Low EMittance Muon Accelerator studies

P Raimondi For the LEMMA Team

Istituto Nazionale di Fisica Nucleare

Pisa, Sept 20 2018

Tonelli Guido	10	PI
Benato Lisa	15	PD
Bertolin Alessandro	5	PD
Checchia Paolo	10	PD
Lucchesi Donatella	30	PD
Lujan Paul	15	PD
Lupato Anna	10	PD
Morandin Mauro	5	PD
Rossin Roberto	10	PD
Sestini Lorenzo	30	PD
Zanetti Marco	25	PD
Gonella Franco	20	PD
Anulli Fabio	20	RM1
Collamati Francesco	40	RM1
Palumbo Luigi	20	RM1
Camattari Riccardo	30	FE
Guidi Vincenzo	10	FE
Vallazza Erik	50	TS
Antonelli Mario	20	LNF
Blanco Garcia Oscar	30	LNF
Guiducci Susanna	20	LNF
lafrati Matteo	100	LNF
Rotondo Marcello	20	LNF
Biagini Maria	20	LNF
Boscolo Manuela	60	LNF
Pellegrino Luigi	10	LNF

Low EMittance Muon Accelerator team

💳 CSN1 team

Additional national

M. Ricci (Uni. Marconi, INFN-LNF) A. Stella (LNF), G. Cavoto (La Sapienza), E. Bagli (INFN-Fe), M. Prest, M. Soldani, C. Brizzolari (Uni-Insubria&INFN), A. Lorenzon, S. Vanini, S. Ventura, D. Dattola(INFN-Uni. Padova), A. Wulzer (Uni. Pd & EPFL)

Additional international

- P. Raimondi, S. Liuzzo, N. Carmignani (ESRF)
- R. Di Nardo, P. Sievers, M. Calviani, S. Gilardoni (CERN)
- I. Chaikovska, R. Chehab (LAL-Orsay)
- L. Keller, T. Markiewicz (SLAC)

ARIES WP6: improving Accelerator PErformance and new Concepts task for muon collider

Task 6.6 Assessment of advanced muon-collider concepts without ionization cooling

Outline

1. Introduction: muon case, muon sources

- 2. Physics Opportunities
 - Very High Energy
 - Multi-TeV

3. Low emittance muon beam production concept: e⁺ on target

- Target options
- Positron Source
- Multipass scheme
- 4. First study of multi-TeV MC parameters

5. First design of the e⁺ ring

- Multiturn simulations
- First considerations about target thermo-mechanical stresses
- First considerations on e+ source

6. Experimental tests

- 45 GeV e+ beam
- 7. Conclusions

The strength of a μ -beam facility lies in its richness:

- Muon rare processes
- Neutrino physics
- Higgs factory
- Multi-TeV frontier

 μ -colliders can essentially do the HE program of e^+e^- colliders with added bonus (and some limitations)

Giudice

Muon based Colliders

- A μ⁺μ⁻ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μs (at rest)
- Best performances in terms of luminosity and power consumption
- Great potentiality if the technology proves its feasibility:
 - cooled muon source
 - fast acceleration
 - μ Collider
 - radiation Safety (muon decay in accelerator and detector)

Muon Colliders potential of extending leptons high energy frontier with high performance

Muon Source

Goals

- Neutrino Factories: Rate > $10^{14} \mu$ /sec within the acceptance of a μ ring
- Muon Collider: luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale ($\approx N_{\mu}^2 1/\epsilon_{\mu}$)

Options

• Tertiary production through **proton on target:** cooling needed, baseline for Fermilab design study production Rate > $10^{13}\mu$ /sec N_u = $2 \cdot 10^{12}$ /bunch

e⁺e⁻ annihilation: positron beam on target: very low emittance and no cooling needed, baseline for our proposal here production Rate ≈ 10¹¹ µ/sec N_µ ≈ 6·10⁹/bunch

by Gammas ($\gamma N \rightarrow \mu^+ \mu^- N$ **): GeV-scale Compton** γs not discussed here production Rate $\approx 5 \cdot 10^{10} \mu/\text{sec}$ $N_{\mu} \approx 10^6$ (Pulsed Linac) production Rate >10¹³ μ/sec $N_{\mu} \approx \text{few} \cdot 10^4$ (High Current ERL) see also: W. Barletta and A. M. Sessler NIM A 350 (1994) 36-44 ($e^-N \rightarrow \mu^+\mu^-e^-N$)

