153rd MPP meeting

Oxidation behavior of graphite in air at high temperature

A. Perillo-Marcone, M. Calviani (EN-STI-TCD)

In collaboration with EN/MME

Oxidation of graphite at high temperature over milliseconds Performed at CERN by EN/MME

Methodology

- Impacting samples with laser beam in air
- Temperature reached ~900-1300 °C
- Exposition time ~10 ms
- Materials
 - Sigrafine (high density graphite in TDE)
 - Sigraflex (low density graphite in TDE)
- Examine changes in:
 - Microstructure
 - Chemical composition
 - Phase

Results

Laser Impact – Conclusions

- No clear indication of oxidation
- Observed damage generated by thermomechanical stresses (not representative of stresses from proton beams)
- Highly pessimistic conditions in comparison to TDE:
 - Exposition times ~10ms (instead of us for TDE)
 - Atmosphere 100% air

Oxidation in air furnace Performed at CERN by EN/MME

Scope

- Remove thermomechanical stresses
- Overly conservative exposition time
- Exposition to 100% air atmosphere

Methodology

- Preheating air furnace to >1100 °C
- Insertion of samples in furnace (temperature drop to ~850 °C)
- Samples maintained in furnace during 100s
- Microscopy and chemical analysis of samples

Results

- No apparent change in microstructure
- Amount of O and Si keep constant before and after the study
- Material does not seem to be affected by oxidation
- Further test in oven at 1100°C under way

Oxidation at 2500 °C – 10s Performed by SGL

Methodology

- Five samples of Sigrafine and Sigrafoil tested separately
- Heating up in argon to 2500 °C
- Injection of air in furnace
- Exposition time ~10s

Tested samples

Sigraflex

Sigrafine

Results

After exposition to air at 2500 °C in air during 10s, there is a mass loss of:

- 0.66% in Sigrafine
- 0.99% in Sigraflex

Conclusions

Attack limited to surface

- Thermal energy too high for O₂ to penetrate/diffuse in the bulk
- Findings in line with previous studies found in literature, limited to 1500 °C
- Low temperature oxidation not located on surface → voids would appear in the bulk (longer times required for this)

Oxidation at 1200 °C – 100s, 1000s Performed by SGL

Methodology

- Only samples of Sigrafine investigated so far
- Furnace heated up to 1200 °C, in argon atmosphere
- Switch to air during 100/1000 s
- Switch back to argon
- Cool-down in argon
- Micro scale to measure weight
- Physical and mechanical properties measured before/after test

- Strong reaction observed after the air meets the graphite surface
- In all three cases, a pattern of the air flow around the sample observed
- After 1000s, holes observed on the surface
- Mass loss remains limited: ~1% for 100s, ~4% for 1000s
- No changes in density, electrical resistivity or dynamic modulus

General conclusions

- As well known, graphite is sensitive to oxidation at high temperature
- Oxidation highly dependent on temperature and exposition time
- At significantly high T (>1500°C) oxidation limited to surface, for exposition times of 10s
- Greater mass loss observed for longer exposition times, but still attack limited to surface
- All tests several times more pessimistic that actual conditions in TDE
- These studies allow to exclude the possibility of graphite igniting at high temperature in the presence of air in the TDE scenarios
- Comprehensive report including all these studies being written. Expected to be released by end of 2017/beginning 2018

Back-up slides

Laser heating – CERN/EN-MME

Sigraflex I (SI)	Sigraflex II (SII)	Sigrafine
L20010	L25012 Anisotropic	R7300 P500 Isotropic
Anisotropic Ø 10 mm x 2 mm	Ø 10 mm x 2.5 mm	10 mm x 10 mm x 12 mm
The second se		Jogram.

Material supplied by SGL

Inspection procedure

- Microscopy observation (OM* and SEM*)
 surface aspect
 - Digital microscope KEYENCE VHX 1000
 - OM "ZEISS Axio Imager" with "ZenCore" software
 - SEM, field emission gun FEG Sigma (ZEISS)

Chemical Analysis → chemical composition

 50 mm2 X Max Energy dispersive X-ray spectroscopy EDS detector (Oxford), INCA software

Phase Analysis → change in the crystalline phases after the laser impact

• X-ray diffraction (XRD), $\theta/2\theta$ or grazing angle

On sample as received and after impact

OM and SEM – Sigraflex

10 ms (2 ms/div)

LVD = Least Visual damage MVD = Most Visual damage

1000 µm

OM and SEM – Sigraflex

Laura, Gomez Fereira

EN

Mag = 50 X Date :14 Dec 2016

0.65 mm²

100 pr

BHT = 20 00 KV WD = 12.5 mm Signel A = 5 Γ2

Semple ID:

Latin: Genez Fereira

Nog = 160 X Date :14 Dec 301 S

:00 µn

0.4 mm²

EHT = 20.00 W

W.J = 12.6 mm

Sgna A = SE

Sample 101

EDS – Sigraflex as received

Presence and quatification of O cannot be 100% ensured

Peak of C, O, Si Similar Chemical Analysis One chosen as reference

Examples:

Σ peak	E (keV)	EI.
C + C	0.54	0
C x 3	0.81	-
C + Si	2.02	Р

EDS – Sigraflex after impact

Higher amount of O and Si

Common features in all Sigraflex samples

OM – Sigrafine after impact

No laser impact visible with OM

SEM – Sigrafine after impact

Presence of a macro-voids No changes of Microstructure

Furnace heating – CERN/EN-MME

SEM – Sigraflex

Discontinuities

Decohesion

Flake like morphology

No apparent change in Microstructure

EDS – Sigraflex

No changes in Si and O content

Pollution: AI, Si, P

SEM – Sigrafine

Production marks

Roughness

Irregular

No apparent change in Microstructure

EDS – Sigrafine

Same amount of O

Summary of observations

Laser Impact

Microstructure:

- Embossed surface and Expansion of graphite -> Swelling
- Degradation of material → Evaporation of material

Chemical Analysis:

- Higher amount of O and Si
- Presence of pollution → probably due to manipulation
- Phase Analysis: no apparent change

Oven Studies

Microstrucure:

• No apparent change in microstructure

Chemical Analysis:

 Amount of O and Si keeps constant before and after the study

Further study on-going in oven at 1100°C

