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Outline

« Setting the scene — The Power Wall
Physics requirements

 The HL-LHC challenge

« Coordinated efforts: HSF and openlab

* Current computing model: WLCG, OpenStack
* Evolving the computing model

* Finding new strategies to improve code efficiency
Examples from the Online, Reconstruction, Simulation

« Data Analysis
* Summary
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The power wall

1965: G. Moore noted that
the number of electronic
components which could be
crammed into an integrated
circuit doubled every year

Processor Scaling Trends
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Number of transistors per chip is going up

Clock speed has flattened at ~3GHz

Amount of dissipated energy is the limiting factor (power wall)
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The HEP plan

Relied mostly on clock
speed increase to
simply see code running
faster on more
performant hardware..

Massive data
processing and

Simu |at|0n Modified from CERN Courier May 2017

There are a number of different options for new machines
Lepton colliders (ILC, CLIC, FCC-ee) have overall less serious computing challenges
Hadron colliders (HE-LHC, FCC-hh) bring a massive data rate and complexity problem

HEP computing model needs to evolve
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Physics requirements: recap 1

Huge particle/data rates ~ 1-2 PB/s
Large pile-up

Dense vertices
Depending on configuration, events from different bunch crossing will likely overlap

4D reconstruction to disentangle

mm PU: 25

Parameter unit LHC HL-LHC HE-LHC FCC-hh ‘ i

Eom TeV 14 o7 100 i=Dense-verlices al =i

Peak luminosity x 1034 em—2s~1 | 1 5 25 30 0| 1000 PU at 100 Te Cchh

bunch spacing ns 25 | Time spread of

Oinel mbarn 85 91 108 | ~180 ps

Otot mbarn 111 126 153 3 )

(pT) GeV/c 0.6 0.7 0.76 | {§8=

chh/dn|n=O 7 8 9.6 .

Number of bunches 2808 10600

BC rate MHz 31.6 32.5 107" 5

Peak pp collision rate GHz 0.85 4.25 27.3 32.4 ]

Peak avg PU events/BC 27 135 864 997 _

Goal integrated luminosity ab—1 0.3 3 10 20 10-2
=%). CERN 1078 1075 1074 1073 102 10~" 10° 10° 102
1, openlab A. Zaborowska’ FCC Week’ 2018 Z Distance between Neighbors [mm)]



FCC-hh Simulation

Q _I TTT I TTrT1T I TT 1T I TT 1T I TT 1T I TTrTT l TTr 1T | TTT I_
S o pe'> 25 GeV —100TeV
- i ]
| [ ] % L == 13TeV
Ph ‘
N r ]
YSICS requirements E
£ - - ]
5 0.06( v, _ -
< - ' VBFHiggs
recap 2 oo e
0.02F :" " .
8 TeV 14 TeV 33 TeV 100 TeV Lo
109 LHC LHC HE LHC VLHC 109 T T - 2e S
: : : : -
. . . . i
108 .totaL.: T P b 108

Forward physics: large acceptance — large
number of readout channels

Boosted objects: high granularity tracking

2 and calorimetry
I; Low top pr High top pt
W boost
b
10° — ” 10
10 s [TeV] 10
i, & openlab A. Zaborowska, FCC week, 2018 6



Ex: Tracking in CMS

Reconstruction of CMS Simulated Event 2023 CMS Tracker
tt event at <PU>=140 (94 vertices, 3494 tracks) « Higher granularity (x6),

Rho Phi : Rho Z

extended coverage, hardware
trigger capability

(:é ; CMS Simulation, s = 13 TeV, tt + PU, BX=25ns E
€ go— ™ Full Reco Current-+— Track Reco Current |
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HL-LHC

“The elephant in the room”

LHC
LS1 EYETS 14 TeV 14 TeV
13-14 TeV energy
inj pgrad: 5t07 x
8 TeV splice consolidation sPs cryogenics Point 4 eryolimit nominal
button collimators dispersion ; : HL-LHC installation
7 TeV R2E project cc s:;"maﬁ::‘“ mrtzgiag;lgn luminosity
2011 2013 2014 2015 2016 2017 2018 2019 2020 2022 2023 2024 2025 l'.l M
radiation
damage
75% 2 x nominal luminosity 4 ¥ S :l “:,:“: s J.a ‘_\‘ s
nominal nominal luminosity || experiment upgrade [ ! : ™™ s {2 37 =
luminosity i experiment beam pipes /— phrase 1 experiment upgrade phase 2 ’ 4 f % ” y of

Csom' o0
G

“This is when the R&D has to happen”

Detectors development must be matched by software innovation
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HL-LHC: data volume

Data on disk by tier

Runl & 2
Ops space
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= Resource needs
(2017 Computing model)

— Flat budget model
(+15%lyear)

Run 3
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https://arxiv.org/pdf/1712.06982.pdf
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HL-LHC: computing power

CPU seconds by Type

] o e e Raw data volume increases
1400 = hl:_cu:d;Mc exponentlally
1200 1 M Analysis Processing and analysis load

o 1% Technology at ~20%/year will

g o0, bring x6-10 in ~10 years
600 - CMS Estimates of resource needs x10
a0 above what is realistic to expect
200 -

2024
2025
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2027
2028
2029
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High-Luminosity LHC is far from being a solved problem for software and
computing

~e Beyond HL-LHC, Whatever the future, we pass through the HL-LHC on the way |
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Coordinated efforts
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Hep Software foundation™

Introduction 2

2 Software and Computing Challenges 5

HSF established in 2015 to facilitate 3 Programme of Work .
common efforts and improve coordination 31 Phsics Generators 1

3.2 Detector Simulation 15

. . 3.3 Software Trigger and Event Reconstruction 23

) COI Nnmu nlty Wh Ite Paper 3.4 Data Analysis and Interpretation 27
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manage, process, and analyse the shear amounts of data to be recorded. In planning
for the HL-LHC in particular, it is critical that all of the collaborating stakeholders
agree on the software goals and priorities, and that the efforts complement each other.

In this spirit, this white paper describes the R&D activities required to prepare for
this software upgrade.

= TR AN St anEl gl Tad Lo S e TN NNV (IO IR ARTATIONR MO n et ‘ . . - e - - - g
for the coming decades. This prog| me requires large investments in detector 4.2 Possible Directions for lralmng 66
hardware, either to build new faciliti
Similarly, it requ comir
manage, process, and analyse the sh
for the HL-LHC in pa

agree on the software goals and
In this spirit, this white paper desc

experiments, or to upgrade existing ones.

