Temperatures in the TDE core for 2017 beams

M. Frankl, A. Lechner (EN/STI) with input from C. Wiesner, C. Schwick, J. Boyd

153rd SPS and LHC MPP meeting September 29^{th} , 2017

< □ > < 同 > <

September 29th, 2017

1 / 14

M. Frankl (153rd SPS and LHC MPP meeting)

1 Beam Parameters and Filling Schemes

Temperature Estimates

3 Summary and Conclusions

4 Backup

э

< □ > < □ > < □ > < □ > < □ >

Beam Parameters and Filling Schemes

• Temperature studies for the following filling schemes:

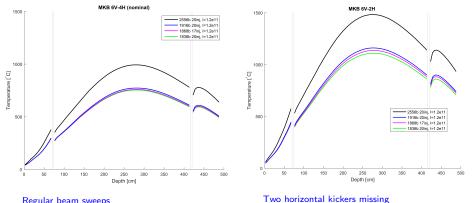
Filling scheme	BCMS	8b4e
25ns_2556b_2544_2215_2332_144bpi_20inj	Yes	No
25ns_1916b_1909_1042_1560_112bpi_20i8b4e	No	Yes
25ns_1868b_1866_1089_1749_128bpi_17inj_800ns_bs200ns_8b4e	Yes	Yes
25ns_1836b_1824_1052_1688_96bpi_20inj_800ns_bs200ns_8b4e	Yes	Yes

- $\rightarrow\,$ Filling scheme with 2556 bunches achieved in June 2017
- \rightarrow 1916 bunch scheme successfully deployed in August and September 2017 due to 16L2 issues
- \rightarrow 1868b- and 1836b-schemes possible options for future operation
- For the sake of simplicity, all simulations carried out with BCMS emittance of $1.4 \,\mu$ m rad (peak temperatures in the TDE show only weak dependency on transverse bunch emittance)
- All calculations assuming a bunch intensity of 1.2 x 10¹¹ protons

< ロ > < 同 > < 回 > < 回 >

Beam Parameters and Filling Schemes

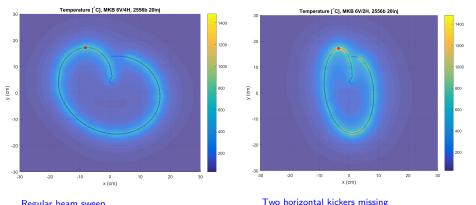
2 Temperature Estimates


3 Summary and Conclusions

< □ > < □ > < □ > < □ > < □ >

Longitudinal Distribution of Peak Temperature

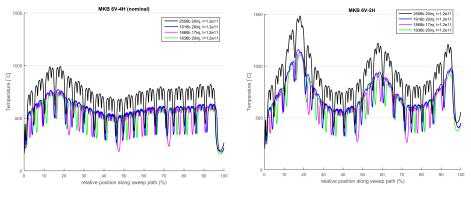
- Peak temperatures calculated in the low-density graphite segments and the two adjacent high-density blocks for two cases:
 - Regular beam sweep (MKB 6V-4H)
 - Two horizontal dilution kickers providing no kick (MKB 6V-2H) 0
- Longitudinal distribution of peak temperatures for different filling schemes:



Regular beam sweeps

< 口 > < 同 >

2556 bunches: Transverse temperature distribution


- Peak temperature occurs at a depth of around 2.8 m •
- The location of the peak temperature coincides roughly with the lowest sweep velocity
- This occurs after about 15 μ sec with the vertical dilution changing direction
- Transversal temperature distribution at depth of 280 cm for the filling scheme with 2556 bunches:

Regular beam sweep

Temperatures along Sweep Paths

 Temperature distributions along sweep paths (at 2.8 m depth) for the different filling schemes:

Two horizontal kickers missing

Regular beam sweeps

Image: A matched black

Maximum Temperatures - Overview

	Regular sweep		Two horizontal dilution kickers not firing	
Number of bunches	Max. temperature in low-density core	Max. temperature at surface in contact with N2	Max. temperature in low-density core	Max. temperature at surface in contact with N2
2556	990 °C	780 °C	1480 °C	1140 °C
1916 (8b4e)	770 °C	610 °C	1160 °C	900 °C
1868 (8b4e)	760 °C	600 °C	1140 °C	880 °C
1836 (8b4e)	750 °C	600 °C	1110 °C	860 °C

- The maximum temperature at a graphite surface in direct contact with nitrogen atmosphere is ~ 20 % lower than the peak temperature inside the low-density block
- Temperatures for 8b4e-based schemes are similar, for the 2556 bunch scheme they are $\sim 30\,\%$ higher

< ロ > < 同 > < 回 > < 回 >

Beam Parameters and Filling Schemes

2 Temperature Estimates

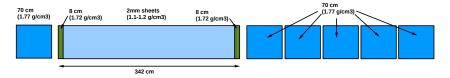
3 Summary and Conclusions

< □ > < □ > < □ > < □ > < □ >

Summary & Conclusions

- For regular sweeps the maximum temperature in the graphitic LHC dump core is estimated to be
 - around 1000°C for a 2556 bunch filling scheme
 - $\circ~$ less than $800^\circ C$ for 8b4e schemes containing 1916, 1868 or 1836 bunches, respectively.
- In case two horizontal dilution kickers provide no kick, the temperatures rise to
 - about 1500°C for the a 2556 bunch filling scheme and
 - $\circ~1100\text{-}1200^\circ\text{C}$ for the 8b4e-based schemes
- Accuracy of temperature estimates
 - $\circ~$ Error of energy deposition calculations estimated as $10\,\%$
 - Error due to assumed material properties (density, specific heat) 10-15 %

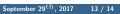
Beam Parameters and Filling Schemes


2 Temperature Estimates

3 Summary and Conclusions

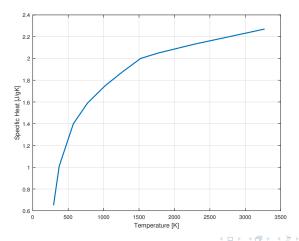
・ロト ・ 戸 ト ・ ヨ ト ・

TDE Graphite core


- LHC dump core consisting of high- and low-density graphite absorbers
- Diameter of 70 cm and a total absorber length of ${\sim}7.6\,\text{m}$
- Low-density graphite absorber made of 2 mm thick, flexible graphite sheets
- Other absorber blocks consist of polycrystalline graphite
- Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket
- Presence of outgassing groves, also providing passage for the N_2 along the core

< □ > < 同 > <

Low-density flexible graphite sheets



Specific Heat

- Calculation of a temperature increase based on the obtained distribution of the energy deposition
- Important: Taking into account the temperature dependency of the specific heat of graphite

