Machine Aspects of

Future ete Colliders

Frank Zimmernaann
CERN Pisa School on Future Colliders

basic types of accelerators

- linear accelerator - LINAC
Cls)
- circular accelerators: synchrotrons, storage rings

rf cavity
particles are accelerated many times by same rf cavity
- hybrid: recirculating linacs

curved orbit of e^{-}in magnetic field

L. Rivkin

Crab Nebula 6000 light years away

GE Synchrotron New York State

First light observed 1947
L. Rivkin

linear collider advantage: little synchrotron radiation at high energy

synchrotron radiation in a storage ring of bending radius ρ_{0}
energy loss per turn

$$
U_{0}=\frac{C_{y} E_{0}^{4}}{\rho_{0}}
$$

for one electron

$$
\left\langle P_{\gamma}\right\rangle=\frac{c C_{\gamma} E_{0}^{4}}{2 \pi}\left\langle\frac{1}{\rho_{0}^{2}}\right\rangle
$$

$$
C_{\gamma}=\frac{4 \pi r_{e}}{3\left(m_{e} c c^{2}\right)^{3}} \approx 8.877 \times 10^{-5} \mathrm{~m} \mathrm{GeV}^{-3}
$$

$$
\text { for muons } m_{\mu} \sim 200 m_{e} \rightarrow \text { SR } \sim 200^{4} \sim 2 \times 10^{9} \mathrm{x} \text { less }
$$

$$
\text { for protons } \boldsymbol{m}_{\pi} \sim \mathbf{2 0 0 0} m_{e} \rightarrow \mathrm{SR} \sim \mathbf{2 0 0 0 ^ { 4 }} \sim \mathbf{2 \times 1 0 ^ { 1 3 }} \mathrm{x} \text { less }
$$

BUT

full energy must be provided to beam for every collision

long RF sections w. e.g. 2×125 (2×1500) GV voltage

- both beams lost after single collision
- supply energy for each collision, efficiency $\eta \ll 1$

early linear-collider proposals recovered beam energy

Maury Tigner, " A
Possible Apparatus for Clashing-Beam Experiments", Nuovo Cimento 37, 12

Ugo Amaldi, "A possible scheme to obtain e-e-and e+e-collisions at energies of hundreds of GeV'", Physics Letters B61, 313 (1976)

circular accelerator/collider concept

"There's just no use trying to build this up. You may get a few million volts. That's limited. What we've got to do is to devise some method of accelerating through a small voltage, repeating it over and over. Multiple acceleration."
E.O. Lawrence, 1929

- beams collide many times, e.g. 2x / turn

- RF compensates SR loss
($\sim 1 \% E_{\text {beam }} /$ turn)
- RF system ~10x or 100x smaller than for LC
\#collisions / (beam energy) ~200x

LEP/LEP2: highest energy so far

E8

circumference 27 km
in operation from 1989 to 2000 $1000 \mathrm{pb}^{-1}$ from $1989 \tan ^{2} 2000^{\circ}$ maxiulun crmaneryy 209 Gcy

with $\sim \mathrm{MeV}$ photons

"An $e^{+}-e$ - storage ring in the range of a few hundred GeV in the centre of mass can be built with present technology. ...would seem to be ... most useful project on the horizon."

B. Richter, Very High Energy ElectronPositron Colliding Beams for the Study of Weak Interactions, NIM 136 (1976) 47-60
(original LEP proposal, 1976)

SLC: the first \& so far only linear collider

$20 \mathrm{pb}^{-1}$ from 1989 to 1998

Burton Richter et al, "The Stanford Linear Collider", 11 ${ }^{\text {th }}$ Int. Conf. on High-Energy Accelerators, CERN (1980)
commissioning time \& performance of LEP and SLC

CERN-SL-2002- 009 (OP), SLAC-PUB-8042 [K. Oide, 2013]
SLC

- $1 / 2$ design value reached after 11 years

proposed linear \& circular colliders

ex. Geneva basin

FRANKREICH

to go beyond the LHC we need larger machines

proposed linear \& circular colliders

ILC

total length (main linac) $\sim 30(500 \mathrm{GeV})-50 \mathrm{~km}(1 \mathrm{TeV})$