4.3 Career Support and Recognition 68

it in the R&D of software to acquire,
nounts of data to be recorded. In planning

1 that all of the collaborating stakeholders 5 Conclusions 68

ies, and that the efforts complement each other.

ibes the R&D activities required to prepare for

arXiv:1712.06982v3 [ph

this software upgrade. Appcndix A List of workShOpS 71
Appendix B Glossary 73
References 79

{:}gEggn,ab https://hepsoftwarefoundation.org/organization/cwp.html



CERN openlab

A science — industry partnership to drive R&D and innovation

Evaluate state-of-the-art ] |
technologies in a challenging o . CERN

environment and improve them ": .6? Openlab

Test in a research environment
today what will be used in many PARTNERS CONTRIBUTORS  ASSOCIATES RESEARCH
business sectors tomorrow
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Current model
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The Worldwide LHC Computing Grid

Tier-0 Tier-2 sites
(CERN and Hungary): (about 160)
data recording,

reconstruction and Tier-1 sites
distribution .

Tier-1: permanent
storage, re-
processing,
analysis

STORAGETEK |%B)

Tier-2: Simulation,
end-user analysis
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WLCG in numbers

~170 sites, 42 countries

~800k CPU cores, 600 PB of storage
2 million jobs/day

10-100 Gb links

CPU Delivered: HS06-days/month

v 140 B ALICE N ATLAS ECMS LHCb




ATLAS since 2011;

Direct mesh of Tier 2 data flows,
cloud boundaries loosened

Distributed model

Performant & reliable networks
10 Gb/s - 100 Gb/s at large centers
>100 Gb/s transatlantic links in place

Originally strict hierarchical Tier

structure
Role based
Now focus on use of resources &
capabilities B | |
Data access peer-peer | ﬁ'{i‘i\s | ol
CMS

Optimise overall distributed resources ™™ | LHCb |

More functional and service quality
based

4 L \ 4
Cuggqgtly moves more than 3PB/day | ’ | [ H

016-7 -11 79 20171
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CERN OpenStack Private Cloud

300,000

250,000

One of the early adopters and

largest contributors
90% of the resources are
provided through a private
cloud

Flexible and dynamic deployment
Moving to containers
(investigations within CERN
openlab)

150,000

Cores

In production since 2013

« 8,000 servers

« 281,000 cores

« 33,000 virtual machines

3,600 projects

CLOUD SDFTWARE

A A S B S B S S N S B B R S R B B B
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JOINT R&D PROJECTS

intel)
High-bandwidth fabrics, LJ alialn

ING'S accelerated platforms CIsco

(i@ LoNBa

Data

ORACLE" Data quality monitoring, Acquisition =E5E
anomaly detection, ot (LHCb, IT-CF) simulation. HPG \‘?)
Vand physics data reduction, Anel s Code |mure]1 IOCnI, y W
andaex benchmarking/scalability, Machine rzscz;n;rfrtl t;)n t he Okg : HUAWEI
. Learni ' enchmarkin
el systems biology and (ena];r;l;)g ITCF) ° @3z Newcastle

large-scale multi-
= disciplinary platforms

Q) University

Control clonalin &2
Systems 8$-c;\r/]|)ra Cloud federations HUAWE
SIEMENS FPredictive/proactive S containers, scalabilit
maintenance and ’ y @rackspace@
operations
Data Storage °
I= Extreme Software Defined (IT-ST, IT-DB) Storage architectures, ORACLE
atibeal. Networks, Security scalability, monitoring @ = COMTRADE
_::} g?;gnlab SEAGATE 20



Evolution of computing models

Infrastructure optimisation
Data storage

Commercial / Public Cloud
HPC

Diversifying hardware

21



ML for Infrastructure Monitoring

ML is being evaluated to optimize several
infrastructure tasks

Data placement: use smart data analysis to
predict where to move data across the WLCG
infrastructure

CERNIT

Network security: analyse traffic patterns to
detect anomalies and intrusions

Data Centre optimization: optimize job
allocation, resource utilization, energy
consumption, etc.

'7;:. ; s Energy Savings in CERN’s Main Data Centre - 3 22
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Evolution of data storage: Data-lakes

| Mo asenis
e

Asynchronous
Data Transfer

"""""" 00| =&

Distributed Regional Storage Dlstnbuted Storage

Data (Lake)
Infrastructure

Compute
Infrastructure

=%, CERN
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Public Cloud Investigations

* Investigate scale-out with public
providers without impact on
users

—a Pre-
Commercial Procurement
tender for a European hybrid
cloud

« support deployment of high-
performance computing and big- www.HNSciCloud.eu
data capabilities for scientific
research

1 /\

{#/BUIA
. THESCIENCECLOUD

: I CERN

1= openlab

PROCESSING RESOURCES

COMPLEXITY

Analysis

Prompt Reconstruction

TIME

THESCIENCECLOUD

2014 2015 TIME



Scale out tests to commercial clouds

i fWidashb Running jobs ’,}727}(_’](_}5‘;‘1 A Running Job Cores
i 30 Days from 2016-01-11 to 2016-02-11 i 143 Hours from 2016-11-14 00:00 to 2016-11-19 23:59 UTC
T T T T T T T T T T 4 T T T T T
80,000
300,000 j= -
70,000
, . 250,000 j=
Via Fermilab
60,000
HEPCloud:
200,000 j=

o CMS Amazon Web
Services (AWS) 150000 |-
Usage

100,000

30,000 "llllllllllnnllll

EEE||§!.n r.i

nor Fermilab Tier-1 L e L e

10,000

i : ;i
I ey _--- L g ---_--_---- 2016-11-14 2016-11-15 2016-11-16 2016-11-17 2016-11-18 2016-11-19
216.00-14 2160117 2160120 160023 0160126 20160129  X160201 0160204 2160207 20160210 B T3_US_HEP Cloud mTL US_FNAL W0 CH_CERN ® T2_US_Wisconsin T2 CH_CERN_HLT
. : . M 137US NotreDame D T2°CH_CERN B T2 DE_DESY £ 72°US Florida W 1T CNAF
Tier-1 (Italy) Tier-1 (Russia) B T2_US_Nebraska W T2US Caltech B T2_US_Purdue B T27US MIT ©727US_UCSD
> . BT DEKIT B T2 DE RWTH W27 Bani B T27US Vanderbit W T2 BEIHE
Tier-1 (Germany) Tier-1 (UK) [ T2_UK_London _IC B T2_UK London_Brunel B T1°RO JINR [ 72717 _Legnaro B T1"UKRAL
g g - ln "FR GRIF_IRFU W71 FRCCIN2P3 W T2_EE Estonia W T27UR_SGrid_RALPP B T2 Pisa
i ' Tier-1 (Spain) B T3.US_0SG B T2°ES JFCA W T2 ES_CIEMAT B T276R SPRACE B T2 FR_GRIF_LLR
HT1°ES PIC T2RUJINR W T3TW NCU W 72T Rome W T37UK ScotGrid_GLA
B T27BE UCL Dn ~CH CSCS 0 T27UK 5Grid_Bristol O T27RO_IHEP plus 35 more

