Spin Simulations Using the Bmad Toolkit

David Sagan
Cornell Laboratory for Accelerator-Based Sciences and Education
In the Beginning…

Brief History:

• Bmad is a **software toolkit** for the simulation of charged particles and X-rays.
• Born at Cornell in mid 1990’s
• Started life as modest project: Just wanted to calculate Twiss functions and closed orbits.
• Initially Bmad used a subset of the MAD lattice syntax. Hence the name: “Baby MAD” or “Bmad” for short.

Over the years Bmad had evolved…
And Baby Grows Up...

Currently:
 • ~100,000 lines of code
 • ~1,000 routines

And it can do much more:
 • Lattice design
 • X-ray simulations
 • Spin tracking
 • Wakefields and HOMs
 • Beam breakup simulations in ERLs
 • Intra-beam scattering (IBS) simulations
 • Coherent Synchrotron Radiation (CSR)
 • Touschek Simulations
 • Frequency map analysis
 • Dark current tracking
 • Etc., etc.
Overview

- Written in Fortran 2008.
- Object oriented from the ground up.

  ```fortran
  type (lat_struct) lat
  call bmad_parser ('lat.bmad', lat)
  ```
- Has structure translation code for interfacing with C++.
- With certain restrictions, Bmad can be run multi-threaded.
- Lattice files use a MAD like syntax.
- Well documented (Manual is ~500 pages).
- Open Source: http://www.lepp.cornell.edu/~dcs/bmad/
Advantages of a toolkit:

• Cuts down on the time needed to develop programs.
• Cuts down on programming errors (via code reuse).
• Provides a simple mechanism for lattice function calculations from within control system programs.
• Standardizes sharing of lattice information between programs.
Bmad Ecosystem

Due to its flexibility, Bmad has been used in a number of programs including:

- **Tao**: General purpose design and simulation.
- **Synrad3d**: 3D tracking of synch photons, including reflections, within the beam chamber.
- **Cesrv**: On-line data taking, simulation, and machine correction for CESR.
- **dark_current_tracker**: Dark current electron simulation.
- **freq_map**: Frequency map analysis.
- **ibs_sim**: Analytic intra-beam scattering (IBS) calculation.
- **touschek_track**: Tracking of Touschek particles.
- **etc...**

Code reuse: Modules developed for one program can, via Bmad, be used in other programs.
Problem: Bmad is not a program so it cannot be used “out of the box.” for simple calculations.

Solution: Develop Tao - a general purpose simulation & design program (like MAD) with
- Twiss and orbit calculations.
- Nonlinear optimization.
- Spin tracking.
- Etc.

Additionally: Tao’s object oriented coding makes it relatively easy to extend it.
- For example: Can add custom tracking code to enable Tao to handle new depolarization effects.

Tao with Bmad gives the flexibility of a library with the convenience of a program.
Spin Tracking

- Bmad can track a particle’s spin including EDM and fringe fields.
- Bmad can track the orbit & spin of a particle through arbitrary fields.
- Bmad can produce transfer maps which include spin.

Phase Space Map

<table>
<thead>
<tr>
<th>Out</th>
<th>Coef</th>
<th>Exponents</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>-0.600000000000</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1:</td>
<td>1.000000000000</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>1:</td>
<td>0.145000000000</td>
<td>2 0 0 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>2:</td>
<td>-0.185000000000</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2:</td>
<td>1.300000000000</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>2:</td>
<td>3.800000000000</td>
<td>2 0 0 0 0 1</td>
<td>3</td>
</tr>
<tr>
<td>3:</td>
<td>1.000000000000</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>3:</td>
<td>1.000000000000</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>3:</td>
<td>-11.138187077310</td>
<td>1 0 1 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>4:</td>
<td>1.000000000000</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>5:</td>
<td>0.000000000000</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>5:</td>
<td>0.000001480008</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>5:</td>
<td>1.000000000000</td>
<td>0 0 0 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>5:</td>
<td>0.000000000000</td>
<td>0 0 0 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>5:</td>
<td>0.000000000000</td>
<td>2 0 0 0 0 1</td>
<td>2</td>
</tr>
<tr>
<td>6:</td>
<td>1.000000000000</td>
<td>0 0 0 0 0 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Spin Map