ILC cavity

Input RF power at 1.3 GHz

Slowed down by factor of approximately 4×10^{9}

500 GeV ILC: 16,000 9-cell cavities in 31 km linac

CLIC

total length (main linac) $\sim 11(500 \mathrm{GeV})-48 \mathrm{~km}(3 \mathrm{TeV})$

FCC-ee

double ring e+ e-collider, $C \sim 100 \mathrm{~km}$ follows footprint of FCC-hh, except around IPs asymmetric IR layout and optics to limit synchrotron radiation towards the detector

2 IPs, large horizontal crossing angle $\mathbf{3 0} \mathbf{~ m r a d ,}{ }^{\mathbf{J}}$ (RF) crab-waist optics synchrotron radiation power $50 \mathrm{MW} /$ beam at all beam energies
top-up injection scheme for high luminosity
 requires booster synchrotron in collider tunnel
K. Oide

CEPC

- Higgs factory as first piority ("fully partial double ring", with common SRF system for \mathbf{e}^{+} and e-beams)
- W and Z factories are incorporated by beam switchyard (W and Z factories are double rings, with independent SRF system for e+ and e- beams)
- Higgs factory baseline:

SR per beam 30 MW
J. Gao

FCC-ee RF staging scenario

"Ampere-class" machine			
WP	$\mathbf{V}_{\text {rf }}$ [GV]	\#bunches	$\mathbf{I}_{\text {beam }}$ [mA]
Z	0.1	16640	1390
W	0.44	2000	147
H	2.0	393	29
ttbar	10.9	48	5.4
"high-gradient" machine			

O. Brunner
three sets of RF cavities to cover all options for FCC-ee \& booster:

- high intensity (Z, FCC-hh): 400 MHz monocell cavities (4/cryom.)
- higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)
- ttbar machine complement: 800 MHz fivecell cavities (4/cryom.)
- installation sequence comparable to LEP (≈ 30 CM/shutdown)

FCC-ee cavities

Z running: single cell cavities, 400 MHz , $\mathrm{Nb} / \mathrm{Cu}$ at 4.5 K , like LHC cavities

Z-pole FCC-ee: 116 single-cell cavities
ttbar running: five-cell cavities, 800 MHz , bulk Nb at 2 K , in addition to $400<\mathrm{MHz}$ four-cell cavities at 400 MHz

Helium inventory

FCC-ee

	Z	W	ZH	ttbar
Total [t]	6	7	14	26

ILC

	250 GeV	500 GeV	1 TeV
Total [t]	50	100	200

current world production >30,000 tonne per year

circular KEKB \& PEP-II: high current, high L

Trend of Peak Luminosity

FCC-ee

circumference $\sim 97 \mathrm{~km}$

- maximum $e^{+} e^{-c m}$ energy 365 GeV
- pp collision energy in same tunnel 100 TeV

Accelerator ring for top up injection

short beam lifetime ($\sim \tau_{\text {Lep2 }} / 40$) due to high luminosity supported by top-up injection (used at KEKB, PEP-II, SLS,...); top-up also avoids ramping \& thermal transients, + eases tuning

top-up injection: schematic cycle

beam current in collider (15 min . beam lifetime)

energy of accelerator ring
$\uparrow 120 \mathrm{GeV}$
20 GeV

KEKB \& PEP-II: top-up injection

average luminosity \approx peak luminosity !

betatron oscillation \& tune

 schematic of betatron oscillation around storage ring tune $Q_{x, y}=$ number of (x, y) oscillations per turn$$
Q=\frac{\phi_{\beta}(C)}{2 \pi}=\frac{1}{2 \pi} \oint_{C} \frac{d s}{\beta(s)}
$$

beam-beam tune shift

at small amplitude similar to effect of focusing quadrupole beam-beam tune shift
$\underset{\text { (for head-on collision) }}{\Delta Q_{x, y \text { mat }}=}=\frac{N r_{e} \beta}{4 \pi \gamma \sigma_{x} \sigma_{y}}=\frac{N}{\varepsilon_{N}} \frac{r_{0}}{4 \pi}$

beam-beam tune shift for FCC-ee

tune shift limits empirically scaled from LEP data (also 4 IPs like FCC-ee/TLEP)

$$
\begin{aligned}
& \xi_{y} \propto \frac{N}{\varepsilon_{x}} \leq \xi_{y}^{\max }(E) \\
& \xi_{y}^{\max }(E) \propto \frac{1}{\tau_{s}^{0.4}} \propto E^{1.2}
\end{aligned}
$$