Maximum: 328,207 , Minimum: 0.00 , Average: 220,262 , Current: 212,372

Explore Opportunistic use of:

ok Spenlab HPC facilities, Large cloud providers, crowd-computing ? 25
D O & S & & S 5 & Sh B @€ Ih @B O SGhDhDhDY°: D & e &




HPC resources

Our typical computing approach has been so far HTC oriented
HPC centers constitute an important resource

Being tested by the experiments
For scalability and heterogeneous architectures
ATLAS reached more than 200k traditional x86 HPC cores for simulation

CERN is part of EU funded DEEP-EST = DEEP-EST project (DEEP
Research on modular HPC systems * Bl codealon project

— EU funding 15 M€

* Modular Supercomputing Architecture

— Heterogeneous resources at system level
= Diverse modules tightly interconnected

— Address HPC and HPDA requirements
* Software Environment
SCALABLE

— Ensures code portability by using sorace [ ANALTICS
standards interfaces MODULE

* Applications
— Co-design influences for HW and SW

=¥1. CERN — Demonstrate and validate the concept
1= openlab
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¥ 0AK RIDGE
N

National Laboratory

Ex: Summit @Oak Ridge

#1 2018 Top500 list 500 &5

System Performance Each node has The system includes

2 IBM POWER9
processors

AN
Summjit

»  Peak performance of 200
petaflops for modeling &

* 4608 nodes

*  Dual-rail Mellanox EDR
InfiniBand network

« 250 PB IBM Spectrum

Scale

file system transferring

TR !

memory

<. CERN

= openlab 27
https://www.top500.org/static/media/uploads/top500_ppt_201806.pdf
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Theoretical Peak Performance, Double Precision

H/W Accelerators

: : : S8 &

* Accelerators have different computing & '

model than CPU §‘°3 T o 8 T e Xeon e 720 KNG T

« Many cores, high floating point throughput % éo”"?q
+ Ex. NVIDIA TESLA Kepler K40 I U N (A N
* 1.4 TFLOPS DP peak throughput ' 5 T\ZA';"Q;:::Z?L’E 1

. 288 GB/s peak off-chip memory access & & & é INTEL Xeon Phis —yp—

bandW|dth 2008 2010 o Yei(:12 2014 2016

36 G DP operands per second

 In order to achieve peak throughput, need 1,400/36 = ~39 DP arithmetic

operations for each operand value fetched
« In most of current code is 0.5 (fetch two operands, rarely use them again) ®

=1 CERN

%Iy openlab V. Innocente, HSF workshop 2018 Resource Starvation! #
IS & o AEEES o o AEEES o o AEEES @ @ IS o o AEEES & o JAEEEES &



Software optimisation

Case by case investigation is
needed

Sometimes better start from scratch!

We need to rethink our algorithms in
terms of

Scalabilty
Efficient use of resources
Portability across platforms

traffic deadlock in Tel Aviv, 2011

=1, CERN
i, openlab 29



Software

A few selected examples

Trigger
Tracking
Simulation
Analysis

=%). CERN
1= openlab 30



Trigger: real time processing

& ((<\
. Q@ «°
\
N »
\ % A
’
Data Flow Data Flow

® 40 MHz in / 100 KHz out ¢ |00 KHz in/ | KHz out
e ~ 500 KB / event e ~ 500 KB / event
® Processing time: ~10 Us e Processing time: ~30 ms
® Based on coarse local reconstructions ¢ Based on simplified global reconstructions
® FPGAs / Hardware implemented 3 e Software implemented on CPUs 4

Experiment currently implement both hardware and software stages (“cascade”)
| Feature-building in custom electronics (e.g. FPGAs) reduces rate

= openlab 31

M. Pierini, CERN openlab ML workshop 2017
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Offline processing

Data Flow
e | KHzin/ 1.2 KHz out

e~ | MB /200 KB/ 30 KB per event
® Processing time: ~20 s
® Based on accurate global reconstructions

e Software implemented on CPUs 5

=%, CERN
1= openlab

Organized processing, one software
stack/framework per experiment
(C++), one or few output sets

Mostly done on WLCG

32



Trigger challenges

Data rates

- Incoming rate (kHz) | Outgoing rate (kHz) | Reduction factor

2-1000 10-2000

HLT | Event size (kB) rate (kHz) Bandwidth Year
(Gbl/s)

LHCb 40000 32000 2019

LHCDb is investigating FPGAs and GPUs for real time reconstruction of 5GB/s

CMS is porting heavy "offline” tasks to real-time processing
Integrate GPUs in the HLT farm to achieve 100 msec latency (now O(10) sec)

=¥1. CERN
1= openlab 33



A |
Trigger efficiency g e s | B
et
Online vs offline reconstruction differences are £
limiting discovery reach Y I ——
Online selection reduces sensitivity to new physics &
(tails of event distribution) ' >
Not optimal use of resources Offine Eneray
Having the same reconstruction at L1/HLT/Offline A | i\
would recover lost sensitivity q
This cannot be done exactly offline code too slow e e e .
It could be done “in average” = ML algorithms : prigoer 1 efficient ¢
All collected events are
used offline
{:}g?;gnlab ! > 4

1 .
Offline Ener:
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EX R&D: ML/DL for Trigger

Event as a sentence
Events are made of particles like sentences are made of words
Physics is the grammar that dictates the order

Use recursive neural networks to “understand” an event (like text
understanding applications)

D. Weitekamp, 2017 CERN OpenLab Summer Student n

=%, CERN
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LSTM TOPCLASS:Ifier

NN based Trigger

Topology trigger!

tt events are a tiny fraction in single-lepton
datasets

Most triggers are object- and not topology-
based

Represent the topology in a DL-compliant
way
DL"designs” the best classification criterion B
Strong QCD/W+j background rejection for
99% efficiency on tt events
Such a filter at trigger level could save
x10 downstream resources e
=%, CERN o0 0.2Backgrou(:1'(‘:lContamir(:.::ion(FPR)Q8 Ho 36
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Track Seeding and pile-up

Typical approach is not easily parallelisable

First create doublets from a pair of layers
 propagate generated doublets to third layer

* propagate triplets to fourth layer and store
e

» start from another pair of layers
Absence of massive parallelism oo .\T f.
e Poor data locality — LS R

e Synchronizations due to
iterative process

O https://indico.cern.ch/event/656491/contributions/2939163/attach
'n,-‘ openlab ments/1631960/2602215/18-04-11_FCCWeek_TrickTrack_1.pdf 37
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blockldx.x and threadldx.x = Cell id in a LayerPair

‘%888! ‘8%%‘ %e%‘ [%%e‘ ‘8%%‘ e%%‘ !Eachcellasksits

innermost hits

Ex: Parallel tracking W BB
blockldx.y = P%%‘ ‘8%88] 8%%1 [33333‘ %8%‘ 8%%‘ with.

