Simulations for FCC-ee beam self-polarization - cont.

Contents:
- P vs. Q_{syn}
- Reducing $\tau_{10\%}$

Eliana GIANFELICE (Fermilab)
October 24, 2017
Yokoya (1983) and Mane (1990) predict, under the assumption resonances are well separated, energy spread would enhance the strength of synchrotron side bands by the “enhancement factor”

$$\xi = \left(\frac{a\gamma}{Q_{syn} \sigma_E} \right)^2$$

At very high energy and in presence of unavoidable alignment and/or field errors the Sokolov-Ternov effect is overwhelmed by the spin diffusion. Derbenev et al. (1979) predict a polarization resurrection if the condition

$$F_D \equiv \frac{(a\gamma)^2 T_{rev}}{\tau_p Q_{syn}^3} \ll 1$$

is satisfied.

\sim large Q_{syn} may be desirable at high energy and/or large σ_E. Obtaining larger synchrotron tunes while keeping the RF voltage to reasonable values requires increasing the momentum compaction factor.
Toy ring 60/60 degrees FODO

Wigglers OFF - $Q_s=0.1$

$$V_{RF}=91 \text{ GV}$$

$$\xi: 1.5 \rightarrow 0.17$$

$$F_D: 0.2 \rightarrow 8 \times 10^{-3}$$

$$\rightarrow 0.018$$

$$\rightarrow 2.7 \times 10^{-4}$$
Toy ring 90/90 degrees FODO

Toy ring $90^0/90^0$ optics with $Q_x=0.13$, $Q_y=0.2$, $Q_s=0.081$

Toy ring $90^0/90^0$ optics with $Q_x=0.13$, $Q_y=0.2$, $Q_s=0.024$
Olde-san ring $\beta_y^*=1\text{mm}$, 90/90 degrees FODO

\[
\begin{align*}
\text{Oide } 90^0/90^0 \text{ optics with } Q_x &= 0.1, Q_y = 0.2, Q_s = 0.05 \\
\text{Oide } 90^0/90^0 \text{ optics with } Q_x &= 0.1, Q_y = 0.2, Q_s = 0.025
\end{align*}
\]
Reducing $\tau_{10\%}$

In general

$$(\sigma_E/E)^2 = \frac{C_q C_\gamma E^4}{2\pi J_e F \gamma^3 \tau_p U_{loss}} \frac{1}{\tau_{10\%}}$$

$F \equiv \frac{5\sqrt{3}}{8} \frac{r_e \hbar}{m_0 C}$

\sim small τ_p is at price of a higher U_{loss} and/or σ_E.
σ_E = 247 MeV
U_{loss} = 278 MeV/turn
τ_{10%} = 1 minute