R. Assmann \& K. Cornelis, EPAC2000
in reasonable agreement with simulations
S. White
J. Wenninger

crab-waist crossing for flat beams

- allows for small $\beta_{y}{ }^{*}$ and for small $\varepsilon_{x, y}$
- and avoids betatron resonances (\rightarrow higher beam-beam tune shift!)

"crab waist" collisions at DAФNE

DAФNE Peak Luminosity

M. Zobov
crab waist increases maximum beam-beam tune shift $>2 x$

FCC-ee exploits lessons \& recipes from past $\mathrm{e}^{+} \mathrm{e}^{-}$and pp colliders

combining recent, novel ingredients \rightarrow extremely high luminosity at high energies

In 1982, when Lady Margaret Thatcher visited CERN, she asked the then CERN Director-General Herwig Schopper why CERN was building a circular collider rather than a linear one

argument accepted by the Prime Minister:

cost of construction

Herwig Schopper, LEP - The
up to a cm energy of at least $\sim 400 \mathrm{GeV}$ circular collider with sc RF is cheapest option

Lord of the Collider Rings at CERN 1980-2000, Springer 2009
with a foreword by Rolf-Dieter-Heuer

ee luminosity w crab waist and its constraints

synchrotron radiation power / beam:

$$
P_{S R}=n_{b} N_{b} \frac{c C_{\gamma} E^{4}}{\rho C}
$$

beam-beam tune shift

$$
\xi_{y}=\frac{r_{e} N_{b}}{2 \pi \gamma} \frac{\beta_{y}^{*}}{\sigma_{x}^{*} \sigma_{y}^{*} \sqrt{1+\phi_{p i w}^{2}}}
$$

constant
maximum acceptable
Piwinski

$$
\xi_{x}=\frac{r_{e} N_{b}}{2 \pi \gamma} \frac{\beta_{x}^{*}}{\sigma_{x}^{* 2}\left(1+\phi_{\text {piw }}^{2}\right)}
$$

luminosity
luminosity formula $\phi_{\text {piw }}^{z}$

$$
L=C_{l u m} \frac{P_{S R} \rho \xi_{y}}{\beta_{y}^{*} E^{3}}
$$

with
$C_{\text {lum }} \equiv \frac{3\left(m_{e} c^{2}\right)^{2}}{8 \pi r_{e}^{2}} \approx 4 \times 10^{15} \frac{\mathrm{TeV}^{2}}{\mathrm{~m}^{2}}$

ee luminosity scaling

FCC-ee vs LEP:

\rightarrow extremely high luminosity

IP spot size

$$
\sigma_{x, y}^{*}=\sqrt{\beta_{x, y}^{*} \varepsilon_{x, y}}
$$

1. final focus optics
2. bunch length
3. beamstrahlung
(for β_{x})

FCC-ee:

1. $\varepsilon \propto E^{2} \theta_{d i p}{ }^{3}$ (synchr. rad.)
2. beam-beam tune shift
smaller emittances
needed for linear colliders

vertical β^{*} history

$$
\sigma^{*}=\sqrt{\varepsilon \beta^{*}}
$$

vertical rms IP spot size

collider / test facility		$\sigma_{y}{ }^{*}$ [nm]	
LEP2	in reguar	3500	\rightarrow
KEKB	achieved	940	
SLC	in italics:	700	$250 \mathrm{pm} \rightarrow$
ATF2, FFTB		65 (35), 77	
SuperKEKB		50	
FCC-ee-H		40	
ILC		5-8	0.5 mm
CLIC		1-2	${ }_{90 \mathrm{pm} \rightarrow}$