LayerPairindex [0,13) | ‘%888 e%% 888 [%888 8%% e%%
Parallelization requires algorithmic design

* Cellular Automaton (CA): parallel track L] X .. ) ' ‘./; .
seeding algorithm 1 - Yo
* Doublets (Cells) are created for each ; f Ve

pair of layers (compatible with a region

- Fast computation of the compatibility Sos { H i A
between two connected cells ':50,6_ J

* No knowledge of the world outside e

300 -

Seeding CPU time [s]

adjacent neighboring cells required ey
easy to parallelize l{ w
0.0 oL
=%, CERN 0.0 2.|5 5.|0 7.|5 10I.O 12I.5 15.0 6 2|5 5|0‘ 7% 1(;0
1= openlab pr [GeV] Pileup



GPU accelerated HLT in Alice

CA based tracking implemented and

tested on Pb-Pb events

600000

500000

400000 -

300000

Track finding time (us)

200000

100000

=% CERN
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AMD S9000

P K X+

NVIDIA GTX1080

ALICE Performance 2018/03/20

[ 2015, Pb-Pb, VSN = 5.02 TeV

T T
Xeon 2697, 12 cores (no HT), 2.7 GHz

i7 6700K, 4 cores (no HT), 4.2 GHz

About 50 ms for largest
events in Run 2 Central
Pb-Pbwith pi &-up)

¥ X

K

e
X
g -
X, % +
P
o Va' < N
- 1 1 1 1 1
500000 1x10°8 1.5x108 2x108 2.5x108 3x10°

https://indico.cern.ch/event/658267/contributions/2813689/attachments/1621144/2579443/2018-03-21_CTD_2018.pdf

Number of TPC clusters

(Efficiency)

O
o)

0.6

0.4

0.2

*-: .‘_.—_‘_-:‘_#—f—h—__"'-_.__—.. o _._:-—o-_‘_f\-'—.__._‘__‘_* - T g g

- ++ -

G =

-

- ALICE Performance 2018/03/20

- 2015, MC pp, Vs = 5.02 TeV

:*_ ngle Event - Efficiency
I +a Single Event - Clone Rate

E t Single Event - Fake Rate

- * 100 Events - Efficlency

B e 100 Events - Clone Rate

~ s 100 Events - Fake Rate

b .4 s 300 Events - Efficiency

= + -+ 4 300 Events - Clone Rate

300 Events - Fake Rate
1000 Events - Efficlency
1000 Events - Clone Rate
1000 Events - Fake Rate
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https://ctdwit2017.1al.in2p3.fr/

Hardware tracking

Track trigger implementation for trigger upgrades development on-going
Several approaches investigated

Dedicated hardware is the key to fast computation
Not applicable for offline processing unless by adopting heterogeneous hardware.

= g S :
i . - . . = Ei:E i . .
mr:r:eosr;a: i 8 processing + 2 transmission steps implements algorithm oEemeE Ugoé - O<§
e Kalman Filter ==
f— N\ e S
va::" BE )
=l 2 (e
; B = Cl-Re)
T &~ 55 clock
STUB £ -2
TRACK =5 X
INPUT | === =X ‘ cycles at
Tra Ckl etS OuTPUT e < s || 240MHz
=== g =/ |
n S ‘ == ? (230ns)
Ei—— =
Each node isan tggij == |
operation (+,-,%,?, o 5}:
1, #, cast, etc.) o &pe F==
E | | g S ‘
< e Simultaneous N
N 3 =execution ‘ o
) | %@C (e,
- §5' %%%§7i’%ga» %5

= —nE\ee | 7| é — e W
E — o)

=] B
j (= ——d g OE Y = i =
= o [Bop—e—i—m & é =] E:f:f"\Q‘:’ | ——
= éoo<:>\_§>® ER [ REED T
géo Sl SSaa_—) J V \———aonm_ | \e=r—tuae
= [=1=1 N O EO®

SSSSTo &7 @ 5 5 2
o Toon C‘_/(;Q =—Ye(=leY]-[=Ja=N=[e)

——

Stub Forming Projection Organize Match tracklet Match  Track @ o ek & —_— :

. . e . . Shod=cdn o oHa——=\ ]7(:7 E——Seolelele) =] -] UDOGDGO TEH. e oougbo:
organization tracklets transmission tracklet projections to trans-  fit U8 G——o—m ol UL Emb ome—— om0 SStodEodtat— sty 8 3

> A A e ———chaet—d & oo & e =Y = UE EDQ Ao B\ & B

to nelghbors prOjeCtlonS stubs mission = = TR, a8 (jﬁé‘/_\.?w = ©<

= N CSuoOnEEEE cbd:na [ - R @ =

R ¢ e o & =Y - =

Cl=S et === = = [l o
e j\ == \/CJQD

%@DD%OD QEC)O

- UU“G"

y



ML for tracking

Recent work applies ML/DL to particle

tracking: =
u _Lm ee . heep
Hopefield network T e i

http://inspirehep.net/record/300646/

CNN in NOVA
https://arxiv.org/abs/1604.01444

HEP.TrkX : https://heptrkx.qithub.io/

TrackML RAMP :
https://tinyurl.com/y84yd5hn

TrackML challenge on kaggle!

https://indico.cern.ch/event/658267/timetable/#20180322.detailed
https://www.desy.de/dvsem/WS1213/pantaleo_talk.pdf
https://indico.cern.ch/event/656491/contributions/2939164/attachments/16319
63/2602408/JuI|aHrd|nka FCCweek2018.pdf
/findico.cern.ch/event/658267/contributions/2813689/attachments/16211

44/2579443/2018 03-21_CTD_2018.pdf
AR O 2 S O O . O O S o B




Accelerating PiD with FPGA

LHCb RICH

D detection point)

