

observable	Physics	Present precision		FCC-ee stat Syst Precision	FCC-ee key	Challenge	
M _Z MeV/c2	Input	91187.5 ±2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections	
$\Gamma_{ extsf{Z}}$ MeV/c2	Δρ (T) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections	
$R_l = \frac{\Gamma_h}{\Gamma_l}$	α_s , δ_b	20.767 (25)	Z Peak	0.0001 (2-20)	Statistics	QED corrections	
N_{v}	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak Z+γ(161 GeV)	0.00008 (40) 0.001	->lumi meast Statistics	QED corrections to Bhabha scat.	
R _b	δ_{b}	0.21629 (66)	Z Peak	0.000003 (20-60)	Statistics, small IP	Hem. correlations	
A _{LR}	Δ ρ, ε ₃ , Δ α (T, S)	$\sin^2 \theta_w^{eff}$ 0.23098(26)	Z peak, Long. polarized	$\sin^2\theta_w^{eff}$ ±0.000006	4 bunch scheme	Design experiment	
A _{FB} lept	$\Delta \rho$, ε_3 , $\Delta \alpha$ (T, S)	$\sin^2 \theta_w^{\text{eff}}$ 0.23099(53)		$\sin^2 \theta_w^{eff} \pm 0.000006$	E_cal & Statistics		
M _W MeV/c2	$\Delta \rho$, ϵ_{3} , ϵ_{2} , $\Delta \alpha$ (T, S, U)	80385 ± 15	Threshold (161 GeV)	0.3 MeV <0.5 MeV	E_cal & Statistics	QED corections	
m _{top} MeV/c2	Input 10/2017	173200 ± 900	Threshold scan	~10 MeV	E_cal & Statistics	Theory limit at 50 MeV?	

	Α _{FB} ^{μμ} @ FCC-ee		A _{LR} @ ILC	A _{LR} @ FCC-ee
visible Z decays	21012	visible Z decays	10 ⁹	5.10 ¹⁰
muon pairs	1011	beam polarization	90%	30%
$\Delta A_{FB}^{\mu\mu}$ (stat)	3 10 ⁻⁶	ΔA_{LR} (stat)	4.2 10 ⁻⁵	4.5 10 ⁻⁵
$\Delta E_{cm} (MeV)$	0.1		2.2	?
$\Delta A_{FB}^{\;\mu\mu}\;(E_{CM}\;)$	9.2 10 ⁻⁶	ΔA_{LR} (E_{CM})	4.1 10 ⁻⁵	
$\Delta A_FB{}^{\mu\mu}$	1.0 10 ⁻⁵	ΔA_LR	5.9 10 ⁻⁵	
$\Delta sin^2 \theta^{lept}_{W}$	5.9 10 ⁻⁶		7.5 10 ⁻⁶	6 10 ⁻⁶ +?

NB: the error on E_CM is the same as that on the Z mass and this should probably lead to some cancellation.

All exceeds the theoretical precision from $\Delta\alpha(m_z)$ (310⁻⁵) or the comparison with m_W (500keV) $\Delta\sin^2\theta^{lept}_W \sim \Delta\alpha(m_z)$ /3

But this precision on $\Delta sin^2\theta^{\ell ept}_{W}$ can only be exploited at FCC-ee!

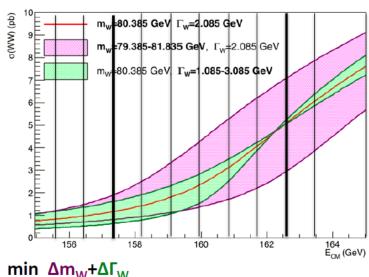
Direct measurement of $\alpha_{\rm QED}(m_{\rm Z}^2)$ at the FCC-ee