Muon source Comparison

	Physical process	Rate µ/s	normalized emittance [µm-rad]
e+ on target	e+e-→ μ+μ-	0.9x10 ¹¹	0.04
Protons on target	р N $\rightarrow \pi X$, kX $\rightarrow \mu$ X'	10 ¹³	25
Compton γ on target	$\gamma \ N \rightarrow \mu + \mu - N$	5x10 ¹⁰	2

Muon Accelerator Program (MAP) Muon based facilities and synergies

Mark

Palmer

Unique properties of muon beams (Nov 18,2015)

M. Palmer

÷

Muon Collider Parameters

Muon Collider Parameters						
			<u>Higgs</u>	Multi-TeV		eV
Tuesda Sta						Accounts for
			Production			Site Radiation
Paran	neter	Units	Operation			Mitigation
CoM E	Inergy	TeV	0.126	1.5	3.0	6.0
Avg. Lun	ninosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12
Beam Ener	rgy Spread	%	0.004	0.1	0.1	0.1
Higgs Produc	ction/10 ⁷ sec		13,500	37,500	200,000	820,000
Circumf	ference	km	0.3	2.5	4.5	6
No. c	of IPs		1	2	2	2
Repetiti	on Rate	Hz	15	15	12	6
β	*	cm 🖊	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25
No. muor	ns/bunch	1012	4	2	2	2
Norm. Trans.	Emittance, ε_{TN}	π mm-rad	0.2	0.025	0.025	0.025
Norm. Long. E	Emittance, ε _{ιν}	π mm-rad	1.5	70	70	70
Bunch Le	ength, σ_s	/ cm	6.3	1	0.5	0.2
Proton Dri	ver Power	MW	4	4	4	1.6
Wall Plu	g Power	MW	200	216	230	270
Exquisite Energy Resolution		Suc ⇔ seve	cess of adva eral ⊭ 10 ³² [anced coolir Rubbia prop	ng concepts bosal: 5⊵10 ³²]	
of Higgs Width					Frermila	

Low emittance μ beam source

from proton on target: p+target $\rightarrow \pi/K \rightarrow \mu$ typically $P_{\mu} \approx 100 \text{ MeV/c} (\pi, \text{ K rest frame})$ whatever is the boost P_{T} will stay in Lab frame \rightarrow very high emittance at production point \rightarrow cooling needed!

from direct µ pair production:

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} around the $\mu^+\mu^-$ threshold ($\sqrt{s} \approx 0.212 \text{GeV}$) in asymmetric collisions (to collect μ^+ and μ^-)

NIM A Reviewer: "A major advantage of this proposal is the lack of cooling of the muons.... the idea presented in this paper may truly revolutionise the design of muon colliders ... "

Advantages:

- **1.** Low emittance possible: θ_{μ} is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta_{\mu}$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

Disadvantages:

• Rate: much smaller cross section wrt protons (\approx mb) $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most Cross-section, muons beam divergence and energy spread as a function of the e+ beam energy

The value of sqrt(s) (*i.e.* E(e⁺) for atomic e⁻ in target) has to maximize the muons production and minimize the beam angular divergence and energy spread

Production contribution to μ beam emittance

The emittance contributions due to muon production angle: $\epsilon_{\mu} = x x'_{max}/12 = L (\theta_{\mu}^{max})^2/12$ $\Box \epsilon_{\mu}$ completely determined by L and s -by target thickness and c.o.m. energy

Criteria for target design

Number of $\mu^+\mu^-$ pairs produced per e⁺e⁻ interaction is given by

 $N(\mu^+\mu^-) = \sigma(e^+e \rightarrow \mu^+\mu^-) N(e^+) \rho(e^-)L$

N(e⁺) number of e⁺

 $\rho(e^{-})$ target electron density

L target length

To maximise $N(\mu^+\mu^-)$:

