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Outline

• Setting the scene – The Power Wall
• Physics requirements

• The HL-LHC challenge 
• Coordinated efforts: HSF and openlab
• Current computing model: WLCG, OpenStack
• Evolving the computing model
• Finding new strategies to improve code efficiency 

• Examples from the Online, Reconstruction, Simulation 

• Data Analysis
• Summary 
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1965: G. Moore noted that 
the number of electronic 
components which could be 
crammed into an integrated 
circuit doubled every year

Number of transistors per chip is going up
Clock speed has flattened at ~3GHz

Amount of dissipated energy is the limiting factor (power wall)

3

The power wall
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The HEP plan 

4

Relied mostly on clock 
speed increase to 
simply see code running 
faster on more 
performant hardware.. 
Massive data 
processing and 
simulation 

What	may	come	next.	
Maria Girone

CERN openlabCTOWhat	may	come	next.	
Maria Girone

CERN openlabCTO

There are a number of different options for new machines
• Lepton colliders (ILC, CLIC, FCC-ee) have overall less serious computing challenges
• Hadron colliders (HE-LHC, FCC-hh) bring a massive data rate and complexity problem

HEP computing model needs to evolve

Modified from CERN Courier May 2017
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Physics requirements: recap 1
Huge particle/data rates ~ 1-2 PB/s
Large pile-up

Dense vertices
Depending on configuration, events from different bunch crossing will likely overlap

4D reconstruction to disentangle 

Dense	Vertices	at	
1000	PU	at	100	TeV
Time	spread	of	
~180	ps

FCChh

A. Zaborowska, FCC week, 2018
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Physics requirements 
recap 2

Forward physics: large acceptance – large 
number of readout channels
Boosted objects: high granularity tracking 
and calorimetry 

A. Zaborowska, FCC week, 2018
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Ex: Tracking in CMS
2023 CMS Tracker
• Higher granularity (x6), 
extended coverage, hardware 
trigger capability
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Ex: ALICE …

Proton-Proton	

Proton-Ion

Ion-Ion
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HL-LHC
“The elephant in the room”

“This is when the R&D has to happen”

M. Pierini, openlab meeting, July 2018

Detectors development must be matched by software innovation
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HL-LHC: data volume

Year
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(2017 Computing model)
Flat budget model
(+15%/year)

ATLAS Preliminary

https://arxiv.org/pdf/1712.06982.pdf
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HL-LHC: computing power

CMS

Raw data volume increases 
exponentially

Processing and analysis load

Technology at ~20%/year will 
bring x6-10 in ~10 years

Estimates of resource needs x10 
above what is realistic to expect

High-Luminosity LHC is far from being a solved problem for software and 
computing
Beyond HL-LHC, Whatever the future, we pass through the HL-LHC on the way
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Coordinated efforts
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Hep Software foundation
HSF established in 2015 to facilitate 
common efforts and improve coordination
à Community White Paper 

https://hepsoftwarefoundation.org/organization/cwp.html
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CERN openlab

Evaluate state-of-the-art 
technologies in a challenging 
environment and improve them
Test in a research environment 
today what will be used in many 
business sectors tomorrow
Training 
Dissemination and outreach

A science – industry partnership to drive R&D and innovation



15

Current model
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The Worldwide LHC Computing Grid

16

Tier-1: permanent 
storage, re-
processing, 
analysis

Tier-0 
(CERN and Hungary): 
data recording, 
reconstruction and 
distribution

Tier-2: Simulation,
end-user analysis
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~170 sites, 42 countries
~800k CPU cores, 600 PB of storage
2 million jobs/day
10-100 Gb links

WLCG in numbers
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Distributed model
Performant & reliable networks

10 Gb/s à 100 Gb/s at large centers
>100 Gb/s transatlantic links in place

Originally strict hierarchical Tier 
structure

Role based
Now focus on use of resources & 
capabilities

Data access peer-peer
Optimise overall distributed resources
More functional and service quality 
based

Currently moves more  than 3PB/day 
17

Alice
ATLAS
CMS
LHCb

ATLAS since 2011:
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CERN OpenStack Private Cloud

In production since 2013

• 8,000 servers

• 281,000 cores

• 33,000 virtual machines

• 3,600 projects

One of the early adopters and 
largest contributors

90% of the resources are 
provided through a private 
cloud

Flexible and dynamic deployment
Moving to containers 
(investigations within CERN 
openlab)
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JOINT R&D PROJECTS

