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di�erene equations for Feynman integrals as funtions of

indies.

Any integral of the given family is expressed as a linear

ombination of some basi (master) integrals.

The whole problem of evaluation→
onstruting a redution proedure

evaluating master integrals
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[A.V. Kotikov'91,

E. Remiddi'97, T. Gehrmann & E. Remiddi'00,

J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

Henn: use anonial bases.

The rhs is proportional to ε and singularities are Fuhsian.
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Fuhsia [O. Gituliar & V. Magerya'16℄, talk by O. Gituliar

epsilon [M. Prausa'17℄

An algorithm in the ase of several variables

[C. Meyer'16℄ with a publi implementation

DE in talks by O. Gituliar, J. Henn, C. Papadopoulos,

S. Weinzierl, P. Marquard, VS
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Unitarity method
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FDR: diret alulation of multiloop integrals in d = 4.

Talk by R. Pittau
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Let us onsider Feynman integrals with two sales and let x be

the ratio of these sales.

DE

∂
x

J = M (x , ǫ) J ,

where J is a olumn-vetor of N primary master integrals, and

M is an N × N matrix with elements whih are rational

funtions of x and ǫ = (4− D)/2.
Turn to a anonial basis (ε-basis) where DE take the form

∂
x

J = ǫM (x) J .

Then solving DE is muh simpler.

The ε-form is not always possible. The simplest ounter

example is the two-loop sunset diagram with three equal

non-zero masses.
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[L. Adams, C. Bogner, A. Shweitzer & S. Weinzierl'16;

E. Remiddi & L. Tanredi'17; M. Hidding & F. Moriello'17;

J. Broedel, C. Duhr, F. Dulat & L. Tanredi'17℄

An example of a alulation of a full set of the master

integrals with `ellipti setors'

[R. Boniani, V. Del Dua, H. Frellesvig, J. M. Henn,

F. Moriello & V.S. '16℄

Ellipti funtions appear only in two setors and �nal results

are expressed either in terms of multiple polylogarithms or, for

the ellipti setors, in terms of two and three-fold iterated

integrals suitable for numerial evaluation.
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Feynman integrals in situations where ǫ-form is impossible'?

Knowing a di�erential system and the orresponding boundary

onditions gives almost as muh information about Feynman

integrals as knowing their expliit expressions in terms of some

lass of funtions.

Some properties of the integrals are more aessible via DE.

Singularities of DE provide a way to examine the branhing

properties of integrals.

Numerial values of the integrals an be obtained from a

numerial solution of DE.
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The goal: to desribe an algorithm whih enables one to �nd a

solution of a given di�erential system in the form of an

ǫ-expansion series with numerial oe�ients.

The idea: to use generalized power series expansions near the

singular points of the di�erential system and solve di�erene

equations for the orresponding oe�ients in these

expansions.

Using suh series is very well known in mathematis.



A mini review of methods of evaluating Feynman integrals

Motivation

In high-energy physis:



A mini review of methods of evaluating Feynman integrals

Motivation

In high-energy physis:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)



A mini review of methods of evaluating Feynman integrals

Motivation

In high-energy physis:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)



A mini review of methods of evaluating Feynman integrals

Motivation

In high-energy physis:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)

[K. Melnikov, L. Tanredi and C. Wever'16℄

(evaluating expansions of solutions of DE at a given singular

point by di�erene equations)



A mini review of methods of evaluating Feynman integrals

Motivation

In high-energy physis:

[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17℄

(evaluating three-loop massive vauum diagrams)

[R. Mueller & D. G.

�

Ozt�urk'16; J. M. Henn, A. V. Smirnov &

V. A. Smirnov'16℄

(applying general theory of DE for evaluating expansion of

two-sale integrals at a given singular point)

[K. Melnikov, L. Tanredi and C. Wever'16℄

(evaluating expansions of solutions of DE at a given singular

point by di�erene equations)

[X. Liu, Y.Q. Ma & C.Y. Wang'17℄

(solving DE wrt η in propagators 1/(k2 + i0) → 1/(k2 + iη))
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Motivation

We present (in the ase of one variable)

An algorithm to solve di�erene equations for oe�ients

of the series expansions at a given singular point.

A mathing proedure whih enables us to onnet series

expansions at two neighboring points and thereby obtain

a solution of DE at all real values.

As a proof of onept: a omputer ode where this

algorithm is implemented for a simple example of a family

of four-loop Feynman integrals where the ǫ-form is

impossible.
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Series expansions singular points

DE

∂
x

J = M (x) J .

One an turn to a new basis, J → T · J, with the new matrix

T

−1(M · T − ∂
x

T ).

We imply that all the singular points of DE are regular, i.e. we

an redue the DE to a loal Fuhsian form at any singular

point, i.e. if x

i

is a singular point then

M (x) =
A

i

(x)

x − x

i

where A

i

(x) is regular at x = x

i

and A

i

(x
i

) 6= 0.
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Series expansions singular points

General solution

J (x) = U (x)C ,

where C is a olumn of onstants, and U is an evolution

operator

U (x) = P exp

[∫

M (x) dx

]

.
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Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞∑

n=0

Kλ∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix oe�ients

C (n + λ, k).
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Suppose that DE are in a global normalized Fuhsian form

M (x) =
A

0

x

+

s∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonanes,

i.e. the di�erene of any two of its distint eigenvalues is not

integer.