Mirror

Reconstruction of Cherenkov angle

Acceleration up to x35 with Intel Xeon-FPGA wrt E (e
single Xeon
Bottleneck: Data transfer bandwidth to FPGA s :
Xeon only
=¢==|\yBridge + Stratix V o
Compare Nallatech 385 and Intel Xeon/FPGA acceleration  ose BOW + Arria 10 |
RICH Cherenkov photon reconstruction (OpenCL) &
30 Py
S 2 g 5.0E+5
Q >
F 20 x3 X
§ 15 5.0E+4
S 10 '
K
8 5 1
O
< 0 5.0E+3
Xeon PCle QPI 1.0E+0 1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E
StratixV StratixV Number of photons [#]
=¥, CERN
£ 3 42
s openial C. Farber, LHCb https://indico.ihep.ac.cn/event/6387/session/56/contribution/50/material/slides/0.pdf



V. D. Elvira, CHEP 2018

s i mu I at i on https://indico.cern.ch/event/587955/contributions/2937511/at

tachments/1678317/2695427/DE-T20ffline-Abs30.pdf

Economic impact/cost of simulation in HEP collider experiments

We define “simulation chain” physics generation, interaction with matter (G4), readout
modeling, reconstruction, analysis
— Took 85% of CPU resources used by CMS, while G4 module took 40% of total (Run 1, 2)

— ATLAS’s Geant4 module was 8-9 times slower than CMS’s and the experiment uses significantly
more resources than CMS in physics generation

— Rest of resources used in reconstruction and analysis of real collider data

CMS in more detail taken from (analysis of 2012, and May 2015-May 2016 periods)
— 540k/860k core months corresponding to 45/70k CPU cores at full capacity (half in G4)
— Purchasing cost is 5/8 million dollars
— Cost of physical hardware including life-cycle, operation, maintenance

0.9 cents/core_hour (ENAL=—et-t~4-certsrcore ot (witatrFA-paie-hrdustauin 2017)
cost of simulation in CMS: 3.5-6.2/5.5-10 million dollars

Improvements of 1%, 10%, 35% in G4 time performance would render 50-80k, 500-800k, 1.8-
2.8M dollars savings to CMS

Computing né rogram are 10-100 times higher dependi on and
reconstruction solutions implemented — reconstruction will take a larger fraction (pileup)

3¢ Fermilab

22 CHEP 2018 V. Daniel Elvira | Impact of Detector Simulation in Particle Physics Collider Experiments - highlights

=%, CERN
I= openlab
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Speeding up simulation
See A. Dotti G4 tutorial

Intense R&D activity on code modernisation

* Improve existing code (Geant4 - scalar processing )
 Reduce memory consumption
* |Implement event level parallelism

=%). CERN
= openlab 44



Speeding up simulation

Intense R&D activity on code modernisation

« Improve existing code (Geant4 — scalar processing)
 Reduce memory consumption
* |Implement event level parallelism

5
g

-
~
o

8
g

We need to

approach the
problem at multiple
levels!

=%, CERN
1= openlab

Binomial Options Per Sec. SP
(Higher is Better)
o
o

g 8 8 ¢
- 8 & 8

<«—\ectorized
&
Threaded

179x

«— Threaded
-~ Vectorized

aﬁ"""{ﬂ;ﬁ

2007 2009 2010 2012 2013 2014

IIIIIIII

Serial

n"

rrrrrrrrr Processor Processor Processor Processor Processor
X5472 X5570 X5680 E5-2600 E5-2600 v2 E5-2600 v3
formerly formerly formerly family formerly family formerly family formerly
[ [ codenamed < [ codenamed
Harpertown Nehalem Westmere  Sandy Bridge  Ivy Bridge Haswell

source: Intel
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Speeding up simulation

Intense R&D activity on code modernisation

« Improve existing code (Geant4 — scalar processing)
 Reduce memory consumption
* Implement event level parallelism

* Prototype fine grained parallelism through the GeantV “project”

« Improved, vectorised physics models
* Improved, vectorised geometry (VecGeom)
« Smart track level parallel transport

W

-,
+ |
Geant .

« Back-propagate improvements to Geant4

=%, CERN
1= openlab

http://geant.cern.ch
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CMS case study Multithreading

CMS geometry (GDML), n~ 50 GeV (FTFP_BERT), B field (4T) - Xeon Phi 3120A
T

Test improvements in a real-
life scenario: CMSSW

|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i

50 100 150 200

, Num Workers
e Geant4 includes event-level

multithreading  CMSSW framework supports
* Nearly perfect scaling with physical multithreading

cores, further 30% gain from  Similar gains in throughput observed,
K.Pedro, CHEP 2018. hyperthreading memory usage remains under 2GB
https://indico.cern.ch/event/587955/contributi _ _
ons/2937652/attachments/1679306/2697284/ * Memory reduced by factor of 10 » More efficient use of grid resources
CMS_simulation_performance_CHEP2018.pdf (vs. multiprocessing approach) (included in CMS production releases)

CHEP 2018 Kevin Pedro (FNAL) 11
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Speeding up simulation:

CMS case study

Results of Existing Improvements

Relative CPU usage
Configuration

e From HEP Software Foundation
Community White Paper

o CMS Phase 0 detector,

New Improvements: Geometry

VecGeom: new library for detector geometry

* Supports vectorization and new architectures

No optimizations 1.00 1.00 Geant4 10.2
Static library 0.95 093 . HF shower library, Russian
Production cuts 0.93 0.97 Roulette have largest impacts
Tracking cut 0.69 0.88 « Cumulative effects: with all
T i) 0.95 0.97 improvements, simulation is
e D T N | 4.7% (3.4%) faster for MinBias
| Shower library 0.60 0.74 i (ttbar)
| _R_uisiafl fo_ul_efte_ ______ (EZS _____ (1.21_ |+ CMS simulation takes 4.3
FTFP_BERT EMM 0.87 0.83 secf/event (24.6 sec'/event) for
All optimizations 0.21 029  MinBias (ttbar)
1 sec = 11 HS06 for test machine
CHEP 2018 Kevin Pedro (FNAL) 10

s vpEImav

* Code rewritten to be more modern and efficient (vs. Geant4, ROOT, USolids)

* Can be used in scalar mode with Geant4

* CMS observes 7-13% speedup with similar memory usage
— Just from code improvements, no vectorization!