Data	
Acquisition	
(LHCb,	IT-CF)

Code	
modernizati
on	(EP-SFT,	

IT-CF)

Cloud	infra	
(IT-CM)

Data	Storage	
(IT-ST,	IT-DB)

Networks	
(IT-CS)

Control	
Systems
(BE-ICS)

Data	
Analytics,	
Machine	
Learning	
(many)

High-bandwidth fabrics, 
accelerated platforms

Simulation, HPC 
on the Cloud,
benchmarking

Cloud federations, 
containers, scalability

Storage architectures, 
scalability, monitoring

Software Defined 
Networks, Security

Predictive/proactive 
maintenance and 

operations

Data quality monitoring, 
anomaly detection, 

physics data reduction, 
benchmarking/scalability, 

systems biology and 
large-scale multi-

disciplinary platforms

20
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Evolution of computing models

Infrastructure optimisation
Data storage
Commercial / Public Cloud
HPC
Diversifying hardware
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ML for Infrastructure Monitoring

ML is being evaluated to optimize several 
infrastructure tasks

Data placement: use smart data analysis to 
predict where to move data across the WLCG 
infrastructure

Network security: analyse traffic patterns to 
detect anomalies and intrusions

Data Centre optimization: optimize job 
allocation, resource utilization, energy 
consumption, etc.
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Evolution of data storage: Data-lakes
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Public Cloud Investigations

• Investigate scale-out with public 
providers without impact on 
users 

• Helix Nebula –a Pre-
Commercial Procurement 
tender for a European hybrid 
cloud

• support deployment of high-
performance computing and big-
data capabilities for scientific 
research

• Available to multiple user groups in 
HEP, astronomy, life sciences, …

Provisioning	for	Peak

T. Bell, ”Accelerating Cloud through science”
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Scale out tests to commercial clouds

Explore Opportunistic use of:
HPC facilities, Large cloud providers, crowd-computing ?
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Our typical computing approach has been so far HTC oriented
HPC centers constitute an important resource

Being tested by the experiments
For scalability  and heterogeneous architectures
ATLAS reached more than 200k traditional x86 HPC cores for simulation

CERN is part of EU funded DEEP-EST
Research on modular HPC systems

HPC resources
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#1 2018 Top500 list

Ex: Summit @Oak Ridge

https://www.top500.org/static/media/uploads/top500_ppt_201806.pdf
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• Accelerators have different computing 
model than CPU
• Many cores, high floating point throughput

• Ex. NVIDIA TESLA Kepler K40
• 1.4 TFLOPS DP peak throughput
• 288 GB/s peak off-chip memory access 

bandwidth
• 36 G DP operands per second

• In order to achieve peak throughput, need 1,400/36 = ~39 DP arithmetic 
operations for each operand value fetched 
• In most of current code is 0.5 (fetch two operands, rarely use them again) L

H/W Accelerators

Resource Starvation !V. Innocente, HSF workshop 2018
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Case by case investigation is 
needed

Sometimes better start from scratch!

We need to rethink our algorithms in 
terms of 

Scalabilty
Efficient use of resources
Portability across platforms

29

Software optimisation

traffic	deadlock	in	Tel	Aviv,	2011
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Software

Trigger
Tracking
Simulation
Analysis

A few selected examples
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Trigger: real time processing

Experiment currently implement both hardware and software stages (“cascade”)
Feature-building in custom electronics (e.g. FPGAs) reduces rate

M.	Pierini,	CERN	openlab ML	workshop	2017		
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Organized processing, one software 
stack/framework per experiment 
(C++), one or few output sets

Mostly done on WLCG

Offline processing
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Trigger challenges

LHCb is investigating FPGAs and GPUs for real time reconstruction of 5GB/s 
CMS is porting heavy ”offline” tasks to real-time processing

Integrate GPUs in the HLT farm to achieve 100 msec latency (now O(10) sec)

Data rates

Incoming rate (kHz) Outgoing rate (kHz) Reduction factor

L1 40000 102 – 103 400-10,000
HLT 2-1000 1 -10 10-2000

HLT Event size (kB) rate (kHz) Bandwidth 
(Gb/s)

