Machine Aspects of Future e⁺e⁻ Colliders

Frank Zimmermann CERN, Pisa School on Future Colliders

Work supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement 730871

basic types of accelerators

 circular accelerators: synchrotrons, storage rings

particles are accelerated many times by same rf cavity

rf cavity

hybrid: recirculating linacs

curved orbit of e in magnetic field

L. Rivkin

Crab Nebula 6000 light years away

First light observed 1054 AD

GE Synchrotron New York State

First light observed 1947

L. Rivkin

linear collider advantage: little synchrotron radiation at high energy

synchrotron radiation in a storage ring of bending radius $\rho_{\rm 0}$

energy loss per turn synchrotron-radiation power for one electron

$$U_0 = \frac{C_{\gamma} E_0^4}{\rho_0} \qquad \qquad \langle P_{\gamma} \rangle = \frac{c C_{\gamma} E_0^4}{2\pi} \left\{ \frac{1}{\rho_0^2} \right\}$$

 $C_{\gamma} = \frac{4\pi r_e}{3(m_e c^2)^3} \approx 8.877 \times 10^{-5} \text{ m GeV}^{-3}$ for muons $m_{\mu} \sim 200 \ m_e \rightarrow \text{SR} \sim 200^4 \sim 2 \times 10^9 \text{x less}$ for protons $m_{\pi} \sim 2000 \ m_e \rightarrow \text{SR} \sim 2000^4 \sim 2 \times 10^{13} \text{x less}$

full energy must be provided to beam for every collision

long RF sections w. e.g. 2 x 125 (2 x 1500) GV voltage

- both beams lost after single collision
- supply energy for each collision, efficiency η<<1

early linear-collider proposals recovered beam energy

Ugo Amaldi, "A possible scheme to obtain e-e- and e+e- collisions at energies of hundreds of GeV", Physics Letters B61, 313 (**1976**)

circular accelerator/collider concept

"There's just no use trying to build this up. You may get a few million volts. That's limited. What we've got to do is to devise some method of accelerating through a small voltage, repeating it over and over. Multiple acceleration." E.O. Lawrence, 1929

 beams collide many times, e.g. 2x / turn
 RF compensates SR loss (~1% E_{beam} / turn)
 RF system ~10x or 100x smaller than for LC

#collisions / (beam energy) ~200x

LEP/LEP2: highest energy so far

circumference 27 km in operation from 1989 to 2000 1000 pb⁻¹ from 1989 to 2000 maximum c.m. energy 209 GeV maximum synchrotron radiation power 23 MW

> record synchrotron radiation with ~MeV photons

"An *e*⁺-*e* ⁻ storage ring in the range of a few hundred GeV in the centre of mass can be built with present technology. ...would seem to be ... most useful project on the horizon."

B. Richter, Very High Energy Electron-Positron Colliding Beams for the Study of Weak Interactions, NIM 136 (**1976**) 47-60 (original LEP proposal, 1976)

SLC: the first & so far only linear collider

Burton Richter *et al*, "The Stanford Linear Collider", 11th Int. Conf. on High-Energy Accelerators, CERN (1980)

commissioning time & performance of LEP and SLC

CERN-SL-2002-009 (OP), SLAC-PUB-8042 [K. Oide, 2013]

SLC

- ½ design value reached after 11 years

proposed linear & circular colliders

proposed linear & circular colliders

ex. China

- Heilongjiang Xinjiang Donhuang Inner Mongolia Qinghai Shanxi Henan Shaanxi Tibet (Xizan) Sichuar 2 Hubei Zheile Jiangxi Hunan Yunnar Guangdong Guangxi
 - 1) Qinhuangdao, Hebei Province (Completed in 2014)
 - 2) Huangling, Shanxi Province (Completed in 2017)
 - 3) Shenshan, Guangdong Province(Completed in 2016)
 - 4) Baoding (Xiong an), Hebei Province (Started in August 2017)
 - 5) Huzhou, Zhejiang Province (Started in March 2018)
 - 6) Chuangchun, Jilin Province (Started in May 2018)

5

J. Gao

ILC

total length (main linac) \sim 30 (500 GeV) - 50 km (1 TeV)

