Beam Energy Spread Measurement @ FCC-ee

- Thank you !
 - Mogens
 - Patrizia
 - Mike
 - Jorg
 - For challenging me and asking me questions about the beam energy spread measurement in the past months / years
 - There would have been no talk possible today without this pre-existing thinking and coding
 - I realize that I was expected to present something only two days ago, while browsing the agenda !

• Piece of advice:

- To all workshop organizers
 - Invite speakers one by one (as opposed to bulk mailing)
 - ➡ With a personal e-mail indicating the desired content of the presentation
 - → Well ahead of time (several months), to allow for original and substantial work
 - Several times until you get a personal reply

Initial requirements w/o energy spread

- Targets set in the TLEP paper
 - Precision on the Z width : 100 keV
 - Precision on the Z mass : 100 keV
 - Precision on the peak cross section : 10⁻⁴
- We will run at least with three beam energies around the Z pole
 - E_{beam} = 45.6 GeV , i.e., the Z pole
 - $\sigma_{\text{peak}} \sim 30 \text{ nb}$, $L_{\text{peak}} \sim 100 \text{ ab}^{-1}$, $N_{\text{peak}} \sim 3 \times 10^{12} \text{ events}$
 - E_{beam} = 43.95 GeV and 47.15 GeV, for the α_{QED} (m_Z) measurement
 - $\sigma_{\text{peak}\pm3} \sim 6 \text{ nb; } L_{\text{peak}\pm3} \sim 25 \text{ ab}^{-1}$, $N_{\text{peak}\pm3} \sim 1.5 \times 10^{11} \text{ events}$
 - Statistics large enough to be limited by systematic uncertainties for m_Z, Γ_{z} and σ_{o}
- **D** To reach the aforementioned targets w/o energy spread, we need
 - A measurement of the beam energy (e⁺ and e[−]) with a precision of 50 keV
 - A point-to-point relative integrated luminosity measurement precision of 5×10⁻⁵
 - An absolute integrated luminosity measurement precision of 10⁻⁴
 - Result of a 3-parameter fit: $\sigma(m_z) = 96 \text{ keV}$, $\sigma(\Gamma_z) = 104 \text{ keV}$, $\sigma(\sigma_o)/\sigma_o = 10^{-4}$

Side remark : what beam energies ?

- With the same precision on the beam energy and luminosity, no spread
 - Result of the fit with Peak±2 instead of Peak±3
 - $\sigma(m_Z) = 86 \text{ keV}, \sigma(\Gamma_Z) = 140 \text{ keV}, \sigma(\sigma_o)/\sigma_o = 10^{-4}$
 - Result of the fit with Peak±1 instead of Peak±3
 - $\sigma(m_Z) = 84 \text{ keV}, \sigma(\Gamma_Z) = 263 \text{ keV}, \sigma(\sigma_o)/\sigma_o = 10^{-4}$
 - Target not reached for the Z width
 - Almost no difference for the mass and the peak cross section
 - Let's stick to Peak±3 for the time being

What happens with energy spread ?

- Let's take the current beam energy spread with beamstrahlung
 - E_{spread} = 0.132% E_{beam} (~60 MeV) for each beam Spread assumed to be Gaussian (??)
 - Cross section differs by -0.4% to +0.3% , i.e., much larger than uncertainties

- Dominant effect on the width measurement: reduction of the peak cross section
 - With a three parameter fit and three energies: $\Gamma_Z \rightarrow [\Gamma_Z^2 + 8E_{spread}^2]^{1/2}$
 - $\Delta\Gamma_Z > 8\Gamma_Z (E_{spread}/\Gamma_Z)^2 \times \Delta E_{spread}/E_{spread}$ (= 12 MeV × $\Delta E_{spread}/E_{spread}$ for E_{spread} = 60 MeV) 1% uncertainty of E_{spread} leads to > 120 keV uncertainty on Γ_Z !
- Need to find a way to determine the energy spread to a few per mil
 - And fit the cross section to the convolution of a Breit Wigner with a Gaussian
 - → That's a four parameter fit (m_Z , Γ_Z , σ_0 , E_{spread})

Four-parameter fit with three energies

- We need an external measurement of the beam energy spread
 - + The precisions on m_Z, Γ_{z} , and σ_{o} depend on the precision of this measurement

FCC-ee Polarization Wo 21 Oct 2017

Add two energy points?