Year

CMS 4000 103 32000 2023
LHCb 100 40000 32000 2019

HL-LHC	
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Online vs Offline

Online vs offline reconstruction differences are 
limiting discovery reach

Online selection reduces sensitivity to new physics 
(tails of event distribution)
Not optimal use of resources

Having the same reconstruction at L1/HLT/Offline 
would recover lost sensitivity

This cannot be done exactly offline code too slow
It could be done “in average”  à ML algorithms

Trigger efficiency
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EX R&D: ML/DL for Trigger

Event as a sentence
Events are made of particles like sentences are made of words
Physics is the grammar that dictates the order

Use recursive neural networks to “understand” an event (like text 
understanding applications)

Images courtesy of Maurizio Pierini, CERN CMS

D.	Weitekamp,	2017	CERN	OpenLab Summer	Student
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NN based Trigger

tt events are a tiny fraction in single-lepton 
datasets
Most triggers are object- and not topology-
based
Represent the topology in a DL-compliant 
way

DL“designs” the best classification criterion

Strong QCD/W+j background rejection for 
99% efficiency on tt events
Such a filter at trigger level could save 
x10 downstream resources

Topology trigger!
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Track Seeding and pile-up

First create doublets from a pair of layers
• propagate generated doublets to third layer
• propagate triplets to fourth layer and store
• start from another pair of layers

Typical approach is not easily parallelisable

https://indico.cern.ch/event/656491/contributions/2939163/attach
ments/1631960/2602215/18-04-11_FCCWeek_TrickTrack_1.pdf

Absence	of	massive	parallelism
•	Poor	data	locality
•	Synchronizations	due	to	
iterative	process
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Ex: Parallel tracking

Parallelization requires algorithmic design
• Cellular Automaton (CA): parallel track 
seeding algorithm 
• Doublets (Cells) are created for each 
pair of layers (compatible with a region
hypothesis)
• Fast computation of the compatibility 
between two connected cells
• No knowledge of the world outside 
adjacent neighboring cells required

easy to parallelize
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About	50	ms for	largest	
events	in	Run	2	Central	
Pb-Pbwith pile-up)

CA based tracking implemented and 
tested on Pb-Pb events

https://indico.cern.ch/event/658267/contributions/2813689/attachments/1621144/2579443/2018-03-21_CTD_2018.pdf

GPU accelerated HLT in Alice
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Hardware tracking
Track trigger implementation for trigger upgrades development on-going

Several approaches investigated

Dedicated hardware is the key to fast computation
Not applicable for offline processing unless by adopting heterogeneous hardware.

Tracklets

Kalman Filter

https://ctdwit2017.lal.in2p3.fr/



41

ML for tracking
Recent work applies ML/DL to particle 
tracking:
Hopefield network 
http://inspirehep.net/record/300646/
CNN in NOVA 
https://arxiv.org/abs/1604.01444
HEP.TrkX : https://heptrkx.github.io/
TrackML RAMP : 
https://tinyurl.com/y84yd5hn
TrackML challenge on kaggle!

https://indico.cern.ch/event/658267/timetable/#20180322.detailed
https://www.desy.de/dvsem/WS1213/pantaleo_talk.pdf
https://indico.cern.ch/event/656491/contributions/2939164/attachments/16319
63/2602408/JuliaHrdinka_FCCweek2018.pdf
https://indico.cern.ch/event/658267/contributions/2813689/attachments/16211
44/2579443/2018-03-21_CTD_2018.pdf
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Accelerating PiD with FPGA

Reconstruction of Cherenkov angle
Acceleration up to x35 with Intel Xeon-FPGA wrt
single Xeon

Bottleneck: Data transfer bandwidth to FPGA

LHCb RICH

C.	Farber,	LHCb https://indico.ihep.ac.cn/event/6387/session/56/contribution/50/material/slides/0.pdf



43

Simulation 

To add your name to all slides, go to Insert > Header & Footer. 
Modify the text in the footer box and then click 'Apply to all'.