» Included in latest CMS production releases

o First mainstream use of vectorized library by experiment

Relative CPU usage

Geometrylibrary | MinBias | _ttbar

Native 1.00 1.00
VecGeom 0.87 0.93

CHEP 2018 Kevin Pedro (FNAL)

12




CMS case study: GeantV integration

Potential Improvements: GeantV

eedups in Geant4 and enabled event-

Conclusions

cantV: Vectorized Transport Engine * CMS has substantially reduced CPU usage of Geant4 full simulation

o ~3-5x speedup using various technical improvements and physics-

A. Gheata ; ) ;
I preserving approximations

o Track-level parallelism: process multiple \}
events simultaneously _—

sket of
o Exploit single instruction, multiple data tracks
(SIMD) vectorization 0 / ] Dipatching
o Group similar tracks into basket (based : |
on particle type, geometry/material)

f:;‘jt:‘ N o Continue to find ~10% improvements, e.g. from VecGeom and magnetic
%\ field stepper/tracking optimizations

\ SIMD  HL-LHC and Phase 2 u
Geometry 7\/ .
navigator \f—m ‘ > Need

\ relatively smaller fraction of total CPU usage
% \‘\

e

o Send entire basket to algorithm:
process particles in parallel

GeantV is one promising approach to speed up full simulation even further
o Track-level parallelism (rather than event-level), vectorized components

o Alpha release is available, beta release planned for 2019

CHEP 2018 Kevin Pedro (FNAL) 14 > Successful early integration in CMS software framework!
g for 2—5x speedup with final version
=%, CERN .
7':..;-. openlab CHEP 2018 Kevin Pedro (FNAL) 17



FCChh

transverse profile

longitudinal profile

GFlash: <t>=9.88 X,

Fast Simulation

Already used for searches, upgrade studies, ...

n

deposited energy per tslice (GeV)

e
n -

(1=}

ratio
o — n
SErrTr T
.

en
----------------
......
-----

Shower libraries (pre-simulated EM showers, fwd calorimeters in
ATLAS/CMS)

Shower shapes parametrizations (GFlash,..)
Fast trackers simulation (ATLAS FATRAS, ..)

Look-up tables
Hit |ibr’a ry (LHCb) ZE/EM in Ecal for y with E=2750Mev.e=0.35rad,¢=45deg-outerreio - .\"\-

NI ey 8

. . . . E . . LHCb preliminary
Fully parametrized simulation (DELPHES - see tutorial) = Eealinnersection | — Full smulation
- —— Fast simulation a—
30%— EmeaS :
Different speed improvements (x10 - x1000) £ Eior
: , - . Rama, LHCb,
Different levels of accuracy (~10% wrt full sim) of- . Rema, LHCD, CHERZOLS
=¥, CERN -
?l:.,f openlab % 'or.‘tl)s '0?2' — 'o.lzslhi '/'Eo.s 30
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A generic framework?

» Full Sim 600 HS06.s (curr
1.00E+15 3-5 times that )
+ Fast Sim 10% of Full Sim

MC need to integrate fast simulation o | LHCb
Geant4 has mechanism to mix fast and full simulation: user- z
defined models within “envelopes”™ - few use it 1.00E+14 —
Towards a common framework providing e
. m“‘“' e WLCG pledge
Algorithms and tools oote1s , |
] ] . ] . ] 2020 2021 year 2022
Mechanism to mix fast and full simulation according to particle FCC Gaud framework
type and detector
R&D within CERN openlab to develop a generic fully customizable 5
fast sim framework physies .
Deep Learning based

=1 CERN

1= openlab
—“—“—“—“—--—

models Zaborowskai CHEP2016



Deep Learning for fast sim

EX. SIMULATION OF A CALORIMETER

Energy
depositions in
cells

1. CERN
i, openlab 52



Deep Learning for fast sim

Generic approach
Can encapsulate expensive computations

DNN inference step is generally faster than algorithmic approach
Already parallelized and optimized for GPUs/HPCs.
Industry building highly optimized software, hardware, and cloud services.

Numerous R&D activities (LHC and beyond) (see results presented at CHEP2018)

Example: Generative Adversarial Networks for CLIC high granularity calorimeter

=%). CERN
1= openlab 53



What is CLIC?

Compact Linear Collider

High-luminosity linear e+e- collider
Three energy stages up to 3 TeV

%

Vertex detector

Silicon tracker

Forward
calorimeters

Fine grained
calorimeters

12.8m solenoid, 4T

Return Yoke
+ Muon ID

End coils

Superconduct.

FEVER dTA 7 i ///%/’ (%
Compact Linear Collider (CLIC) , .
k I 380 GeV - 11.4 km (CLIC380) / :

~ I 1.5 TeV - 29.0 km (CLIC1500)
[ 3.0TeV-50.1km (CLIC3000) & -

2R Qﬁ / j . / ". 4 ;

Electromagnetic calorimeter
detector design

1.5 m inner radius, 5 mmx5 mm
segmentation: 25 tungsten
absorber layers + silicon sensors

http://cds.cern.ch/record/2254048# 54




CLIC calorimeter simulation

Data is essentially a 3D image

1M single particle samples (e,y, )
Flat energy spectrum (10-500) GeV
Orthogonal to detector surface

+/- 10° random incident angle
Images are highly segmented and sparse

0
0.45 o
040
5
035
10 030 o
025
B 020 -
015
20
010 2
=1, CERN 0 15 2
0 5 10 15 2

I,,= openlab °

v

Geant4
shower
) > -
primary
25", :
25 25 o
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arXiv:1406.2661v1

Generative adversarial networks

Simultaneously train two networks that compete and cooperate with each other:

Generator G generates data from random noise

Discriminator D learns how to distinguish real data
from generated data

D: Detective

https://arxiv.org/pdf/1701.00160v1.pdf

';2'-.’:553,'*:. The counterfeiter/detective case
“J‘ 'J‘ -.’:"' . i
SR Y, Counterfeiter shows the Monalisa
< - t‘ ‘T .‘. "0 . L .
Rl e ..:.3,»,:,.‘.1;}.: Detective says it is fake and gives feedback

Counterfeiter makes new Monalisa based on feedback
G: Generator (Forger) |l Input for Generator _ o
M ceRN lterate until detective is fooled

1= openlab 56



Ecal/Ep

Results validation:

Comparison to Geant4 data

0.04
0,088
0,08
E:#‘*ﬁ%* 5
0.02 __++++;%ﬁ%+*+
0.015 -
0,008 o

— Data
‘|—GAN

P SR PR SR SR ST

11lllllllllllllllllllllllllllllll

0 50 100 150

=% CERN
1= openlab

200 250 300 350 400 450 500
Ep GeV

Accurate!

Mean  (std)

hE g4 222_2
F Entries 995 300 1 GAN 100 100.44 (6.77)
L Geantd Mean 72.45
01~ GAN generated StdDev  21.48 250
008 ] g% Primary particle
- Single cell @ 150 energy
0.06/— + response o (100 GeV)
o.o4} + 50 ]L
0.02%— + + ao 50 100 150 Zognergy Ge\?OO 400 500
L X-axis Y-axis
41— owaso —— Data 400
s — e 44— cansoo || Average shpwer
4 34 section
C
w 24
- 2 1
S
w14 1 -
0 L T T T O ) T T T
0 10 20 0 10 20
0.6 ] Position
> Mean (std)
] g 0.4 1 2.0 ?its?(é.oz%)
w — 2.14(})(.)2?3)
-
S 0.2 1 215
| ]
—— Data 400 §
—— GAN 400 o .
0.04: : , B0 Y moment (width)
0 10 20 2
Z axis Position
0.5 1
0.0 T
6
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Computing resources: Fast!