FCC-ee asymmetric crab waist IR optics

4 sextupoles (a - d) for local vertical chromaticity correction and crab waist, optimized for each working point.
Common arc lattice for all energies, 60 deg for \mathbf{Z}, \mathbf{W} and 90 deg for $\mathbf{Z H}, \mathbf{t t}$ fo maximum stability and luminosity
comparison of kev design parameters

Parameter	LEP2	FCC-ee			ILC		
		Z	H	t	H	500	1 TeV
$\mathrm{E}(\mathrm{GeV})$	104	45.6	120	182.5	125	250	500
<l (mA)>	4	1390	29	5.4	0.021	0.021	0.021
$P_{\text {SR/b,tot }}[\mathrm{MW}]$	22	100	100	100	5.9	10.5	27.2
$P_{\text {Ac }}[\mathrm{MW}]$	~ 200	~260	~ 280	~360	~ 129	~163	~300
$\eta_{\text {wall } \rightarrow \text { beam }}[\%]$	~30	30-40	30-40	~30	4.6	6.4	9.1
$N_{\text {bunch/ring (pulse) }}$	4	16'640	328	48	1312	1312	2450
$\mathrm{f}_{\text {coll }}(\mathrm{kHz})$	45	50000	4000	294	6.6	6.6	9.8
$\beta^{*}{ }_{x / y}(\mathrm{~m} / \mathrm{mm})$	1.5/50	0.15/0.8	0.3/1	1.0/1.6	.013/.41	.011/.48	.011/.48
$\varepsilon_{x}(\mathrm{~nm})$	30-50	0.27	0.63	1.46	0.02	0.02	0.01
$\varepsilon_{y}(\mathrm{pm})$	~ 250	1	1.3	2.9	0.14	0.07	0.03
ξ_{y} (ILC: n_{γ})	0.07	0.13	0.12	0.126	(1.91)	(1.72)	(2.12)
$n_{1 P}$	4	2	2	2	1	1	1
$L_{0.01}$ IP	0.012	230	8.5	1.55	0.5	1.05	2.2
$\begin{aligned} & L_{0.01, \text { tot }} \\ & \left(100^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \end{aligned}$	0.048	460	17	3.1	0.5	1.05	2.2

actual design luminosity vs. energy

total luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$]
1000

FCC-ee physics operation model

working point	nominal luminosity/IP $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	total luminosity (2 IPs)/ yr half luminosity in first two years (Z) and first year (ttbar) to account for initial operation	physics goal	run time [years]
Z first 2 years	100	$26 \mathrm{ab}^{-1} /$ year	$150 \mathrm{ab}^{-1}$	4
Z later	200	$48 \mathrm{ab}^{-1} /$ year		
W	25	$6 \mathrm{ab}^{-1} /$ year	$10 \mathrm{ab}^{-1}$	1-2
H	7.0	$1.7 \mathrm{ab}^{-1} /$ year	$5 a b^{-1}$	3

machine modification for RF installation \& rearrangement: 1 year

top 1st year $(350$	0.8	$0.2 \mathrm{ab}^{-1} /$ year	$0.2 \mathrm{ab}^{-1}$	1
$\mathrm{GeV})$				

total program duration: 14 - 15 years - including machine modifications phase $1(Z, W, H)$: $8-9$ years, phase 2 (top): 6 years

FCC-ee luminosity projection

ILC luminosity projection

beamstrahlung (BS)

synchrotron radiation in the strong field of opposing beam some $e^{ \pm}$emit significant part of their energy \rightarrow
degraded luminosity spectrum §(linear collider)

limit on beam lifetime (circular collider)
V. Telnov, PRL 110 (2013) 114801

$$
\begin{aligned}
& \tau_{B S} \approx \frac{20 \sqrt{6 \pi} r_{e}}{n_{I P} \alpha^{2}} \frac{C}{c} \frac{\gamma}{\Delta} u^{3 / 2} e^{u} \\
& \text { with } u=\Delta \frac{\alpha}{3 r_{e}^{2}} \frac{1 \sigma_{z} \sigma_{x}}{\gamma N}
\end{aligned}
$$