ILC cavity

500 GeV ILC: 16,000 9-cell cavities in 31 km linac

CLIC total length (main linac) ~11 (500 GeV) - 48 km (3 TeV)

requires **booster synchrotron in collider tunnel**

CEPC

- Higgs factory as first piority ("fully partial double ring", with common SRF system for e+ and e- beams)
- W and Z factories are incorporated by beam switchyard (W and Z factories are double rings, with independent SRF system for e+ and e- beams)
- Higgs factory baseline: SR per beam 30 MW

FCC-ee RF staging scenario

	"An	Ampere-class" machine					
WP	V _{rf} [GV]	#bunches	I _{beam} [mA]				
Z	0.1	16640	1390				
W	0.44	2000	147				
Н	2.0	393	29				
ttbar (10.9	48	5.4				
	"	"high-gradient" machine					

three sets of RF cavities to cover all options for FCC-ee & booster:

- high intensity (Z, FCC-hh): 400 MHz monocell cavities (4/cryom.)
- higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)
- ttbar machine complement: 800 MHz fivecell cavities (4/cryom.)
- installation sequence comparable to LEP (≈ 30 CM/shutdown)

O. Brunner

FCC-ee cavities

Z running: single cell cavities, 400 MHz, Nb/Cu at 4.5 K, like LHC cavities

Z-pole FCC-ee: 116 single-cell cavities

ttbar running: five-cell cavities, 800 MHz, bulk Nb at 2 K, in addition to 400 <MHz four-cell cavities at 400 MHz

ttbar FCC-ee: 396 four-cell 400 MHz + 852 five-cell 800 MHz cavities

Helium inventory

FCC-ee

	Ζ	W	ZH	ttbar
Total [t]	6	7	14	26

ILC

	250 GeV	500 GeV	1 TeV
Total [t]	50	100	200

current world production >30,000 tonne per year

circular KEKB & PEP-II: high current, high L

Trend of Peak Luminosity

FCC-ee

circumference ~97 km

- maximum e^+e^- cm energy 365 GeV
- pp collision energy in same tunnel 100 TeV

Accelerator ring for top up injection

A. Blondel

short beam lifetime (~ τ_{LEP2} /40) due to high luminosity supported by top-up injection (used at KEKB, PEP-II, SLS,...); top-up also avoids ramping & thermal transients, + eases tuning

top-up injection: schematic cycle

almost constant current

beam current in collider (15 min. beam lifetime)

energy of accelerator ring

不

100%

99%

KEKB & PEP-II: top-up injection

average luminosity ≈ peak luminosity !

betatron oscillation & tune

schematic of betatron oscillation around storage ring tune $Q_{x,y}$ = number of (x,y) oscillations per turn

beam-beam tune shift

at small amplitude similar to effect of focusing quadrupole

beam-beam tune shift

$$\Delta Q_{x.y;\max} = \xi_{x,y} = \frac{Nr_e\beta^*}{4\pi\gamma\sigma_x\sigma_y} = \frac{N}{\varepsilon_N}\frac{r_0}{4\pi\gamma\sigma_x\sigma_y}$$
(for head-on collision)

beam-beam tune shift for FCC-ee

tune shift limits empirically scaled from LEP data (also 4 IPs like FCC-ee/TLEP)

R. Assmann & K. Cornelis, EPAC2000

in reasonable agreement with simulations

S. White

crab-waist crossing for flat beams

- allows for small β_{y}^{*} and for small $\varepsilon_{x,y}$
- and avoids betatron resonances (→higher beam-beam tune shift!)

"crab waist" collisions at DA Φ NE

DAONE Peak Luminosity

M. Zobov

crab waist increases maximum beam-beam tune shift >2x

FCC-ee exploits lessons & recipes from past e⁺e⁻ and *pp* colliders

combining recent, novel ingredients \rightarrow extremely high luminosity at high energies

In 1982, when Lady Margaret Thatcher visited CERN, she asked the then CERN Director-General Herwig Schopper *why CERN was building a circular collider rather than a linear one*

argument accepted by the Prime Minister: cost of construction

The Making, Operation and Legacy of the World's Largest Scientific Instrument With a Foreword by Rolf-Dieter Heuer

🖄 Springer

up to a cm energy of at least ~400 GeV circular collider with sc RF is cheapest option

Herwig Schopper, private communication, 2014

Herwig Schopper, LEP - The Lord of the Collider Rings at CERN 1980 - 2000, Springer 2009 with a foreword by Rolf-Dieter-Heuer

ee luminosity w crab waist and its constraints

ee luminosity scaling

→ extremely high luminosity

IP spot size

1. final focus optics

3. beamstrahlung (for β_{v})

