Energy calibration for W physics

Paolo Azzurri – INFN Pisa FCC-ee polarization workshop October 18th 2017

M_w [GeV]

At LEP2 Vs=161 GeV σ =4pb ε=0.75, σ_B =300 fb p=0.9 : εp≈0.68 (@161) → m_W=80.40±0.21 GeV with 11/pb @E_{CM}=161 GeV

$$\Delta m_{W} = \left(\frac{d\sigma}{dm_{W}}\right)^{-1} \Delta \sigma$$

m_w from σ_{ww} : sensitivity vs E_{CM}

σ_{WW} with YFSWW3 <u>1.18</u> mw=80.385 GeV

Vep with fixed : ϵ =0.75 and $\sigma_{\rm B}$ =0.3pb

statistical precision with L = $11/\text{pb} \rightarrow \Delta \text{mw} \approx 350 \text{MeV}$ with L= 8/ab $\rightarrow \Delta mw \approx 0.40 \text{ MeV}$

need syst control on :

- $\Delta \varepsilon / \varepsilon$, $\Delta L / L < 10^{-4}$
- $\Delta \sigma_{\rm B} < 0.7 \, {\rm fb} \, (2 \, {\rm 10^{-3}})$

and ΔE(beam)<0.40 MeV (5x10⁻⁶)

WW threshold ΔM_W

$$\sigma = \left(\frac{N}{L} - \sigma_B\right) \frac{1}{\varepsilon}$$

$$\Delta m_W(stat) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{L}} \frac{1}{\sqrt{\varepsilon p}}$$

$$\Delta \sigma_{WW} = \frac{\Delta \sigma_B}{\varepsilon}$$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\Delta\sigma_B}{\varepsilon}$$

$$\Delta \sigma_{WW} = \sigma \left(\frac{\Delta \varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L} \right)$$

$$\Delta m_W(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

$$\Delta m_W(E) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E$$

"FCCee detector requirements" 23/11/2016

 dM_W/dE_{CM}

Γ_W from σ_{WW}

Measure σ ww in two energy points E_1 , E_2 with a fraction f of lumi in E_1

 \rightarrow determine both m_w & Γ_w

Determine f, E_1 , E_2 such to mimimise ($\Delta\Gamma_W$, Δm_W) with some target

Evaluate loss of Δm_W precision in the single parameter (m_W) determination wrt scenario of running only at an optimal E₀=161 point

dσ_{ww}/dΓ_w =0 at E_{CM}~**162.3 GeV** ~2m_w + 1.5 GeV

 $m_W \& \Gamma_W$ from σ_{WW}

 Δm_w , $\Delta \Gamma_w$: error on W mass and width from fitting both rom fitting only m_w

min $\Delta m_w + \Delta \Gamma_w$

with
$$E_1 = 157.1 \text{ GeV}$$
 $E_2 = 162.3 \text{ GeV}$ $f = 0.4$
 $\Delta m_w = 0.62 \Delta \Gamma_w = 1.5 \Delta m_w = 0.56 \text{ (MeV)}$

→∆α_s≈(3 π/2)∆Γ/Γ≈ 0.003

with half-integer spin tunes

limiting data taking points to E_{CM} = (2n+1)*0.4406486 GeV a(WW) (pb) m_w=80.385 GeV Γ_w=2.085 GeV m_w=79.385-81.835 GeV, Γ_w=2.085 GeV m_w=80.385 GeV Γ_w=1.085-3.085 GeV 164 E_{CM} (GeV) 162 156 158 160 min $\Delta m_w + \Delta \Gamma_w$ with E₁=157.3 GeV E₂=162.6 GeV f=0.4 $\Delta m_{W} = 0.65 \Delta \Gamma_{W} = 1.6 \Delta m_{W} = 0.60$ (MeV)

~10% loss of stat precision

GeV/pb) {GeV/pb^{1/2}} {GeV] [dmw /doww] oww (GeV) $[dm_{W}/d\sigma_{WW}]\sqrt{\sigma_{WW}/\varepsilon}\,\rho\,\big(\,GeV/pb^{1/2}$ Γdm_w /dσ_{ww} √σ_{ww} (GeV/pb^{1/} Γdm_w /dσ_{ww} (GeV/pb) 0.5 $2m_w$ 163 164 E_{CM} (GeV) 156 157 158 159 160 161 162 m_w=80.385 GeV Γ_w=2.085 GeV GeV/pb) {GeV/pb^{1/2}} {GeV} [dF_w /d**¢**_{ww}]σ_{ww} (GeV) $d\Gamma_w / d\phi_{ww} \sqrt{\sigma_w / \epsilon p} (GeV/pb^{1/2})$ $\left[d\Gamma_{W} / d\sigma_{WW} \right] \sqrt{\sigma_{WW}} \left(\text{GeV} / \text{pb}^{1/2} \right)$ [dF_w /de_{ww}] (GeV/pb) 2m/w 0Ĺ 161 162 Е_{см} (GeV) 155 156 157 158 159 160

mw=80.385 GeV

acc & bkg control

2-fermion : $\tau\tau$, qq 4-fermion : $\gamma\gamma \rightarrow \tau\tau$, llvv, Zee, Wev

some 4f bkg is identical to the signal final state → CC03-4f interferences

measure directly the **backgrounds** with very different S/B levels **at different E_{см} points**

efficiency purity bkg decay [LEP1996] **50fb** $(\tau\tau,\gamma\gamma \rightarrow \tau\tau, Z\gamma^* \rightarrow \nu\nu II)$ |v|v70-80% 80-90% **30fb** (qq, Zee, Zγ^{*}) **-10fb** (Wev) 85% ~90% evqq 90% ~95% **10fb** (Ζγ^{*},qq) μνqq 50% 80-85% **50fb** (qq, Zγ^{*}) τναα 90% ~90% ~**200fb** (qq (qqqq,qqgg)) qqqq

concern is mostly on the four-jet background

measure forward electrons (\theta \ge 0.1 \text{ rad}) for Zee Wev : determine forward pole $d\sigma/d\theta$ and WW interference effects

acceptance down to **θ=0.1** [cosθ= 0.995] would also cover forward jets

limiting **correlated** systs can cancel out taking data at more E_{CM} points where $\left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dm_W}\right)^{-1} \sigma \left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \sigma$ differential factors are equal