In partiular, the `ellipti' ases, as a rule, an algorithmially

be redued to a global normalized Fuhsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.
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Multiply both sides by the ommon denominator xQ(x), where

Q (x) =

s∏

k=1

(x − x

k

) =

s∑

m=0

q

m

x

m .

with q

0

6= 0.

De�ne the polynomial matrix B (x , α) and its oe�ients

B

m

(α) by

B (x , α) = Q (x) (xM (x)− α) =

s∑

m=0

B

m

(α) xm .

with B

0

(α) = q

0

(A
0

− α).
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Then the DE lead to the following reurrene relations

− BJF(B
0

(λ+ n),−q

0

,Kλ)C (λ+ n, 0..Kλ)

=
s∑

m=1

BJF(B
m

(λ+ n −m) ,−q

m

,Kλ)C (λ+ n −m, 0..Kλ) .

(BJF means `Blok Jordan Form'.)

C (α, 0..K ) =






C (α, 0)
.

.

.

C (α,K )




 denotes a (K + 1)N × N matrix

built from bloks C (α, k),

BJF(A,B,K ) =








A B 0 0

0

.

.

.

.

.

.

0

0 0

.

.

.

B

0 0 0 A








︸ ︷︷ ︸

K+1
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0

,Kλ) on the lhs of the

di�erene equation is invertible for λ ∈ S and n > 0 beause

detBJF(B
0

(λ+ n),−q

0

,Kλ) = (detB
0

(λ+ n))Kλ+1

= q

(Kλ+1)n
0

[det(A
0

− λ− n)]Kλ+1

with q

0

6= 0 and (due to the absene of resonanes in A

0

)

det(A
0

− λ− n) 6= 0,

The reurrene relation takes the form

C (λ+ n, 0..Kλ) =

s∑

m=1

T (λ, n,m)C (λ+ n −m, 0..Kλ) ,

with

T (λ, n,m) = − [BJF(B
0

(λ+ n),−q

0

,Kλ)]
−1

× BJF(B
m

(λ+ n −m) ,−q

m

,Kλ) .
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This �nite-order reurrene relation, together with the initial

onditions, is solved with a linear growth of the omputational

omplexity wrt the number of expansion terms.

The evolution operator U is determined up to a multipliation

by a onstant matrix from the right. We �x it by the ondition

U(x)
x→0∼ x

A

0

We determine S , i.e. the set of distint eigenvalues of A

0

, and

Kλ, i.e. the highest power of the logarithm, and the leading

oe�ients C (λ, k), representing

x

A

0 =
∑

λ∈S

x

λ

Kλ∑

k=0

1

k!
C (λ, k) lnk x .
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Mathing

After solving the reurrene relations, the evolution operator

an be evaluated within the onvergene region of the power

series.

In order to perform an analytial ontinuation to the whole

omplex plane, one may use the same approah for the

expansion around other singular points.

Suppose that the next singular point losest to the origin is

x = 1.

We an onstrut the evolution operator also in an expansion

near this point. Let it be Ũ (x). Due to the freedom in

de�nition of the evolution operator, we have

U (x) = Ũ (x) L .

where L is a onstant matrix.
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U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti ontinuation to the whole omplex plane of x .

In the ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we an avoid

expansions near regular points. A sequene of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1



A mini review of methods of evaluating Feynman integrals

Mathing

To �x L, hoose a point whih belongs to both regions of

onvergene, e.g. x = 1/2. We obtain L = Ũ

−1 (1/2)U (1/2),
so that in the whole onvergene region of Ũ we have

U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti ontinuation to the whole omplex plane of x .

In the ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we an avoid

expansions near regular points. A sequene of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1

then for eah 0 6 k 6 s we make the (Moebius)

transformation

y

k

(x) =
ax + b

x + d



A mini review of methods of evaluating Feynman integrals

Mathing

whih maps the points x

k−1

, x

k

, x

k+1

to ∓1, 0, ±1,

respetively.



A mini review of methods of evaluating Feynman integrals

Mathing

whih maps the points x

k−1

, x

k

, x

k+1

to ∓1, 0, ±1,

respetively.

Expliitly,

y

k

(x) = ± (x − x

k

) (x
k+1

− x

k−1

)

(x − x

k+1

)(x
k−1

− x

k

) + (x − x

k−1

)(x
k+1

− x

k

)



A mini review of methods of evaluating Feynman integrals

Mathing

whih maps the points x

k−1

, x

k

, x

k+1

to ∓1, 0, ±1,

respetively.

Expliitly,

y

k

(x) = ± (x − x

k

) (x
k+1

− x

k−1

)

(x − x

k+1

)(x
k−1

− x

k

) + (x − x

k−1

)(x
k+1

− x

k

)

The boundary onditions are inluded at one of the points,

e.g. x = 0 and then series expansions at other points an be

obtained by mathing, step by step, pairs of expansions at

neighboring points.
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F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2
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Feynman integrals orresponding to the generalized sunset

graph with two massless and three massive lines

F

a

1

,...,a
14

=
∫

. . .