<table>
<thead>
<tr>
<th>Out</th>
<th>Coef_Sx</th>
<th>Coef_Sy</th>
<th>Coef_Sz</th>
<th>Exponents</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sx:</td>
<td>0.99757886</td>
<td>-0.02372254</td>
<td>-0.06537314</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Sx:</td>
<td>0.04802411</td>
<td>0.22401654</td>
<td>0.65154583</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sx:</td>
<td>0.07391383</td>
<td>3.77338795</td>
<td>-0.24137562</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sx:</td>
<td>0.00008802</td>
<td>-0.1758473</td>
<td>0.06515458</td>
<td>0 0 1 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sx:</td>
<td>0.01148244</td>
<td>-0.20322945</td>
<td>0.24896717</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sx:</td>
<td>-0.00457076</td>
<td>-0.22322148</td>
<td>0.01125358</td>
<td>0 0 0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>Sy:</td>
<td>-0.02460178</td>
<td>0.75885811</td>
<td>-0.65079114</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Sy:</td>
<td>0.25039365</td>
<td>-0.04801091</td>
<td>-0.06544895</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sy:</td>
<td>-3.02631629</td>
<td>-0.07739091</td>
<td>0.02416143</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sy:</td>
<td>0.17584738</td>
<td>0.00008802</td>
<td>-0.00654489</td>
<td>0 0 1 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sy:</td>
<td>0.47579058</td>
<td>1.59361755</td>
<td>1.84025908</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sy:</td>
<td>0.13046158</td>
<td>-0.46155512</td>
<td>0.54313051</td>
<td>0 0 0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>Sz:</td>
<td>0.06504736</td>
<td>0.65082378</td>
<td>0.75643719</td>
<td>0 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>Sz:</td>
<td>-0.64180483</td>
<td>0.64145956</td>
<td>-0.00000000</td>
<td>1 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sz:</td>
<td>2.27815007</td>
<td>0.22777762</td>
<td>-0.00000000</td>
<td>0 1 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sz:</td>
<td>-0.06515785</td>
<td>-0.22777775</td>
<td>0.00000000</td>
<td>0 0 1 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sz:</td>
<td>0.00385332</td>
<td>-1.86555986</td>
<td>1.60475990</td>
<td>0 0 0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>Sz:</td>
<td>0.11944181</td>
<td>0.53003513</td>
<td>-0.46630288</td>
<td>0 0 0 0 0 1</td>
<td>1</td>
</tr>
</tbody>
</table>
Spin Studies

Bmad has been used for spin simulation studies for:

- Fermilab g-2 ring.
- ILC.
- Julich: Studies for future electric dipole moment (EDM) measurements.
- Spin matching in Jefferson Lab’s planned electron ion collider.
Dave Rubin at Cornell has been developing a simulation program to simulate the Muon g-2 experiment at Fermilab.

Need to simulate:
- Injection line into storage ring.
- Three dimensional field of the injection line.
- Scattering of muons as they cross the inflector wall
- Electrostatic quadrupoles
- Muon decay
G-2 Simulation

Bmad provides:
- Ability to define the geometry of the injection line and storage ring.
- Ability to define the geometry of the inflector wall.
- Ability to define custom fields for the injection line and electrostatic quads.

Needed to develop for the program:
- Tracking of muons through the inflector wall
- Muon decay [will be ported to Bmad]
Conclusions

• Bmad is an open source software library for simulating charged particle beams (and X-rays).

• Bmad can construct symplectic maps with spin for normal form analysis, resonance strength analysis, spin invariant map analysis, analysis of chromatic aberrations, etc.

• Bmad can handle element misalignments, high energy space charge, wakefields, elements with arbitrary fields, etc.

• Bmad can handle complicated lattice geometries such as injection lines, extraction lines, dual ring colliding beam machines, etc.

• Bmad comes with an ecosystem of programs for lattice design, dynamic aperture calculations, Touschek simulation, etc., etc.

• If new types of simulations are needed, with Bmad, new simulation programs can be developed in less time and with less effort and with fewer bugs.

• Bmad has been successful due to it’s modular, object-oriented design which allows it to be adapted to ever changing simulation needs.