- The optimal choice is to add Peak±1
 - Energy spread determined with ~1% relative precision ... not quite enough ٠

- Good to have, but...
 - Reduction in total Z statistics
 - Assumes a <u>constant</u> Gaussian spread
 - Other (better) ideas required

Patrick Janot

FCC-ee Polarization Wo 21 Oct 2017

Make use of $e^+e^- \rightarrow \mu^+\mu^-$ events

u How are the events modified with energy spread ?

Make use of $e^+e^- \rightarrow \mu^+\mu^-$ events

Competes with initial state radiation (that you cannot get rid of)

Patrick Janot

Make use of $e^+e^- \rightarrow \mu^+\mu^-$ events

• Also competes with muon angular resolution ...

- □ Distributions of $\sqrt{s'}$ with 10⁶ e⁺e⁻ → $\mu^+\mu^-$ events at \sqrt{s} = 91.2 GeV
 - With ISR only

One million dimuon events

- □ Distributions of $\sqrt{s'}$ with 10⁶ e⁺e⁻ → $\mu^+\mu^-$ events at \sqrt{s} = 91.2 GeV
 - With ISR and o.1 mrad angular resolution (typical of CLIC and IDEA)

One million dimuon events

Patrick Janot

- □ Distributions of $\sqrt{s'}$ with 10⁶ e⁺e⁻ → $\mu^+\mu^-$ events at \sqrt{s} = 91.2 GeV
 - With ISR and 0.132% of beam energy spread

One million dimuon events

Patrick Janot

- □ Distributions of $\sqrt{s'}$ with 10⁶ e⁺e⁻ → $\mu^+\mu^-$ events at \sqrt{s} = 91.2 GeV
 - With ISR + beam energy spread + angular resolution

Events ISR only ISR + $\sigma_{\theta,\phi}$ ISR + E_{spread} 10⁵ $ISR + \sigma_{\theta,\phi} + E_{spread}$ Energy spread wins the competition 10⁴ 10^{3} 91 91.02 91.04 91.06 91.08 91.1 91.12 91.14 91.16 91<u>.1</u>8 91.2 vs' (GeV)

One million dimuon events

- □ Distributions of $\sqrt{s'}$ with 10⁶ e⁺e⁻ → $\mu^+\mu^-$ events at \sqrt{s} = 91.2 GeV
 - Same as before but with an angular resolution of 1 mrad

One million dimuon events

Patrick Janot

Energy spread determination: Sensitivity

• With precise prediction of ISR and knowledge of angular resolution

• The $\sqrt{s'}$ distribution is sensitive to the energy spread

- Sensitivity to $\Delta E_{spread}/E_{spread} \sim 0.15\%$, every 10⁶ e⁺e⁻ $\rightarrow \mu^+\mu^-$ events !
 - Independently of the actual angular resolution (o.o or o.1 mrad shown)

Needed anyway for all other

Energy spread determination: Sensitivity

- **Still the angular resolution must be known with a certain accuracy**
 - The $\sqrt{s'}$ distribution is sensitive to $\sigma_{\theta,\phi}$ (although the dependence with E_{spread} is not)

Variation with $\Delta\sigma_{\!\theta,\varphi}\!/\sigma_{\!\theta,\varphi}$ = 20%

- Effect of a 20% knowledge of $\sigma_{\theta,\phi}$ equivalent to $\Delta E_{spread}/E_{spread} \sim 0.1\%$
 - → Need to determine $\sigma_{\theta,\phi}$ to ± 0.01 mrad or better (as a function of θ and ϕ)

A permanent monitoring

- □ At the Z pole, $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 1.5 \text{ nb}$
 - With $2.3 \cdot 10^{36}$ cm⁻² s⁻¹ collect 3.5 kHz of e⁺e⁻ $\rightarrow \mu^+\mu^-$ events / detector
 - Enjoy one million events every 5 minutes
 - Monitor the beam energy spread to 0.2% precision every 3 minutes.
- At Peak ± 3 GeV, the cross section is reduced to 0.3 nb
 - Monitor the beam energy spread to 0.2% every 15 minutes
 - Probably can afford a worse precision at these points
 - Due to smaller sensitivity of the cross section to E_{spread} than at the peak
- Bonus: we have to such independent monitorings (two detectors)
- Technical details
 - The energy spread might not be Gaussian
 - Need to evaluate the sensitivity to the exact shape (e.g., rectangular w/ same RMS)
 - The angular resolution unfolding require full simulation, precisely tuned to the data
 - Need to measure this resolution with data in every direction
 - The extraction of the Z resonance parameters requires a multi-parameter fit
 - If E_{spread} varies rapidly, one parameter per period of 3 minutes ...