1. ε $\propto E^2 \theta_{dip}^3$ (synchr. rad.) 2. beam-beam tune shift

> smaller emittances needed for linear colliders

vertical β^* history

$$\sigma^* = \sqrt{\varepsilon\beta^*}$$

vertical rms IP spot size

FCC-ee asymmetric crab waist IR optics

4 sextupoles (a – d) for local vertical chromaticity correction and crab waist, optimized for each working point.
Common arc lattice for all energies, 60 deg for Z, W and 90 deg for ZH, tt fo maximum stability and luminosity

comparison of key design parameters

Parameter	LEP2		FCC-ee			ILC	
		Z	н	t	н	500	1 TeV
E (GeV)	104	45.6	120	182.5	125	250	500
<l (ma)=""></l>	4	1390	29	5.4	0.021	0.021	0.021
P _{SR/b,tot} [MW]	22	100	100	100	5.9	10.5	27.2
P _{AC} [MW]	~200	~260	~280	~360	~129	~163	~300
η _{wall→beam} [%]	~30	30-40	30-40	~30	4.6	6.4	9.1
$N_{ m bunch/ring (pulse)}$	4	16'640	328	48	1312	1312	2450
f _{coll} (kHz)	45	50000	4000	294	6.6	6.6	9.8
$\beta^*_{x/y}$ (m/mm)	1.5/50	0.15/0.8	0.3/1	1.0/1.6	.013/.41	.011/.48	.011/.48
ε _x (nm)	30-50	0.27	0.63	1.46	0.02	0.02	0.01
ε _y (pm)	~250	1	1.3	2.9	0.14	0.07	0.03
ξ _y (ILC: <i>n</i> _γ)	0.07	0.13	0.12	0.126	(1.91)	(1.72)	(2.12)
n _{IP}	4	2	2	2	1	1	1
L _{0.01} /IP	0.012	230	8.5	1.55	0.5	1.05	2.2
L _{0.01,tot} (10 ³⁴ cm ⁻² s ⁻¹)	0.048	460	17	3.1	0.5	1.05	2.2

actual design luminosity vs. energy

FCC-ee physics operation model

working point	nominal luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr half luminosity in first two years (Z) and first year (ttbar) to account for initial operation	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab-1	Δ
Z later	200	48 ab ⁻¹ /year	120 90 -	4
W	25	6 ab ⁻¹ /year	10 ab ⁻¹	1 - 2
Н	7.0	1.7 ab ⁻¹ /year	5 ab ⁻¹	3
machine modification for	or RF installatio	n & rearrangement: 1 year		
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1
top later (365 GeV)	1.4	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	4

total program duration: 14 – 15 years - *including machine modifications* phase 1 (*Z*, *W*, *H*): 8 – 9 years, phase 2 (top): 6 years

FCC-ee luminosity projection

ILC luminosity projection

$$\begin{array}{l} \mbox{scaling with energy} \\ \mbox{circular collider} \\ L \propto \frac{\eta P_{wall}}{E^3} \frac{\xi_y}{\beta_y} \propto \frac{\eta_{\rm ring} P_{wall}}{E^{1.8}} \frac{1}{\beta_y} \\ \mbox{limited by} \\ \mbox{beam-beam} \\ \mbox{tune shift} \end{array} \quad \mbox{$\xi_y \approx \frac{\beta_y r_e N}{2\pi\gamma\sigma_x\sigma_y}$ if $\xi_{y,\max} \propto \frac{1}{\tau^{0.4}} \propto E^{1.2}$ \\ \mbox{linear collider} \\ \mbox{limited by} \\ \mbox{E photons} \\ \mbox{$per e^t$} \qquad N_\gamma \approx \frac{2\alpha r_e N}{\sigma_x}$ (luminosity spectrum) \\ \end{array}$$

superconducting RF needs cryogenics power

dependent on :

- cavity quality factor (unloaded Q: "Q₀")
- accelerating gradient G_{RF}
- frequency f_{RF}
- duty factor *D*

cryo power: *ILC* vs *FCC-ee* $P_{cryo} \propto V_{tot}G_{RF}D/Q_0$ or $P_{cryo} \propto f_{RF}V_{tot}G_{RF}D/Q_0$