V.	D.	Elvira,	CHEP	2018
https://indico.cern.ch/event/587955/contributions/2937511/at
tachments/1678317/2695427/DE-T2Offline-Abs30.pdf
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Speeding up simulation 

Intense R&D activity  on code modernisation
• Improve existing code (Geant4 - scalar processing )

• Reduce memory consumption
• Implement event level parallelism

See A. Dotti  G4 tutorial 
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Speeding up simulation 

Intense R&D activity  on code modernisation
• Improve existing code (Geant4 – scalar processing)

• Reduce memory consumption
• Implement event level parallelism

We need to 
approach the 
problem at multiple 
levels!



46

Speeding up simulation 

Intense R&D activity  on code modernisation
• Improve existing code (Geant4 – scalar processing)

• Reduce memory consumption
• Implement event level parallelism

• Prototype fine grained parallelism through the GeantV “project”
• Improved, vectorised physics models
• Improved, vectorised geometry (VecGeom)
• Smart track level parallel transport

• Back-propagate improvements to Geant4

http://geant.cern.ch
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CMS case study

Test improvements in a real-
life scenario: CMSSW 

47

K.Pedro,	CHEP	2018.
https://indico.cern.ch/event/587955/contributi
ons/2937652/attachments/1679306/2697284/
CMS_simulation_performance_CHEP2018.pdf
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Speeding up simulation: 
CMS case study

48



49

CMS case study: GeantV integration
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Fast Simulation
Already used for searches, upgrade studies,…

Different techniques
Shower libraries (pre-simulated EM showers, fwd calorimeters in 
ATLAS/CMS)

Shower shapes parametrizations (GFlash,..) 

Fast trackers simulation (ATLAS FATRAS, .. )

Look-up tables
Hit library (LHCb)

Fully parametrized simulation (DELPHES - see tutorial)

Different performance
Different speed improvements (x10 - x1000)

Different levels of accuracy (~10% wrt full sim)
50

Zaborowska,	CHEP2016

FCChh

M.	Rama,	LHCb,	CHEP2018
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A generic framework?

MC need to integrate fast simulation 
Geant4 has mechanism to mix fast and full simulation: user-
defined models within “envelopes” à few use it

Towards a  common framework providing
Algorithms and tools
Mechanism to mix fast and full simulation according to particle 
type and detector

R&D within CERN openlab to develop a generic fully customizable 
fast sim framework
Deep Learning  based

51

FCC	Gaudi	framework

• Full Sim 600 HS06.s (curr
3-5 times that )

• Fast Sim 10% of Full Sim
Assumption

year

Bozzi,	CHEP	2016

LHCb

Zaborowska,	CHEP2016
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Deep Learning for fast sim

52

Energy	
depositions	in	
cells

Particle	type,	
mometum,	
pseudorapidity,	
detector	
geometry..

EX.	SIMULATION	OF	A	CALORIMETER
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Deep Learning for fast sim

Generic approach
Can encapsulate expensive computations 
DNN inference step is generally faster than algorithmic approach
Already parallelized and optimized for GPUs/HPCs. 
Industry building highly optimized software, hardware, and cloud services.

Numerous R&D activities (LHC and beyond) (see results presented at CHEP2018) 

Example: Generative Adversarial Networks for CLIC high granularity calorimeter

53
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What is CLIC?

High-luminosity linear e+e- collider
Three energy stages up to 3 TeV

Compact LInear Collider 

Electromagnetic calorimeter 
detector design
1.5 m inner radius, 5 mm×5 mm 
segmentation: 25 tungsten 
absorber layers +  silicon sensors

http://cds.cern.ch/record/2254048#
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CLIC calorimeter simulation

1M single particle samples (e,γ,π)

Flat energy spectrum (10-500) GeV 

Orthogonal to detector surface

+/- 10° random incident angle
Images are highly segmented and sparse

Geant4	
shower	

25
2525

Data is essentially a 3D image 
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Generator G generates data from random noise
Discriminator D learns how to distinguish real data 
from generated data

56

Simultaneously train two networks that compete and cooperate with each other: 

Generative adversarial networks
arXiv:1406.2661v1	

Image source:

The counterfeiter/detective case
Counterfeiter shows the Monalisa
Detective says it is fake and gives feedback 
Counterfeiter makes new Monalisa based on feedback
Iterate until detective is fooled

https://arxiv.org/pdf/1701.00160v1.pdf
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Results validation: Accurate!
Comparison to Geant4 data

57

Geant4
GAN	generated

GAN	generated	electron	
shower

Y	moment	(width)

Average	shower	
section

Primary	particle	
energy
(100	GeV)

Single	cell	
response
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Computing resources: Fast!

