Physics at future e^+e^- colliders

Fulvio Piccinini

Pisa School on future colliders, Pisa

Pisa, 17-21 September 2018

F. Piccinini (INFN, Pavia)

luminosity comparison among lepton colliders

F. Bedeschi, INFN EU Strategy Meeting, 6-7 September 2018, Roma, Italy

e^+e^- collisions @ $\sqrt{s} \simeq M_Z$

Primary observables

- absolute cross sections for different species of fermions $\sigma_f(s)$
- Forward-backward asymmetries *A_{FB}*(*s*) (sensitive to parity violation)

$$\sigma = \sigma_F + \sigma_B$$
$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$
$$\sigma_F = 2\pi \int_0^1 d\cos\vartheta \, \frac{d\sigma}{d\Omega}, \qquad \sigma_B = 2\pi \int_{-1}^0 d\cos\vartheta \, \frac{d\sigma}{d\Omega}$$

measurements @ Z peak at LEP

Large differences due to QED initial state radiation

$$\sigma_{\rm T}(s) = \int_{z_0}^1 dz H(z;s) \hat{\sigma}_{\rm T}(zs) \qquad \qquad A_{FB}(s) = \frac{\pi \alpha^2 Q_e^2 Q_f^2}{\sigma_{\rm tot}} \int_{z_0}^1 dz \frac{1}{(1+z)^2} \, H_{\rm FB}(z;s) \, \hat{\sigma}_{\rm FB}(zs)$$

Pseudo-observables

 Idea: extract as much as possible information on the Z properties <u>independently</u> of the event selection details

- $f_{12} = f_{12} = f_{12} = f_{12}$

		$\Gamma_f = 4N_c \Gamma_0[(g_V^s) \ R_V^s + (g_A^s) \ R_A^s]$
		$\Gamma_{inv} = \Gamma_Z - \Gamma_e - \Gamma_\mu - \Gamma_\tau - \Gamma_h$
		Γ_h
		$R_l = \frac{\Gamma_l}{\Gamma_l}$
Observable	Symbol	$\Gamma_{h,c}$
hadronic peak cross-section	σ_h	$R_{b,c} = \frac{0,c}{\Gamma_{c}}$
partial leptonic and hadronic widths	$\Gamma_l \ (l = e, \mu, \tau), \Gamma_c, \Gamma_b$	
hadronic width		$\sigma_{had}^0 = 12\pi \frac{1e^1h}{1e^2\pi^2}$
invisible width	Γ_{inv}	$M_Z^2 \Gamma_Z^2$
ratios	R_l, R_b, R_c	$2q_V^f q_A^f$
forward-backward asymmetries	$A_{FB}^l, A_{FB}^b, A_{FB}^c$	$A_f = \frac{1}{(a^f)^2 + (a^f)^2}$
polarization asymmetries	P^{τ}, P^{b}	$(g_V) + (g_A)$
left-right asymmetry (SLC)	A_{LR}^{c}	$A_{FP}^f = {3 \over -} A_e A_f$
effective sine	$\sin^2 \vartheta_{eff}^{\circ}, \sin^2 \vartheta_{eff}^{\circ}$	
		$A^e_{LR} = A_e$
		$P^f = -A_f$
		J
		$4 Q_f \sin^2\vartheta^f$ $a=1-\frac{g_V^J}{V}$
		g_A^f

High exp. precision and th. precision

- Exp. precision at the level of 0.01% or better
- How accurate are theoretical predictions? The one-loop example
 - we have to rely on perturbation theory
 - the "theoretical accuracy" is given by the size of the next (not calculated) perturbative order
 - the tree-level approximation has an uncertainty of the order of several %, as proved by the calculated effects at one-loop approximation => we need to include higher order effects

- in the loop we have to sum over all possible (also heavy) particles which couple to γ and/or Z

Not only fermions but also bosons...

- Theoretical predictions become sensitive to all the spectrum and structure of the theory: m_t , number of light neutrinos, m_H , non abelian γWW and ZWW vertices
- m_t experimental uncertainty becomes a source of th. uncertainty \implies very important the run at the $t\bar{t}$ threshold

The "indirect" discovery of the quark top at LEP

• before 1995 the dependence on m_t could be used to "measure" m_t from a best-fit to Z-peak data (χ^2 depends quadratically on $G_F(m_t^2 - m_b^2)$ in a gauge theory with SSB)

the same could be said about m_H

- however, dependence on m_H is only logarithmic
- at the end of LEP1

some years later, after switching on LHC

M. Bicer et al., arXiv:1308.6176

\mathbf{N}_{ν} from \mathbf{Z} invisible width

$$R_{\rm inv}^0 = \frac{\Gamma_{\rm inv}}{\Gamma_{ll}} = \sqrt{\frac{12\pi R_l^0}{\sigma_{\rm had}^0 m_Z^2}} - R_l^0 - (3+\delta_\tau)$$

assuming lepton universality

$$\left(R_{\rm inv}^0\right)_{\rm exp} = N_{\nu} \left(\frac{\Gamma_{\nu\bar{\nu}}}{\Gamma_{ll}}\right)_{\rm SM}$$