N(e⁺) max rate limit set by e⁺ source

ρ(e⁻)L max occurs for L or ρ values giving total e⁺ beam loss

- e⁻ dominated target: radiative Bhabha is the dominant e⁺ loss effect, giving a maximal $\mu^+\mu^-$ conversion efficiency $N(\mu^+\mu^-)/N(e^+) \approx \sigma(e^+e \longrightarrow \mu^+\mu^-)/\sigma_{rb} \approx 10^{-5}$
- standard target: Bremsstrahlung on nuclei and multiple scattering are the dominant effects, Xo and electron density will matter $N(\mu^+\mu^-)/N(e^+) \approx \sigma(e^+e \longrightarrow \mu^+\mu^-)/\sigma_{brem}$

Criteria for target design

Luminosity is proportional to $N_{\mu}^2 \ 1/\epsilon_{\mu}$

optimal target: minimizes μ emittance with highest μ rate

- Heavy materials, thin target
 - to minimize ε_{μ} : thin target ($\varepsilon_{\mu}\Box$ L) with high density ρ Copper: MS and $\mu^{+}\mu^{-}$ production give about same contribution to ε_{μ} BUT high e⁺ loss (Bremsstrahlung is dominant) so $\sigma(e^{+}loss) \approx \sigma(Brem+bhabha) \approx (Z+1)\sigma(Bhabha) \rightarrow$ $N(\mu^{+}\mu^{-})/N(e^{+}) \approx \sigma_{\mu}/[(Z+1)\sigma(Bhabha)] \approx 10^{-7}$
- Very light materials, thick target
 - maximize $\mu^+\mu^-$ conversion efficiency ≈ 10⁻⁵ (enters quad) → H₂ Even for liquid targets O(1m) needed → ϵ_{μ} □ L increase
- Not too heavy materials (Be, C)
 - Allow low ε_{μ} with small e⁺ loss $N(\mu^{+}\mu^{-})/N(e^{+}) \approx 10^{-6}$

not too heavy and thin in combination with stored positron beam to reduce requests on positron source

Low emittance μ beam production by positrons on target

<u>Goal:</u>

@T ≈ $10^{11} \mu/s$ Efficiency ≈ 10^{-7} (with Be 3mm)→ $10^{18} e^{+}/s$ needed @T → e^{+} stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture (+/-12%)] \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

Low emittance μ beam production by positrons on target

Low emittance μ beam production by positrons on target

Low emittance μ beam production by positrons on target

e+ ring parameter	unit	
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e⁺ bunch spacing = T _{rev} (AR)	ns	200
Beam current	mA	240
N(e⁺)/bunch	#	$3\cdot10^{11}$
U ₀	GeV	0.51
SR power	MW	120

to fast AR AMD T1 acceleration e^+ e⁺ Linac or Booster AR μ^+ e⁺ (not to scale)

e⁻gun∎

linac

(also 28 km is being studied as an option)

M. Boscolo, MAC, LNGS, 10 Oct. 2017

			LEMC-6TeV
	Parameter	Units	
b lev u collider	LUMINOSITY/IP	cm ⁻² s ⁻¹	5.09E+34
	Beam Energy	GeV	3000
duaft Dava va atava	Hourglass reduction factor		1.000
draft Parameters	Muon mass	GeV	0.10566
	Lifetime @ prod	sec	2.20E-06
no lattice yet	Lifetime	sec	0.06
,	c*tau @ prod	m	658.00
	c*tau	m	1.87E+07
	1/tau Circum former of	HZ	1.60E+01
$\mu^{+}\mu^{-}$ rate = 9 10 ⁺⁰ Hz [NIM A 807	Circumference	m T	6000
$\epsilon_{\rm N} = 40 \rm nm$	Bending Field Bonding radius	n I	10
if the clike of course	Magnetic rigidity	Tm	1000
IT: LHEC like e' source	Gamma Lorentz factor	• • • •	28392.96
with 25% mom. accept. e ⁺ ring	N turns before decay		3113 76
and a dominated by u production	β _x @ IP	m	0.0002
and ε dominated by μ production	$\beta_{\rm v} @ {\rm IP}$	m	0.0002
	Beta ratio		1.0
	Coupling (full current)	%	100
thanks to very small	Normalised Emittance x	m	4.00E-08
amittance (and lower beta*)	Emittance x	m	1.41E-12
ennitiance (and lower beta)	Emittance y	m	1.41E-12
comparable luminosity with	Emittance ratio		1.0
lower Nu/bunch	Bunch length (zero current)	mm	0.1
() lower background)	Bunch length (full current)	mm	0.1
$(\rightarrow 10 \text{ wer background})$	Beam current	mΔ	0.048
	Revolution frequency	Hz	5 00F+04
	Revolution period	s	2.00E-05
	Number of bunches	#	1
	N. Particle/bunch	#	6.00E+09
Of course, a design study	Number of IP	#	1.00
is needed to have a	σ _x @ IP	micron	1.68E-02
reliable estimate of	σ _y @ IP	micron	1.68E-02
	σ _{x'} @ IP	rad	8.39E-05
performances	σ _{y'} @ IP	rad	8.39E-05