Single node performance. Keras + TF 1.8
Inference:

Classical Monte Carlo requires 17 s/shower 
3DGAN takes  7 ms/shower on Xeon 
speedup factor > 2 ∙103

0.04 ms/shower on NVIDIA P100 
speedup factor > 4∙105 !!!

Training:
45 min/epoch on NVIDIA P100
Only 200K G4 events are needed for training

Using a trained model is very fast

Time	to	create	an	electron	shower

Method Machine Time/Shower
(msec)

MC	Simulation	
(geant4)

Intel	Xeon	
Platinum	8180 17000

3D	GAN
(batch	size	128)

Intel	Xeon	
Platinum	8180 7

3D	GAN
(batch	size	128) NVIDIA	P100 0.04
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HPC friendly!
Distributed training using data parallelism

0 50 100 150 200 250 300 350 400 450 500
Ep

0

0.005

0.01

0.015

0.02

0.025

0.03

Ec
al

/E
p Data

bs 1000
bs 4000
bs 10000

Ratio of Ecal and Ep
Data
bs 1000
bs 4000
bs 10000

Data
bs 1000
bs 4000
bs 10000

Data
BatchSize=1000
BatchSize=4000
BatchSize=10000

Run on	TACC	Stampede2	cluster:
• Dual	socket	Intel	Xeon	8160
• 2x	24	cores per	node,	192	GB	RAM
• Intel®	Omni-Path	Architecture

Study	performance	degradation
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Analysis Workflow
• “Small”	groups,	individually	implemented	code
• Analysis	dependent:	

• Subsets	of	the	total	data	volume
• Slimming	(filter	specific	collisions)	&	Skimming	(reduce	content	
per	collision)

• Calculation	of	new	quantities	

• Complicated	multi-step	workflow	because	dataset	is	
too	large	for	interactive	analysis	

• Rerun	framework	code	(e.g.	with	non-default	
parameters)	

• correct	problems/	mistakes	
• Can	take	weeks	using	GRID	resources	and	local	batch	
systems	

• Experiments	started	to	centralize	first	step
• Not	all	time	spent	is	actual	CPU,	a	lot	of	time	is	
bookkeeping,	resubmission	of	failed	jobs,	etc.	

Currently	based	on	ROOT,	the	
community’s	statistics,	plotting	and	
I/O	toolkit	
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Ex: CMS Data Reduction facility
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Scalability Tests

Spark analytix cluster @CERN, shared infrastructure with ~1300 cores, 7 TB 
RAM
HDFS and Remote EOS Public/UAT storage

M,	Cremonesi,	CHEP2018	https://indico.cern.ch/event/587955/contributions/2937521/
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Further R&D
Parallelisation of analysis frameworks (see ROOT contributions at 
CHEP2018)

Memory and I/O Optimisation (data format and memory structures,  TDataFrame)
Improved features 
User friendly (-ier…) APIs
Containerised analyses

Exploration of “other” tools 
HYPSTER : python-based data analysis framework (ML/DL integration)
Panda DataFrames
HPC-friendly: HYDRA, columnar data platforms (Numpy-like)  

Data Analytics platforms
Exploration of optimised data-format

compression
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Data	Analytics	at	scale	– Challenges

When	you	cannot	fit	your	workload	in	a	desktop
Data	analysis	and	ML algorithms	over	large	data	sets	
Deploy	on	distributed	systems	(containers)

Need	specialized	components	for:
Data	ingestion tools	and	file	systems
Cluster	storage and	processing engines
ML	tools	that	work	at	scale

From	“Hidden	Technical	Debt	in	Machine	Learning	Systems”,	
D.	Sculley at	al.	(Google),	paper	at	NIPS	2015
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Hadoop and Big Data Analytics at 
CERN
New scalable data services being tested 

Scalable databases
Hadoop ecosystem
Time Series databases
Interactive data analytics (Jupyter..)