• from LEP Z-peak measurements

$$N_{\nu} = 2.9840 \pm 0.0082$$

$$\delta N_{\nu} \simeq 10.5 \frac{\delta n_{\text{had}}}{n_{\text{had}}} \oplus 3.0 \frac{\delta n_{\text{lept}}}{n_{\text{lept}}} \oplus 7.5 \frac{\delta \mathcal{L}}{\mathcal{L}}$$

$$\frac{\delta \mathcal{L}}{\mathcal{L}} = 0.061\% \Longrightarrow \delta N_{\nu} = 0.0046$$

ADLO, SLD and LEPEWWG, Phys. Rept. 427 (2006) 257, hep-ex/0509008

• δN_{ν} severely affected by luminosity uncertainty through σ_0

F. Piccinini (INFN, Pavia)

Physics at e^+e^-

QED processes: candles for $\mathbf{e^+e^-}$ collider luminosity

• Luminosity is a machine (process independent) parameter entering every experimental cross-section

$$rac{N_{obs}}{\mathcal{L}} = \sigma \ \
ightarrow \ \ \mathcal{L} = rac{N^X_{obs}}{\sigma^X_{theory}}$$

- in order to minimize δL, the reference process X has to have large statistics, be well calculable theoretically, be cleanly detectable (small systematics)
- the best choice are QED processes, in particular Bhabha
 - * at small angles
 - huge statistics, by far dominated by photon *t*-channel contribution (only QED, no "*Z* contamination")
- to reduce the theoretical error on σ all the relevant radiative corrections (RC) must be included
- at present the theoretical ingredients to reach 0.01% are available

Independent way for ν count: $\nu \bar{\nu} \gamma$ at higher energies

- radiative return to the Z peak through emission of a hard photon
- provided large enough luminosity is available to be competitive with Γ_{inv} method (not a problem at future e^+e^- colliders!) at LEP2, 190 GeV $\leq \sqrt{s} \leq 208$ GeV, $\mathcal{L} \sim 600$ pb⁻¹

- agreement of data with SM predictions at % level
- $N_{
 u}=2.98\pm0.05\pm0.04~{
 m (L3)}$ (important but not competitive with the $\Gamma_{
 m inv}$ method)
- similar results for ALEPH, DELPHI and OPAL

$\nu\bar{\nu}\gamma$ @FCC-ee: ratio measurements

- a factor $\,10^3/10^4$ of improvement in luminosity w.r.t. LEP allows to exploit the ratios

$$\frac{d\sigma(e^+e^- \to \nu\bar{\nu}\gamma)}{d\sigma(e^+e^- \to \mu^+\mu^-\gamma)}$$

in order to cancel common systematics (such as luminosity)

- $\mu^+\mu^-$ only s-channel but ISR and FSR
- ν_{μ} and ν_{τ} f.s.: only s-channel ISR
- ν_e f.s.: ISR with t-channel
- ν_e f.s.: also W radiation

preliminary investigations show that QED effects are very small

talk by S. Jadach at FCC-ee physics Workshop, Paris, 27-29 October 2014

Direct M_W measurement at WW threshold

 by using the lineshape dependence on M_W at threshold
 ⇒ M_W measurement with uncertainty ΔM_W ~ 0.6 MeV
 (precision 200 times higher than the best present M_W direct
 measurement)

talk by P. Azzurri at FCC Week 2018, Amsterdam

Anomalous triple gauge couplings

poster by J. Gu at FCC Week 2018, Amsterdam

Higgs production at circular e^+e^- colliders

M. Bicer et al., arXiv:1308.6176

Higgs production at e^+e^- linear colliders

after five years of running FCC-ee

M. Bicer et al., arXiv:1308.6176

Comparison on λ_{HHH} between linear e^+e^- and pp

M. Bicer et al., arXiv:1308.6176

- rich physics potential of e^+e^- colliders
- very high precision measurements at *Z* peak give the strongest internal consistency checks of the SM
- challenge for precision in theory calculations
- direct measurements of M_W and m_t at the respective thresholds give strong input to the internal consistency checks
- Higgs couplings can be measured at the % level
 - except for $Htt,\,\lambda_{HHH}$ where pp colliders display more sensitivity, as well as rare channels like $HZ\gamma$