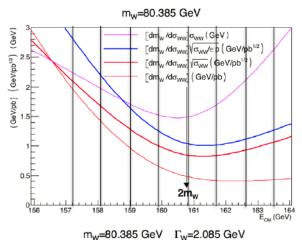
Patrick Janot

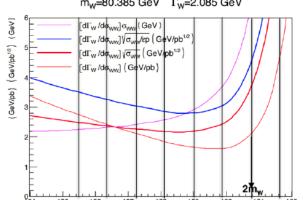
CERN, PH Department, Geneva, Switzerland

ABSTRACT: When the measurements from the FCC-ee become available, an improved determination of the standard-model "input" parameters will be needed to fully exploit the new precision data towards either constraining or fitting the parameters of beyond-the-standard-model theories. Among these input parameters is the electromagnetic coupling constant estimated at the Z mass scale, $\alpha_{\rm QED}(m_{\rm Z}^2)$. The measurement of the muon forward-backward asymmetry at the FCC-ee, just below and just above the Z pole, can be used to make a direct determination of $\alpha_{\rm QED}(m_{\rm Z}^2)$ with an accuracy deemed adequate for an optimal use of the FCC-ee precision data.

This is unique and allows us to make a complete and powerful investigation of 10-100 TeV scale with precision measurements


→ tomorrow Patrick will make a proposal for a scan based on half integer spin tune data points. (from v_s = 99.5 to 107.5)


These are the beam energies for the W threshold measurement


with half-integer spin tunes

limiting data taking points to $E_{CM} = (2n+1)*0.4406486 \text{ GeV}$

with E_1 =157.3 GeV E_2 =162.6 GeV f=0.4 Δm_W =0.65 $\Delta \Gamma_W$ =1.6 Δm_W =0.60 (MeV)

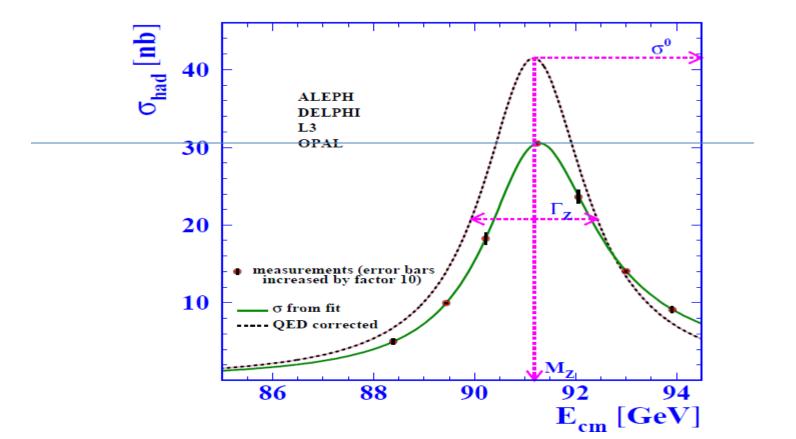
Extracting physics from sin²θ^{lept}_w

1. Direct comparison with m₇

Uncertainties in m_{top} , $\Delta\alpha(m_z)$, m_H , etc....

$$\Delta \sin^2 \theta^{lept}_{W} \sim \Delta \alpha(m_z)/3$$
 = 10⁻⁵ if we can reduce $\Delta \alpha(m_z)$ (see P. Janot)

2. Comparison with m_w/m_z


Compare above formula with similar one:

$$\sin^2\theta_W \cos^2\theta_W = \sqrt{2} G_F m_Z^2 - \frac{1}{1 - \left(-\frac{\cos^2\theta_W}{\sin^2\theta_W} \Delta_P + 2\frac{G^2\theta_W}{\sin^2\theta_W} \epsilon_3 + \frac{c^2 - S^2}{S^2} \epsilon_Z\right)}$$

Where it can be seen that $\Delta\alpha(m_z)$ cancels in the relation.

The limiting error is the error on m_w .

For $\Delta m_w = 0.5$ MeV this corresponds to $\Delta \sin^2 \theta^{\ell e p t}_w = 10^{-5}$