Using a trained model is very fast

Single node performance. Keras + TF 1.8

Inference:
Classical Monte Carlo requires 17 s/shower
3DGAN takes 7 ms/shower on Xeon
speedup factor > 2 -103
0.04 ms/shower on NVIDIA P100
speedup factor > 4-10°!!!

Training:
45 min/epoch on NVIDIA P100
Only 200K G4 events are needed for training

=%, CERN
I= openlab

Time to create an electron shower

Time/Shower

Method Machine
(msec)
MC Simulation Intel Xeon
(geantd) Platinum 8180 17000
3D GAN Intel Xeon .
(batch size 128) Platinum 8180
ST NVIDIA P100 0.04

(batch size 128)

58




HPC friendly!

Distributed training using data parallelism

Run on TACC Stampede? cluster:
* Dual socket Intel Xeon 8160
e 2x 24 cores per node, 192 GB RAM
* [ntel® Omni-Path Architecture

Study performance degradation

Ratio of Ecal and Ep

g %% : : : : : : N
RN T T U O TN T SO B e
S = = | %
LI AERAE: i ...................................................
= fi%ﬁ*?ﬁﬁ@# mﬂf& 1 @W&tﬁﬁ i## T’i JHP;H
0,015 | ' S ER SR S SO
o S B Data
0.01 :_ 444444 BatchSize=1 000 .......................
BatchSize=4000
0.005 :_.; ..................... Batchslze—1 0000 .......................
'.. O:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
S e CERN 0 50 100 150 200 250 300 350 400 450 500
1= openlab Ep

High Energy Physics: 3D GANS Training Scaling Performance
Intel 2S Xeon(R) on Stampede2/TACC, OPA Fabric
TensorFlow 1.9+MKL-DNN+horovod, IMPI, Core Aff. BKMs, 4 Workers/Node

--2S Xeon 8160: Secs/Epoch Speedup -o-|deal “@-Scaling Efficiency
100% 10 98% 97% 97% 97%
256 —o—0 & o 28— 96% 94%  100%
- e - v ‘
128-Node Perf: 121 90%
128 149 Secs/Epoch
80%
64
70% >
e
32
a 60% -
2 £
w
¢ 16 50% a
o ]
& 40% 9
8 1]
o
30% v
4
20%
2 10%
1 0%
1 2 4 8 16 32 64 128
Intel(R) 2S Xeon(R) Nodes
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Analysis Workflow

e “Small” groups, individually implemented code
* Analysis dependent: |

e Subsets of the total data volume
* Slimming (filter specific collisions) & Skimming (reduce content
per collision)

° Calcula’uon Of new quantltles ® UP to ~ 500 Hz In / 100-1000 events out
* Complicated multi-step workflow because dataset is ® <30 KB per event
too large for interactive analysis « Processing time irrelevant
* Rerun framework COde (eg W|th non‘defaUH: e User-written code + centrally produced
pa ramete rs) selection algorithms

6
 correct problems/ mistakes

e Can take weeks using GRID resources and local batch
systems Currently based on ROQT, the

* Experiments started to centralize first step community’s statistics, plotting and
* Not all time spent is actual CPU, a lot of time is 1/0 t00lKit puac—
bookkeeping, resubmission of failed jobs, etc. ‘ ROOT

=% CERN
1= openlab

- Data Analysis Framework



Ex: CMS Data Reduction facility

* CERN Openlab project with Intel (2 years)

Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

Ntupling

@ ~4xyear |sms Data| - Pemonstration facility optimized to read

E— Reduction | fhrough petabyte sized storage volumes
Facility ® Produce sample of reduced data based on potentially
' @ ~1 x week

complicated user queries
® Time scale of hours and not weeks as it currently
requires.

Skimming
&
Slimming

Group analysis ntuples

E RN | e—— = [f successtul, this type of facility could be a

2 V z @ big shift in how effort and time is used in

3 2 §E® : .

plots and tables phyS|CS analySIS
® Same infrastructure and techniques should be
applicable to many sciences
$& Fermilab
.?":I;CI 10 Oliver Gutsche - CERN openlab workshop - Data Analytics: Physics Data Reduction 27. April 2017
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Scalability Tests

Spark analytix cluster @CERN, shared infrastructure with ~1300 cores, 7 TB
RAM

HDFS and Remote EOS Public/lUAT storage

Performancefor 20 TB input size 250
180
160 200
\
140
4]
= 120 £ 150
2 £
2 100 ——EOS Public E
é R g 100
: 20 EOS UAT £
= 60 ——HDFS
50
20
0
0 22TB 44 TB 66 TB 88 TB 110 TB Input size
222 CORES 444 CORES 592 CORES 814 CORES
fys opernnav M, Cremonesi, CHEP2018 https://indico.cern.ch/event/587955/contributions/2937521/ 02



Further R&D

Parallelisation of analysis frameworks (see ROOT contributions at
CHEP2018)
Memory and I/O Optimisation (data format and memory structures, TDataFrame)
Improved features
User friendly (-ier...) APIs
Containerised analyses

Exploration of “other” tools
HYPSTER : python-based data analysis framework (ML/DL integration)
Panda DataFrames
HPC-friendly: HYDRA, columnar data platforms (Numpy-like)

Data Analytics platforms
Exploration of optimised data-format

=1 CERN

1, openlab CompreSSion 63
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Data Analytics at scale — Challenges

When you cannot fit your workload in a desktop
Data analysis and ML algorithms over large data sets

Deploy on distributed systems (containers)

Need specialized components for:
Data ingestion tools and file systems

Cluster storage and processing engines

ML tools that work at scale

Configuration

Data Collection

Machine
Resource
Management

From “Hidden Technical Debt in Machine Learning Systems”,

D. Sculley at al. (Google), paper at NIPS 2015

=%, CERN
1= openlab

Feature
Extraction

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

o4




Hadoop and Big Data Analytics at
CERN

New scalable data services being tested @ue |

Scalable databases
Hadoop ecosystem clovses
Time Series databases
Interactive data analytics (Jupyter..) I m

Activities and objectives
Support of Hadoop Components

Further value of Analytics solutions
Define scalable platform evolution

Hadoop Production Service

% Parquet

<. CERN
= openlab 65



Machine Learning with Spark

Spark has tools for machine
learning at scale
Spark library MLIib

- Frameworks and tools for distributed

deep learning with Spark available on
open source:

TensorFrame, BigDL, TensorFlowonSpark, DL4;j, ..