Other energies

- The W mass target precision is 500 keV
 - It is measured at threshold (as opposed to "at the peak")
 - A place where the effect of the energy spread is much smaller

From Paolo Azzurri (yesterday):

- Convolution of cross section with a Gaussian (E_{spread} = 0.153%):
 - No effect on σ_{WW} and m_W at 1st order, no effect at 2nd order, at \sqrt{s} = 162.3 GeV
 - (integral of an odd function at 1st order, and 2nd derivative is zero)

Other energies, cont'd

- $\, \square \,$ The corresponding statistical precision on $\Gamma_{\rm W}$ (2.1 GeV) will be 1.5 MeV
 - With an additional run at 157.3 GeV (40% of the luminosity)
 - E_{spread} is 124 MeV, adds in quadrature to $\Gamma_W \rightarrow (\Gamma_W^2 + E_{spread}^2)^{1/2}$
 - $\Delta \Gamma_{W} = \Gamma_{W} (E_{spread}/\Gamma_{W})^{2} \times \Delta E_{spread}/E_{spread} (= 7 \text{ MeV} \times \Delta E_{spread}/E_{spread})$
 - A measurement of E_{spread} with a 5% precision is more than enough Increases uncertainty on the width to 1.55 MeV
 - → About 900 $e^+e^- \rightarrow \mu^+\mu^-$ events suffice !
- At the WW threshold, $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 4 \text{ pb}$
 - With $3.2 \cdot 10^{35}$ cm⁻² s⁻¹ collect 1.3 Hz of e⁺e⁻ $\rightarrow \mu^+\mu^-$ events / detector
 - Enjoy 900 events and monitor E_{spread} to 5% precision every 12 minutes
- Note: This is only a back-of-the-envelope estimate
 - Gives the right ball park but needs to be cross checked
 - By Paolo for the impact of energy spread on the W width precision
 - By me for the precision on E_{spread} with dimuon events at the WW threshold

Other energies, cont'd

- $\hfill\square$ The statistical precision on $\Gamma_{\rm top}$ (2 GeV) will be 25 MeV
 - With a scan of the top threshold : 0.2 ab^{-1} around $\sqrt{s} = 346 \text{ GeV}$
 - E_{spread} is 346 MeV, adds in quadrature to $\Gamma_{top} \rightarrow (\Gamma_{top}^2 + E_{spread}^2)^{1/2}$
 - Corresponding uncertainty: $\Gamma_{top} (E_{spread}/\Gamma_{top})^2 \times \Delta E_{spread}/E_{spread}$ (= 60 MeV × $\Delta E_{spread}/E_{spread}$)
 - ➡ A measurement of E_{spread} with a 10% precision is more than enough
 - Increases uncertainty on the width to 25.7 MeV
 - → About 200 $e^+e^- \rightarrow \mu^+\mu^-$ events suffice !
- □ At the top threshold, $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 1 \text{ pb}$
 - With $1.8 \cdot 10^{34}$ cm⁻² s⁻¹ collect 18 mHz of e⁺e⁻ $\rightarrow \mu^+\mu^-$ events / detector
 - Enjoy 200 events and monitor E_{spread} to 10% precision every 3 hours
- Note: This is only a back-of-the-envelope estimate
 - Gives the right ball park but needs to be cross checked
 - By Frank Simon for the impact of energy spread on the top width precision
 - By me for the precision on E_{spread} with dimuon events at the top threshold
- I don't see why we would need a precise E_{spread} measurement at 240 or 365 GeV
 - But we'll have it anyway !

Questions / remarks

- **Is the beam energy profile expected to be Gaussian ?**
 - In particular, is the beamstrahlung-induced spread expected to be Gaussian ?
 - Need to check with another shape (e.g., triangular, rectangular, same RMS)
- Is the beam energy profile at least expected to be symmetric?
 - In particular, is the beamstrahlung-induced spread expected to be symmetric?
 - If it is not symmetric, the effect on the masses will be larger
 - Need to check how much larger
 - And also predict the effect of such an asymmetry on the energy calibration
 - Need to check whether we can determine the actual shape with dimuon events
 - Require unfolding of ISR and angular resolution from $\sqrt{s'}$
 - Need some insights from beam instrumentation
- Is the beam energy profile expected to be the same at the two IPs?
 - If not, can the difference be predicted from beam instrumentation ?
- Check if electrons (and maybe taus) can be used too
 - More difficult : electron bremstrahlung and tau decays affect the directions
- $\hfill \square$ Investigate methods to map the θ and ϕ resolutions in the tracker
 - E.g., with other resonances decaying to $\mu^+\mu^-$ (ϕ , J/ Ψ) or with $\mu^+\mu^-\gamma$ events ?