Δ : momentum acceptance σ_{z} : rms bunch length
σ_{x} : horizontal beam size at IP
denotes average number of $B S$ photons per e^{-}

scaling with energy

 circular collider$$
L \propto \frac{\eta P_{w a l l}}{E^{3}} \frac{\xi_{y}}{\beta_{y}} \propto \frac{\eta_{\text {ring }} P_{w a l l}}{E^{1.8}} \frac{1}{\beta_{y}}
$$

limited by beam-beam tune shift

$$
\xi_{y} \simeq \frac{\beta_{y} r_{e} N}{2 \pi \gamma \sigma_{x} \sigma_{y}} \quad \text { if } \xi_{y, \text { max }} \propto \frac{1}{\tau^{0.4}} \propto E^{1.2}
$$

linear collider
limited by
\#BS photons
per $e^{ \pm}$

$$
\begin{gathered}
L \propto \frac{\eta_{\text {linac }} P_{w a l l}}{E} \frac{N_{\gamma}}{\sigma_{y}} \\
N_{\gamma} \simeq \frac{2 \alpha r_{e} N}{\sigma_{x}} \quad \text { (luminosity spectrum) }
\end{gathered}
$$

superconducting RF needs cryogenics power
dependent on :

- cavity quality factor (unloaded Q : " Q_{0} ")
- accelerating gradient $G_{R F}$
- frequency $f_{R F}$
- duty factor D

cryo power: ILC vs FCC-ee

$P_{\text {cryo }} \propto V_{\text {tot }} G_{R F} D / Q_{0}$ or

$$
P_{\text {cryo }} \propto f_{R F} V_{t o t} G_{R F} D / Q_{0}
$$

(if SC cavity losses dominated by BCS resistance)

	ILC-H	FCC-ee-H
RF voltage $V_{\text {tot }}$	250 GV	$2 \times 2 \mathrm{GV}$
RF gradient $G_{R F}$	31.5 MV/m	$10 \mathrm{MV} / \mathrm{m}$
effective RF length	8 km	0.4 km
RF frequency $f_{\text {RF }}$	1.3 GHz	400 MHz
Q_{0} : unl. cavity Q	$\sim 2 \times 10^{10}$	$>4 \times 10^{9}$
$D:$ RF duty factor	0.75\% (pulsed)	100\% (cw)
total cryo power	~19 MW	17 MW (incl. booster, \& 30\% m.)
total cryo power similar for both projects		

RF power efficiencies: ILC vs FCC-ee

ILC: $\eta^{\sim 17 \%}$
FCC-ее: $\eta^{\sim} 55 \%$
factor ~3 difference in efficiency of converting wall-plug power to beam energy

low-power low-cost design for FCC-ee magnets

twin-dipole design with $2 \times$ power saving 16 MW (at 175 GeV), with Al busbars

A. Milanese
twin F/D quad design with $2 \times$ power saving; 25 MW (at 175 GeV), with Cu conductor

first 1 m prototype

FCC-ee el. power consumption [MW]

Beam energy (GeV)	45.6 Z	80 W	120 $Z H$	182.5 ttbar
RF (SR=100)	163	163	145	145
Collider cryo	1	9	14	46
Collider magnets	4	12	26	60
Booster RF \& cryo	3	4	6	8
Booster magnets	0	1	2	5
Pre injector	10	10	10	10
Physics detector	8	8	8	8
Data center	4	4	4	4
Cooling \& ventilation	30	31	31	37
General services	36	36	36	36
Total	259	278	282	359

CEPC power \& comparing efficiency

CEPC Power for Higgs and Z

	System for Higgs (30MW)	Location and electrical demand(MW)						Total (MW)
		Ring	Booster	LINAC	BTL	IR	Surface building	
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

2.5x less luminosity than FCC-ee at ~equal power

	System for Z	Location and electrical demand(MW)						Total (MW)
		Ring	Booster	LINAC	BTL	IR	Surface building	
1	RF Power Source	57.1	0.15	5.8				63.05
2	Cryogenic System	2.91	0.31			1.72		4.94
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772