Radiological hazard due to neutrinos from a muon collider

Colin Johnson, Gigi Rolandi and Marco Silari

e⁺ on target option 9 10¹⁰ μ /s

Low emittance 45 GeV positron ring

100 s [m] 120

140

160

180

0

20

40

60

80

circumference 6.3 km: 197 m x 32 cells (no injection section yet) Table e+ ring parameters

Units	
GeV	45
m	6300
%	1
m	5.73×10^{-9}
m	5.73×10^{-11}
mm	3
mA	240
MHz	500
GV	1.15
#	10508
#	100
#	3.15×10^{11}
	0.068
turns	175
turns	87.5
GeV	0.511
	1.1×10^{-4}
%	± 7.2
dE/E	1×10^{-3}
MW	120
	Units GeV m m m mA MHz GV # # # turns turns GeV % dE/E MW

Physical aperture=5 cm constant

no errors

Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our studies

Multi-turn simulations

- 1. Initial 6D distribution from the equilibrium emittances
- 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. tracking through the target (with Geant4beamline and FLUKA and GEANT4)
- 4. back to tracking code

At each pass through the muon target the e+ beam

- gets an angular kick due to the multiple Coulomb scattering, so at each pass changes e⁺ beam divergence and size, resulting in an emittance increase.
- undergoes bremsstrahlung energy loss: to minimize the beam degradation due to this effect, D_x=0 at target
- in addition there is natural radiation damping (it prevents an indefinite beam growth)

e+ lifetime with Be target

2-3% e+ losses happen in the first turn

Evolution of e+ beam size and divergence

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by **bremsstrahlung**) and transverse (dominated by **multiple scattering**) phase space due to target; in **blue** the combination of both effects (realistic target)

Some bremsstrahlung contribution due to residual dispersion at target multiple scattering contribution in line with expectation: $\sigma_{MS} = \frac{1}{2} \sqrt{n_D} \sigma'_{MS} \beta$ one pass contribution due to the target: $\sigma'_{MS} = 25 \mu rad$

 $n_{\rm D}$ number of damping turns

Going to lighter targets for μ production

Be Beryllium

LLi Liquid Lithium, might be a good option (Proposed/tested for targets for n production) LHe Liquid Helium

e = muon emittance at production [10⁻⁹m-rad] E(e⁺)=45 GeV

Look to light liquid targets to reduce problems of thermo-mechanical stresses

Target: thermo-mechanical stresses considerations

Beam size as small as possible (matching various emittance contribution), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise
 move target (for free with liquid jet) and
 e⁺ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise

Be, C

Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μm, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot [Kavin Ammigan 6th High Power Targetry Workshop]

- Liquid target: better wrt power removal
 - Li, difficult to handle lighter materials, like H, He

LLi jets examples from neutron production, Tokamak divertor

(200 kW beam power removal seems feasible), minimum beam size to be understood

Conventional options for μ target

- Aim at bunch (3x10¹¹ e⁺) transverse size on the 10 μm scale: rescaled from test at HiRadMat (5x10¹³p on 100μm) with
 Be-based targets and C-based (HL-LHC) [F. Maciariello *et al.*, IPAC2016]
- No bunch pileup Fast rotating wheel (20000 rpm)
- Power removal by radiation cooling (see for instance PSI muon beam upgrade project HiMB) [A. Knecht, NuFact17]]
- Need detailed simulation of thermo-mechanical stresses dynamics
 - Start using FLUKA + Ansys Autodyn (collaboration with CERN EN-STI)
- Experimental tests:
 - FACET-II available from 2019
 - 10¹¹ e-/bunch, 10 μ m spot size, 100 Hz
 - **DAFNE** available from 2020, see later

μ Accumulator Rings considerations

isochronous optics with high momentum acceptance ($\delta \gtrsim 10\%$) optics to be designed