Activities and objectives
Support of Hadoop Components 
Further value of Analytics solutions 
Define scalable platform evolution 

Hadoop Production Service
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Machine	Learning	with	Spark

Spark	has	tools	for	machine	
learning	at	scale

Spark	library	MLlib

- Frameworks	and	tools	for	distributed	
deep	learning	with	Spark	available	on	
open	source:	

TensorFrame,	BigDL,	TensorFlowonSpark,	DL4j,	..
@CERN:	Developed		an	interface	to	Keras

https://github.com/cerndb/dist-keras
Main	developer:	Joeri	Hermans (CERN)
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Containers

Containers can make 
analysis systems more 
useful and easily shareable.
Applications become  self-
contained and work on any 
number of platforms
ML applications exposed as 
services
Leverage external and 
distributed data access 
layers

S.	Trigazis,	CERN	openlab openday 2017
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In the past CERN was at the forefront of the Big Data challenge

Not so simple anymore
Growing number of actors

More sciences are 
becoming “Big Data” 
sciences

Collaboration and 
community “building” is 
essential

LHC vs Big Data?

Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes

https://indico.cern.ch/event/656491/contributions/2940766/attachments/1632534/2603674/summary_fcchhdet.pdf
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Summary

The challenge is evident
- Will need significant R&D to 

- consolidate the models being investigated 
- Understand concrete implications as well on cost understanding and modelling
- Exploring new techniques (ML), service delivery models and integrating them in the 

models will make decisive contributions to the overall cost and efficiency

- Data deluge is not a exclusive to HEP
- Other sciences with similar challenges
- Tech industry with exponentially data growth
- Need to create synergies for common benefits 
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Thanks!

Questions? 
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3D convolutional GAN

Similar discriminator and generator 
models

3d convolutions (keep X,Y symmetry)

Condition training on several input 
variables

Auxiliary regression tasks assigned to the 
discriminator: cross check

71

Easily generalisable to multi-class approach (or multi-
discriminator approach)
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Electrons shower shapes

72

50GeV

400GeV 500GeV

100GeV
50GeV

500GeV
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Calorimeter sampling fraction 
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0 100 200 300 400 500
Ep GeV

0
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Media hierarchy

$/PB (TCO incl. power)
separate physical copy with high “destruction” latency

We stopped trying “automatic” HSM (Hierarchical Storage 
Management) 
for large experiment users
file based HSM interface did not allow to specify user priorities 

Disk content is stable (until the experiment decides to replace 
active data) 
thousands of job streams at relatively low rate (cpu bound)

Tape access enabled only for a few production activities

We still use tape!  Why?
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Scale Examples: Tape Archive

75Computing in HEP – Dirk Duellmann 03-Jul-2018

Tape:	writes	in	2017

ALICE:				5.5	PB
ATLAS:	17.9	PB
CMS:				10.6	PB
LHCb:					5.7	PB

Tape	writes	in	2017

ALICE:				5.5	PB
ATLAS:	17.9	PB
CMS:				10.6	PB
LHCb:					5.7	PB
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Scale Example: Data Transfer 

16Computing in HEP – Dirk Duellmann 03-Jul-2018

Global	transfer	rates	
increased	to	30…40	GB/s	

WLCG:	
Global	transfer	rates	
reach	30…40	GB/s	
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Speeding up simulation

Simulate a hard-scatter G4 event with usual configuration
Pre-mixing of pile-up events: Standard pile-up simulation of zero-hard-scatter events 
(e.g. single neutrinos). In the future this step should only require minimum bias 
events.
Digitise simulated hard-scatter event and overlay it on pre-mixed pile-up digits.
Re-use is the key!

MC-MC overlay

https://indico.cern.ch/event/587955/contributions/2937526/attachments/1678296/2695383/CHEP_Overlay.pdf

Tadej Novak,	ATLAS,	CHEP	2018
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Speeding up simulation

Close to nominal physics performance

MC-MC overlay

https://indico.cern.ch/event/587955/contributions/2937526/attachments/1678296/2695383/CHEP_Overlay.pdf

T.	Novak,	ATLAS,	CHEP	2018

Data-MC overlay is also been developed!
See Haas, ATLAS,  CHEP 2016
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A simple G4 
example
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CURRENT SOFTWARE: GEANT4

valgrind / gprof2dot / graphviz

http://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/ExampleB1.html

Valgrind/kCachegrind

Codebase	very	large	
and	non-homogenous
Very	deep	call	stack	
(IC	misses)	and	virtual	
table	structure
Hotspots	practically	
inexistent
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ALFA /Fair MQ
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