Mixing ~ 6% ~ 6% ~ 6%
2HDM ~ 1% ~ 10% ~ 1%
Decoupling MSSM  ~ —0.0013% ~ 1.6% ~ —.4%
Composite ~ —3% ~—383=-9% ~—-%
Top Partner ~ —2% ~ —2% ~ +1%

=> the goal should be (sub)percent precision!

22



Projected precision on H couplings at HL-LHC

ATL-PHYS-PUB-2014-016

ATLAS Simulation Preliminary ATLAS Simulation Preliminary
's = 14 TeV: [Ldt=300 b ; [Ldt=3000 fb 's =14 TeV: |Ldt=300 b ; [Ldt=3000 b
IIIIIYTIIII ; III[IITTITTTIIIITI
H-yy (comb.) g 9z
' ] Mz
H— ZZ (comb.) ~
- xlg
H— WW (comb.) . i
H— Zy (incl) Az
. .
H— bb (comb.) B
. Mgz
H—ott (VBF-like) N
- AYZ
Houu (comb.) Mzyz
a——— L l N | l Ll 1 1 l Ll 1l
0 0.2 0.4 (pu=0xBR) 0O 0.05 0.1 0.15 0.2 0.25
A/ Ky
WH Ay =A%)

solid areas: no TH systematics
shaded areas: with [H systematics


http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2014-016/

Why do we care so much?

The Higgs boson is directly connected to several questions:
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The Higgs boson is directly connected to several questions:

* |s the Higgs the only (fundamental?) scalar field, or are there other
Higgs-like states (e.g. HY, A%, H*%, ..., EW-singlets, ....) ?

* What happens at the EWV phase transition (PT) during the Big Bang?
* what’s the order of the phase transition!?
e are the conditions realized to allow EW baryogenesis!?
* does the PT wash out possible pre-existing baryon asymmetry?

* |s there a relation between any amongst Higgs/EVVSB, baryogenesis,
Dark Matter, inflation?

* |s there a deep reason for the apparent metastability of the Higgs
vacuum?!
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Higgs selfcoupling and coupling to the
top are the key elements to define

(meta)Stability of the Higgs potential

h.. h . L . . the stability of the Higgs potential
..‘: — :..-.,: + @ + ::.‘ h ‘_. + . ﬁ dx o A4 . yt4
N d log p
h ..o. ..oh ..-. .o.. ..-. .o.. ..o. .o.. m mH4 — mt4
>\ren >\ — Yt4 >\4
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(meta)Stability of the Higgs potential

Higgs quartic coupling A
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(meta)Stability of the Higgs potential

Higgs quartic coupling A

Higgs selfcoupling and coupling to the
top are the key elements to define
the stability of the Higgs potential
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Not an issue of concern for the human race.... but the closeness of mtop to the critical

value where the Higgs selfcoupling becomes 0 at Mpianck (namely 171.3 GeV) might be
telling us something fundamental about the origin of EWSB ... incidentally, yiop=1 (?!)



The nature of the EW phase transition
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The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 » (k) = A(T) Continuous
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Ist order
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Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc
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The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 - (hy = h(T) Continuous
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Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc

In the SM this requires mpy <= 80 GeV, else transition is a smooth crossover.

Since my = 125 GeV, new physics, coupling to the Higgs and effective at scales
O(TeV), must modify the Higgs potential to make this possible
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The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 - (hy = h(T) Continuous
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0
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Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc

In the SM this requires mpy <= 80 GeV, else transition is a smooth crossover.

Since my = 125 GeV, new physics, coupling to the Higgs and effective at scales
O(TeV), must modify the Higgs potential to make this possible

= Probe higher-order terms of the Higgs potential (selfcouplings)

= Probe the existence of other particles coupled to the Higgs "y



15t Order EWPT has profound implications for cosmology

(Higgs) = 0

Primordial Matter
Black Holes

see LISA science paper: 1512.06239 @

Andrew Long @ FCC physics Workshop, Jan 2018
https://indico.cern.ch/event/618254

L — R



Key question for the future developments of HEP:
Why don’t we see the new physics we expected to
be present around the TeV scale ?
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relaxing the m(X°)=0 constraint ...
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... LHC has barely improved LEP2 limits ...
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=> in principle there is still room for
discoveries well below the TeV scale
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Key question for the future developments of HEP:
Why don’t we see the new physics we expected to
be present around the TeV scale ?

® |s the mass scale beyond the LHC reach ?

® |s the mass scale within LHC’s reach, but final states are elusive to the
direct search ?