 $m_W \& \Gamma_W$ from σ_{WW}

optimal E points with limiting **correlated** systs

FCC-ee polarization workshop 18/10/17

reco mass of the W boson

full $m_{\rm W}$ reco with kinematic fit. main ingredients :

E_{CM} – jet/lepton angles – (jet boost)

$$M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)}$$

ALEPH Eur.Phys.J.C47:309 (2006) : 683 /pb ~10k WW events ignoring low energy particles in the qqqq channel $m_W = 80440 \pm 43(stat.) \pm 24(syst.) \pm 9(FSI) \pm 9(LEP)$ MeV $\Gamma_W = 2140 \pm 90(stat.) \pm 45(syst.) \pm 46(FSI) \pm 7(LEP)$ MeV

reco mass of the W boson

8/ab@160GeV + 5/ab@240GeV

→ 30M+ 80M W-pairs

 $\rightarrow \Delta m_w$ (stat)= 0.5 MeV

→ Δm_W (syst) ≤ 1 MeV ?

WW events produced near threshold also carry (reduced) kin information on m_w

Is ΔE_{beam} <1MeV at E_{CM} =240 GeV possible ?

With Zy events ? ΔE_{beam} ~15MeV(stat) @LEP

in combining the semileptonic channels. $\Delta m_{\rm W} ~({\rm MeV}/c^2)$ $\Delta \Gamma_{\rm W}$ (MeV) Source $e\nu q\bar{q}$ $\ell \nu q \bar{q}$ $e\nu q\bar{q}$ $\mu\nu q\bar{q}$ $\tau \nu q \bar{q}$ $\ell \nu q \bar{q}$ $\mu\nu q\bar{q}$ $\tau \nu q \bar{q}$ $e + \mu$ momentum $e + \mu$ momentum resoln Jet energy scale/linearity Jet energy resoln $\mathbf{2}$ $\mathbf{5}$ $\mathbf{2}$ Jet angle Jet angle resoln $\mathbf{2}$ Jet boost Fragmentation Radiative corrections $\mathbf{2}$ LEP energy Calibration ($e\nu q\bar{q}$ only) --**Ref MC Statistics** $\mathbf{5}$ $\mathbf{2}$ **Bkgnd** contamination

Table 9: Summary of the systematic errors on m_W and Γ_W in the standard analysis averaged over

183-209 GeV for all semileptonic channels. The column labelled $\ell \nu q \bar{q}$ lists the uncertainties in m_W use

lepton and jet uncertainties from (Z) calibration data

FCC-ee polarization workshop 18/10/17

without TGCs σ_{WW} +40% @157GeV +25%@162GeV

while $\Delta \sigma / \sigma \approx 0.5 \ 10^{-3}$

LEP2 limts : κ , λ < 2-6 10⁻²

Conclusions

- The WW threshold σ lineshape is a great opportunity to measure both m_W and Γ_W at the (sub)-MeV level with FCCee
 - optimal points to take data are $\sqrt{s}=2m_w+1.5$ GeV (*\Gamma***-insensitive**) and $\sqrt{s}=2mw-2-3$ GeV (-*\Gamma*-off shell)
 - limiting data taking ECM points to half-integer spin tunes will bring a very limited degradation to the optimal stat sensitivity.
- Direct m_w reconstruction would also necessitate E_{beam} at the MeV level
 - making use of radiative Z-returns events can provide precise E_{beam} constraints (leading to an effective m_w/m_z determination)
 - we can probably make use also of W-pairs collected near threshold to perform a direct reconstruction m_w measurement

Work in progress by Marina Beguin, stay tuned

Many other W-physics topics (W BRs, TGCs ...) should not have stringent E_{CM} requirements

 $m_W \& \Gamma_W$ from σ_{WW}

Uncertainty propagation

$$\begin{cases} \Delta \sigma_1 = a_1 \Delta m + b_1 \Delta \Gamma & a_1 = \frac{d\sigma_1}{dm} & b_1 = \frac{d\sigma_1}{d\Gamma} \\ \Delta \sigma_2 = a_2 \Delta m + b_2 \Delta \Gamma & a_2 = \frac{d\sigma_2}{dm} & b_2 = \frac{d\sigma_2}{d\Gamma} \end{cases}$$

$$\Delta m = -\frac{b_2 \Delta \sigma_1 - b_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2} \qquad \Delta \Gamma = \frac{a_2 \Delta \sigma_1 - a_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2}$$

 $\Delta m, \Delta \Gamma$ linear correlation with uncorrelated $\Delta \sigma_1, \Delta \sigma_2$

$$r = -\frac{1}{\Delta m \Delta \Gamma} \frac{a_2 b_2 \Delta \sigma_1^2 + a_1 b_1 \Delta \sigma_2^2}{\left(a_2 b_1 - a_1 b_2\right)^2}$$

FCC-ee polarization workshop 18/10/17