ILC power \& comparing efficiency

c.m. energy (GeV)	250 Z factory	500	1000
$L_{0.01, \text { tot }}$ $\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	0.5	1.05	2.1
$P_{\text {wall }}(\mathrm{MW})$	129	163	~ 300

35x less luminosity than FCC-ee-Z at $1 / 2$ the power

collider luminosity revisited

$$
L \approx n_{I P} \frac{f_{\text {coll }} N^{2}}{4 \pi \sigma_{x} \sigma_{y}} \approx \frac{1}{4 \pi} \frac{\mathrm{P}_{\text {wall }}}{\mathrm{E}_{\text {beam }}} N \eta \frac{\Delta \mathrm{E}_{\text {beam }}}{\mathrm{IP}} \frac{1}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}
$$

FCC-ee:

- higher bunch charge N (FCC-ee $\sim 2.5 x$ ILC charge / bunch)
- several IPs ($n_{\text {IP }}=2$ or 4)
- 3-4 times higher wall-plug power to beam efficiency η
- $\Delta E_{\text {beam }} / I P \sim 200$ (instead of 1)
\rightarrow total factor $2.5 \times 2(4) \times 200 \times 3 \sim 3000-6000$
ILC:
- ~150x smaller IP spot area $\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}$ (smaller emittances $\& \beta^{* \prime}$ s)
\rightarrow for equal wall plug power FCC-ee-H has $\sim 20 x$ times more luminosity than ILC-H

FCC-ee injector layout

S. Ogur, K. Oide, Y. Papaphilippou

SLC/SuperKEKB-like 6 GeV linac accelerating; $\mathbf{1}$ or $\mathbf{2}$ bunches with repetition rate of $\mathbf{1 0 0} \mathbf{- 2 0 0 ~ H z}$
same linac unpler e+ production

redrbu in DR @ 1.54 GeV
injection @ 6 GeV into of PreBooster Ring (SPS or new ring) and acceleration to 20 GeV
injection to main Booster @ 20 GeV and interleaved filling of e+/e- (below 20 min for full filling) and continuous top-up

CEPC: 10 GeV linac, no prebooster

e^{+}source - rate requirements

	S-KEKB	SLC	CLIC (3 TeV)	ILC (H)	FCC-ee (H)
$\mathrm{e}^{+} /$second	2.5×10^{12}	6×10^{12}	110×10^{12}	200×10^{12}	0.05×10^{12}

efficiency of \boldsymbol{e}^{+}usage:

$5 \times 10^{-5} \mathrm{~b}^{-1} / e^{+} \quad 3 \mathrm{~b}^{-1} / e^{+}$ factor 60000

ILC e^{+}source design

ILC e+ source has no precedent; its performance can be verified only after ILC construction (needs >100 GeV e- beam)

SuperKEKB = FCC-ee demonstrator

beam

commissioning started in 2016

top up injection at high current
$\beta_{\mathrm{y}}{ }^{*}=300 \mu \mathrm{~m}$ (FCC-ee: 2 mm)
lifetime 5 min (FCC-ee: $\geq 60 \mathrm{~min}$)
$\varepsilon_{\mathrm{y}} / \varepsilon_{\mathrm{x}}=0.25 \%$ (similar to FCC-ee)
off momentum acceptance ($\pm 1.5 \%$, similar to FCC-ee)
e^{+}production rate $\left(2.5 \times 10^{12} / \mathrm{s}\right.$, FCCee: $<1.5 \times 10^{12} / \mathrm{s}$ (Z crab waist)

SuperKEKB goes beyond FCC-ee, testing all concepts

is history repeating itself...?

When Lady Margaret Thatcher visited CERN in 1982, she also asked the then CERN DirectorGeneral Herwig Schopper how big the next tunnel after LEP would be.

Dr. Schopper's answer was there would be no bigger tunnel at CERN.

Lady Thatcher replied that she had „obtained exactly the same answer from Sir John Adams when the SPS was built" 10 years earlier, and therefore she didn't believe him.

> John Adams
maybe the Prime Minister was right!? CERN DG 1960-61 \& 1971-75 built PS \& SPS