These two scenarios are a priori equally likely, but they impact in
different ways the future of HEP, and thus the assessment of the physics
potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:
® brecision

® sensitivity (to elusive signatures)

» extended energy/mass reach



Remark

the discussion of the future in HEP must start from the

understanding that there is no experiment/facility, proposed

or conceivable, in the lab or in space, accelerator or non-
accelerator driven, which can guarantee discoveries beyond

the SM, and answers to the big questions of the field
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The physics potential (the “case”) of a future facility for HEP should
be weighed against criteria such as:

(1) the guaranteed deliverables:
* knowledge that will be acquired independently of possible
discoveries (the value of “measurements™)

(2) the exploration potential:
* target broad and well justified BSM scenarios .... but guarantee
sensitivity to more exotic options
e exploit both direct (large Q?) and indirect (precision) probes

(3) the potential to provide conclusive yes/no answers to relevant,
broad questions.

34



Dark Matter
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* DM could be explained by BSM models that would leave no signature
at any future collider (e.g. axions).
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e Scenarios in which DM is a WIMP are however compelling and
theoretically justified
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Dark Matter

* DM could be explained by BSM models that would leave no signature
at any future collider (e.g. axions).

* More in general, no experiment can guarantee an answer to the
question “what is DM?”

* Scenarios in which DM is a WIMP are however compelling and
theoretically justified

* We would like to understand whether a future collider can
answer more specific questions, such as:

e do WIMPS contribute to DM?

e can WIMPS, detectable in direct and indirect (DM annihilation)
experiments, be discovered at future colliders? Is there sensitivity to
the explicit detection of DM-SM mediators?

e what are the opportunities w.r.t. new DM scenarios (e.g. interacting
DM, asymmetric DM, ....)?
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Flavour anomalies at LHC & Bfact’s

b—clv

BR(B — D% rv)

R(D™) =

BaBar hadronic tag
PRD 88 (2013) 072012
0.332+0.024+0.018

Belle hadronic tag

PRD 92 (2015) 072014
0.293+0.038 = 0.015

Belle SL tag
PRD 94 (2016) 072007
0.302+ 0.030 = 0.011

Belle 1-prong

PRL 118 (2017) 211801
0.270 = 0.035 + 0.027

LHCb muonic

PRL 115 (2015) 111803
0.336 = 0.027 = 0.030
LHCb 3-prong

LHCb-PAPER-2017-017
0.285+ 0.019 + 0.028

LHCDb average
0.306 = 0.016 = 0.022

Fajfer et al. (SM)
PRD 85 (2012) 094025
0.252+ 0.003

i

BR(B — D™ pv)
——LHCb-PAPER-2017-017

0.1 0.2

b—sf0

BR(B — K™ up)

BR(B — K®ee)

R(D¥*)

Overall combination of R(D) and R(D*) is 4.10 from SM

I ) ] L) ) 1 L L)

|
BaBar, PRL109,101802(2012)

L) L) L) L I I L} ) I

0.5 - ——— Belle, PRD92,072014(2015) Ax’ = 1.0 contours -
n LHCb, PRL115,111803(2015) - -
045 — Belle, PRD94,072007(2016) e=== 5M Predictions .
"~ ——— Belle, PRL118,211801(2017) R(D)=0.300(8) HPQCD (2015) :
-  =—— LHCb, FPCP2017 R(D)=0.299(11) FNAL/MILC (2015) —
04 F Average R(D*)=0.252(3) S. Fajfer et al. (2012) ]
035F 40
- :_ \)20 _E
025F = e
- HFLAY @
u |__FPCP2017 |-
02 : : | | P(x2)=71.6;%—_

0.2 0.3 04 0.5 0.6
R(D)

mi [mass range] SM Exp.
v

R 1.00 £ 0.01 | 0.7457 9079 &+ 0.036

Ry.[11=61 11 1,00 + 0.01 | 0.6857 0 oés + 0.047

Ry.[0-04511]1 || 0.91 4+ 0.03 | 0.6607 5 570 + 0.024

LHCb, PRL 113 (2014) 151601 , arXiv:1705.05802
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Example of EFT interpretation of Rk

Altmannshoffer et al, arxiv:1704.05435

O5 = (57, PLb)(£y*0),
Oty = (57, PLb) (1750

Possible explicit realizations:

b S
b S
LQ
z -
—0.5 -
—— LFU observables
T T M AN\ T b — spp global fit
11
a b S : =
(a) (b) flavio vo.21 ——~all, fivefold non-FF hadr. uncert.
|
—-2.0 —-1.5 —1.0 —0.5 0.0 0.5 1.0 1.5
Re C¥
where, e.g. , — —

Upper limits on Z’ and Leptoquark masses are model-dependent, and constrained also by
other low-energy flavour phenomenology, but typically lie in the range of 1—=+0(10) TeV

= if anomalies confirmed, we may want a no-lose theorem to identify the next facility! 37
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The exhaustive exploration of phenomena at the TeV scale is
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will hopefully address a good fraction of this, but cannot
guarantee a final answer

Future colliders will be a necessary next step, to complete this
exploration, and (even better) to clarify the origin of possible
future discoveries at the LHC or elsewhere

much to be inspired by in the

forthcoming lectures of this School!
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