∫
d

D

k

1

. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2

.

There are four master integrals in this family. We hoose

J

0

= {F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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Computer ode in a simple example

We turn to the basis J = T

−1 · J
0

where DE are in a global

normalized Fuhsian form

The singular points are

x

0

= 0, x
1

= 1, x
2

= 9, x
3

= x−1

= ∞
The variable hanges orresponding to the singular points are

f

0

= x/(2− x), f
1

= (x − 1)/(1+ 7x/9),
f

2

= (9− x)/(7+ x), f
3

= −9/(2x − 9).

In new variables, the radii of onvergene are equal to 1.

For adjaent regions i and i + 1 we searh the best possible

mathing point whih is suh x that it lies between x

i

and x

i+1

and that |f
i

(x)| = |f
i+1

(x)|.
Mathing points are {−3, 3(3− 2

√
2), 3, 3(3+ 2

√
2)}.
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Computer ode in a simple example

To �x boundary onditions we hoose the point x = 0 where

the integrals of the given family beome vauum integrals.

To evaluate the four master integrals at x = 0 we derive

onefold Mellin-Barnes representations for them and obtain the

possibility to ahieve a high preision for any given oe�ient

in the ε-expansion.

Using mathing we perform an analyti ontinuation and

obtain onvergent series expansion in eah region.

The ode DESS.m as well �les with input data an be

downloaded from

https://bitbuket.org/feynmanintegrals/dess.

https://bitbucket.org/feynmanintegrals/dess
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0

= 25, we obtain the following result (shown

with a trunation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .
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Computer ode in a simple example

For example, at x

0

= 25, we obtain the following result (shown

with a trunation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .

We heked results at sample points (between singular points

and mathing points) with FIESTA [A.V. Smirnov'16℄.
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Perspetives

An algorithm for the numerial evaluation of a set of

master integrals depending nontrivially on one variable at

a given real point with a required auray.

The algorithm is oriented at situations where anonial

form of the DE is impossible.

We provided a omputer implementation of the algorithm

in a simple example.

This ode is similar in spirit to the well-known existing

odes to evaluate harmoni polylogarithms and multiple

polylogarithms, where the problem of evaluation redues

to summing up appropriate series.

Our publi pakage inludes tools for a deomposition of

the real axis into domains, a subsequent mapping and an

introdution of appropriate new variables.
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Three-loop massive form fators:

omplete light-fermion orretions for the vetor urrent

[R. Lee, A. Smirnov, V.S. & M. Steinhauser℄

Three-loop QCD orretions to F

1

and F

2

in the large-N



limit

[J. Henn, A. Smirnov,V. Smirnov & M. Steinhauser'16℄

Planar diagrams. The evaluation of the orresponding planar

master integrals

[J. Henn, A. Smirnov and V. Smirnov'16℄
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The quark-photon vertex

V

µ(q
1

, q
2

) = ū(q
1

)Γµ(q
1

, q
2

)v(q
2

) ,

where the olour indies are suppressed and ū(q
1

) and v(q
2

)
are the spinors of the quark and anti-quark, respetively. q

1

is

inoming and q

2

is outgoing with q

2

1

= q

2

2

= m

2

.
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The quark-photon vertex

V

µ(q
1

, q
2

) = ū(q
1

)Γµ(q
1

, q
2

)v(q
2

) ,

where the olour indies are suppressed and ū(q
1

) and v(q
2

)
are the spinors of the quark and anti-quark, respetively. q

1

is

inoming and q

2

is outgoing with q

2

1

= q

2

2

= m

2

.

Two salar form fators (eletri and magneti form fators)

Γµ(q
1

, q
2

) = Q

q

[

F

1

(q2)γµ − i

2m

F

2

(q2)σµν
qν

]

,

where q = q

1

− q

2

is the outgoing momentum of the photon

and σµν = i [γµ, γν]/2. Q
q

is the harge of the onsidered

quark.
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Three-loop massive form fators

Results in terms of Gonharov polylogarithms of the variable x

given by

s

m

2

= −(1− x)2

x

The values x = 1 and x = −1 orrespond to

s = 0 and s = 4m

2

.

The three-loop QCD orretions to the massive

quark-anti-quark-photon form fators F

1

and F

2

involving a

losed loop of massless fermions, i.e. proportional to n

l

.
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Sample three-loop diagrams ontributing to F

1

and F

2

(a) (b) () (d) (e)
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new, i.e. they were not involved in the large-N



alulation

1

2 3
4

5

6

7

8 9 1

2

3

4
5

6

7

8

9
1

2

3

4

5

6

7

89

1

2

34
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89

1051 1104 1136 1147

Agreement of our results with known results in various limits.

We have also reprodued the two-loop results for the form

fators obtained quite reently

[J. Ablinger, A. Behring, J. Bl�umlein, G. Falioni,

A. De Freitas, P. Marquard, N. Rana & C. Shneider℄
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to be ontinued