@CERN: Developed an interface to Keras

=%, CERN
1= openlab

000000000

/ Parameter Updates \

S‘p"af‘”(\z [ Parameter Server ﬂ

[ Hadoop Distributed File System (HDFS) J

https://github.com/cerndb/dist-keras
Main developer: Joeri Hermans (CERN)
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Containers

Contai nerS Can make Leve rage conta i ners S. Trigazis, CERN openlab openday 20

a N a IyS | S Syste m S m O re in High Energy Physics and elsewhere

useful and easily shareable. e Improve agility in deploying and rolling new software releases kubernetes
e Isolation with kernel control groups and namespaces

Applications become self- * " anemesd

conta N ed d nd WO rk on a ny ° 5:;% )(/)rfn lé?](tas microservices, container images, declarative W

num ber Of p|atf0 rms e Integrate containers in the CERN cloud

* Shared identity, networking integration, storage access, ...
e Immutable Infrastructure

ML applications exposed as

services -
Leverage external and sasa
distributed data access g DC/0S
I aye rS 'T:l' openlab

{:}g?;gnlab 67



LHC vs Big Data?

In the past CERN was at the forefront of the Big Data challenge

LHC Science Facebook

Not so simple anymore
Growing number of actors we [t

~300 PB/year

50 PB raw data .
science data

More sciences are searcnes
becoming “Big Data”
sciences 1558

Collaboration and %600 PB Raw data
community “building” is

Google
Internet archive Yearly data volumes

essential
SKA Phase 2 — mid-2020’s HL-LHC — 2026
~1 EB science data ~1 EB Physics data
=% CERN 68
I= openlab https://indico.cern.ch/event/656491/contributions/2940766/attachments/1632534/2603674/summary fcchhdet.pdf




Summary

The challenge is evident
- Will need significant R&D to

- consolidate the models being investigated
- Understand concrete implications as well on cost understanding and modelling

- Exploring new techniques (ML), service delivery models and integrating them in the
models will make decisive contributions to the overall cost and efficiency

- Data deluge is not a exclusive to HEP
- Other sciences with similar challenges
- Tech industry with exponentially data growth
- Need to create synergies for common benefits

<. CERN
“i, & openlab 69



Thanks!

Questions?

=%, CERN
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3D convolutional GAN

Upsampling Relu Activation Layer

Similar discriminator and generator o oo Loy
models i '

3d convolutions (keep X,Y symmetry) e e Comottions

Condition training on several input B,‘ m‘

normalization normalization

variables GENERATOR

Zero Padding Zero Padding Zero Paddi
Leaky Relu Leaky Relu Zero Padding Leaky Relu

g I ' Leaky Relu ]
=0.2 f‘ 1

Convolwonl

Auxiliary regression tasks assigned to the
discriminator: cross check

Flatten
Convolutionl

Easily generalisable to multi-class approach (or multi-
discriminator approach)

Batch
Batch
‘OC:WOIUI normalization normalization

DISCRIMINATOR

Layer 2

=%, CERN
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Electrons shower shapes
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Calorimeter sampling fraction

Incident angle
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Media hierarchy
We still use tape! Why?
$/PB (TCO incl. power)

separate physical copy with high “destruction’

We stopped trying “automatic® HSM (Hlerarchlcal Storage
Management) -

for large experiment users -
file based HSM interface did not allow ‘_ —

Disk content is stable (until the experlmeA i
active data) =

thousands of job streams at relatively Ic *
~elape access enabled only for a few production activities
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Scale Examples: Tape Archive

Transfered Data Amount per Virtual Organization for WRITE Requests

Tape writes in 2017

12,000 ALICE: 5.5PB . I

Tape: writes in 2017

ALICE: 5.5PB
ATLAS: 17.9 PB ATLAS: 17.9 PB

. CMS: 10.6 PB
. CMS: 10.6 PB LHCb: 5.7 PB

9,000 LHCb: 5-7 PB
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Scale Example: Data Transfer

40 GBps

35 GBps

30 GBps

25 GBps

20 GBps

15 GBps
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5 GBps

0 Bps
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WLCG:
Global transfer rates
reach 30...40 GB/s
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Tadej Novak, ATLAS, CHEP 2018

Speeding up simulation
MC-MC overlay

Simulate a hard-scatter G4 event with usual configuration

Pre-mixing of pile-up events: Standard pile-up simulation of zero-hard-scatter events

(e.g. single neutrinos). In the future this step should only require minimum bias
events.

Digitise simulated hard-scatter event and overlay it on pre-mixed pile-up digits.
Re-use is the key!

minimum

bias events

single
neutrinos HITS

- HITS

2) Digitisation RDO

3) MC+MC
Overlay

4) MC
Reconstruction

RDO Analysis

-
hard-scatter
=¥, CERN

1= openlab https://indico.cern.ch/event/587955/contributions/2937526/attachments/1678296/269538 P~Overlay.pdf



T. Novak, ATLAS, CHEP 2018

Speeding up S|mulat|on

- I | | L | | | L | L L L ]
MC-MC over lay g - ATLAS Simulation Preliminary .
S 9F - standard digitisation —
: : o - 4+ overlay ]
Close to nominal physics performance s 8 -
> rrrTryrrrTrryrrrryrrrrprrrrrrrrr Ty T T T T T g 75— —E
& 0.98A7LAS Simulation Preliminary E e F + -
f 0.96:—ﬁ Powheg+Pythia8 o 'y #é 5 6;— _;
%) u * 4 - 3 - + .
% 0.94¢ S . 5 E
S 0.92F LR = - + -
© oo ¢ - 4 =
o b B - ]
S .88 = 3 + E
% - ¢ standard digitisation - .
E 0.86: t overlay E 2;— + —;
-o 1 005_ ....................................... | E | | I | | _+_|_+_I_+_I E
>
% 2 1 o S R N M
3 0 5 10 15 20 25 30 35 40 45 50 Data-MC overlay is also been developed!
Track p_ See Haas, ATLAS, CHEP 2016
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A simple G4
example

Valgrind/kCachegrind

Codebase very large
e Gl = T == and non-homogenous
|4 \ =[] e %f" 2«21 Very deep call stack
I Ik dEEe i ' sl el (IC misses) and virtual
table structure
Hotspots practically
inexistent
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amme = o «sshttp://geantd.web.cern.ch/geant4/UserDocumentation/Doxygen/examples=doc/html/ExampleBLbtmL.
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