Luminosity of $\mu^+\mu^-$ Collider vs e⁺ beam energy

Optimal working point for $\varepsilon(e^+) \cong \varepsilon(MS) \cong \varepsilon(rad) \cong \varepsilon(prod) \cong \varepsilon(AR)$ and sustainable beam spot on target $\varepsilon(prod)$ and μ intensity \propto positron beam energy:

Test @CERN

Experiments in H4:

- 45 GeV e⁺ on target, beam spot 2 cm, mrad divergence **High intensity** (up to 5 x 10⁶ e+/spill) with 6 cm Be target (spill ~15s) goal: measure muon production rate and muons kinematic properties **Low intensity**
- measure beam degradation (emittance energy spectrum) measure produced photons flux and spectrum
- 1 week assigned out of 2 requested in 2017
 Priority to High intensity (had 2 days at ≈ 10⁶ e⁺ /spill)
- 1-(2) weeks in 2018 for:
 - Complete original program of the 2017 experiment (need 2 weeks for high and low intensity runs)
 - Attempt muon production on crystals

Experimental set-up

[cm] 120.8 70.0 2941 29.0 **∐ ⁺(left - x < 0)** u-chamber Fe C4 (mod 07) scintillato 21.5 ECAL C2 (mod 05) Τ1 Т3 Pb Bending (mod 01) (mod 03) Fe Be 14.85 magnet target scintillator 5.1 Pb tungstate 3 e+ C1 29 804 \$ beam 4 (mod 04) (mod 02) scintillato C3 (mod 06) 40 glass (right - x > 0)4 C5 (mod 08) Cherenkov å calorimeter . • 516.8 61.0 574.3 411.0 213.0 995.0 10 11.5 ECAL = sampling EMC T = Si Telescope 0 Pb tungstanate = CMS like EMC C = Si chambers Pb glass = lead glass EMC

EXPERIMENTAL SETUP

Candidates events in the μ chambers

Conclusion

- The production of muons starting from e⁺ beam on target is a very attractive possibility for a muon collider
- Key challenges:
 - Low emittance and high momentum acceptance 45 GeV e⁺ ring
 - O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production
 - High rate positron source
 - High momentum acceptance muon accumulator rings
- First design of low emittance e⁺ ring with preliminary studies

of beam dynamics

Many issues are being addressed:

target material & characteristics e⁺ accelerator complex muon accumulator rings design luminosity parameters optimization

We will continue to optimize all the parameters, lattices, targets, etc. in order to assess the ultimate performances of a muon collider based on this concept

Exploring the potential for a Low Emittance Muon Collider

some <u>References:</u>

- M. Boscolo et al., "Studies of a scheme for low emittance muon beam production from positrons on target", IPAC17 (2017)
- M.Antonelli, "Very Low Emittance Muon Beam using Positron Beam on Target", ICHEP (2016)
- M.Antonelli et al., "Very Low Emittance Muon Beam using Positron Beam on Target", IPAC (2016)
- M. Antonelli, "Performance estimate of a FCC-ee-based muon collider", FCC-WEEK 2016
- M. Antonelli, "Low-emittance muon collider from positrons on target", FCC-WEEK 2016
- M. Antonelli, M. Boscolo, R. Di Nardo, P. Raimondi, "Novel proposal for a low emittance muon beam using positron beam on target", NIM A 807 101-107 (2016)
- P. Raimondi, *"Exploring the potential for a Low Emittance Muon Collider"*, in **Discussion of the scientific potential of muon beams workshop**, CERN, Nov. 18th 2015
- M. Antonelli, **Presentation Snowmass 2013**, Minneapolis (USA) July 2013, [M. Antonelli and P. Raimondi, Snowmass Report (2013) also INFN-13-22/LNF Note

Also investigated by SLAC team:

L. Keller, J. P. Delahaye, T. Markiewicz, U. Wienands:

- *"Luminosity Estimate in a Multi-TeV Muon Collider using* $e^+e^- \rightarrow \mu^+\mu^$ *as the Muon Source",* MAP 2014 Spring workshop, Fermilab (USA) May '14
- Advanced Accelerator Concepts Workshop, San Jose (USA), July '14

e+ ring with target: beam evolution in the 6D phase space

e+ beam with 3 mm Be target along the ring (not at IR center in this example)