(if SC cavity losses dominated by BCS resistance)

	ILC-H	FCC-ee-H				
RF voltage V_{tot}	250 GV	2 x 2 GV				
RF gradient G_{RF}	31.5 MV/m	10 MV/m				
effective RF length	8 km	0.4 km				
RF frequency $f_{\scriptscriptstyle RF}$	1.3 GHz	400 MHz				
Q_0 : unl. cavity Q	~2x10 ¹⁰	>4x10 ⁹				
D: RF duty factor	0.75% (pulsed)	100% (cw)				
total cryo power	~19 MW	17 MW (incl. booster, & 30% m.)				
total cryo power similar for both projects						

RF power efficiencies: ILC vs FCC-ee

Iow-power low-cost design for FCC-ee magnets

twin-dipole design with 2× power saving 16 MW (at 175 GeV), with Al busbars

first 1 m prototype

A. Milanese

twin F/D quad design with 2× power saving; 25 MW (at 175 GeV), with Cu conductor

first 1 m prototype

FCC-ee el. power consumption [MW]

Beam energy (GeV)	45.6 Z	80 W	120 ZH	182.5 ttbar
RF (SR = 100)	163	163	145	145
Collider cryo	1	9	14	46
Collider magnets	4	12	26	60
Booster RF & cryo	3	4	6	8
Booster magnets	0	1	2	5
Pre injector	10	10	10	10
Physics detector	8	8	8	8
Data center	4	4	4	4
Cooling & ventilation	30	31	31	37
General services	36	36	36	36
Total	259	278	282	359

CEPC power & comparing efficiency

CEPC Power for Higgs and Z

	C	Location and electrical demand(MW)						Tatal
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

266MW

		Location and electrical demand(MW)						Tatal
	System for Z	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	57.1	0.15	5.8				63.05
2	Cryogenic System	2.91	0.31			1.72		4.94
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65
5 I	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772

8x less luminosity than

FCC-ee at ~60% the power

2.5x less luminosity than

FCC-ee at ~equal power

149MW

J. Gao

ILC power & comparing efficiency

c.m. energy (GeV)	250 Z factory	500	1000
L _{0.01,tot} (10 ³⁴ cm ⁻² s ⁻¹)	0.5	1.05	2.1
P _{wall} (MW)	129	163	~300

35x less luminosity than FCC-ee-Z at 1/2 the power

collider luminosity revisited

FCC-ee:

- higher bunch charge N (FCC-ee ~2.5x ILC charge / bunch)
- several IPs (n_{IP} =2 or 4)
- 3-4 times higher wall-plug power to beam efficiency η
- ΔE_{beam} /IP ~200 (instead of 1) \rightarrow total factor 2.5x2(4)x200x3~3000-6000 ILC:
- ~150x smaller IP spot area $\sigma_x \sigma_y$ (smaller emittances & $\beta^{*'s}$)

→ for equal wall plug power FCC-ee-H has ~20x times more luminosity than ILC-H

FCC-ee injector layout

CEPC: 10 GeV linac, no prebooster

e⁺ source – rate requirements

SuperKEKB = FCC-ee demonstrator

beam commissioning started in 2016

top up injection at high current $\beta_y^* = 300 \ \mu m (FCC-ee: 2 mm)$ lifetime 5 min (FCC-ee: $\ge 60 \ min$) $\varepsilon_y / \varepsilon_x = 0.25\%$ (similar to FCC-ee) off momentum acceptance (±1.5%, similar to FCC-ee) e^+ production rate (2.5x10¹²/s, FCCee: <1.5x10¹²/s (*Z* crab waist)

SuperKEKB goes beyond FCC-ee, testing all concepts

is history repeating itself...?

When Lady Margaret Thatcher visited CERN in 1982, she also asked the then CERN Director-General Herwig Schopper how big the next tunnel after LEP would be.

Margaret Thatcher, British PM 1979-90

Dr. Schopper's answer was *there* would be no bigger tunnel at CERN.

Lady Thatcher replied that she had "obtained *exactly the same answer from* Sir John Adams when the SPS was built" 10 years earlier, and therefore she didn't believe him.

Herwig Schopper CERN DG 1981-88 built LEP

maybe the Prime Minister was right !?

Herwig Schopper, private communication, 2013

John Adams CERN DG 1960-61 & 1971-75 built PS & SPS