A mini review of methods of evaluating Feynman integrals

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics of Moscow State University
CERN, January 12, 2018

- Integration by parts
- Integration by parts

Evaluating a family of Feynman integrals corresponding to a given graph which are also functions of integer powers of propagators (indices)

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1}, \ldots, a_{L}\right) \\
& \quad=\int \ldots \int I\left(q_{1}, \ldots, a_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right) d^{d} k_{1} d^{d} k_{2} \ldots d^{d} k_{h}
\end{aligned}
$$

- Integration by parts

Evaluating a family of Feynman integrals corresponding to a given graph which are also functions of integer powers of propagators (indices)

$$
\begin{aligned}
& F_{\Gamma}\left(q_{1}, \ldots, q_{n} ; d ; a_{1}, \ldots, a_{L}\right) \\
& \quad=\int \ldots \int I\left(q_{1}, \ldots, a_{n} ; k_{1}, \ldots, k_{h} ; a_{1}, \ldots, a_{L}\right) d^{d} k_{1} d^{d} k_{2} \ldots d^{d} k_{h}
\end{aligned}
$$

where $I\left(q_{1}, \ldots, a_{L}\right)=\prod_{i=1}^{L} \frac{1}{\left(m_{i}^{2}-p_{i}^{2}\right)^{a_{i}}}$ and momenta of the lines p_{i} are linearly expressed in terms of the loop momenta k_{i} and external momenta q_{j}.

Apply IBP relations [K.G. Chetyrkin \& F.V. Tkachov] as difference equations for Feynman integrals as functions of indices.

Apply IBP relations [K.G. Chetyrkin \& F.V. Tkachov] as difference equations for Feynman integrals as functions of indices.

Any integral of the given family is expressed as a linear combination of some basic (master) integrals.

Apply IBP relations [K.G. Chetyrkin \& F.V. Tkachov] as difference equations for Feynman integrals as functions of indices.

Any integral of the given family is expressed as a linear combination of some basic (master) integrals.
The whole problem of evaluation \rightarrow

- constructing a reduction procedure
- evaluating master integrals

Public codes to solve IBP relations

Public codes to solve IBP relations

AIR [C. Anastasiou \& A. Lazopoulos]

Public codes to solve IBP relations
AIR [C. Anastasiou \& A. Lazopoulos]
FIRE [A. Smirnov]

Public codes to solve IBP relations
AIR [C. Anastasiou \& A. Lazopoulos]
FIRE [A. Smirnov]
REDUZE [C. Studerus, A. von Manteuffel]

Public codes to solve IBP relations

AIR [C. Anastasiou \& A. Lazopoulos]

FIRE [A. Smirnov]
REDUZE [C. Studerus, A. von Manteuffel]
LiteRed [R. Lee]

Public codes to solve IBP relations
AIR [C. Anastasiou \& A. Lazopoulos]
FIRE [A. Smirnov]
REDUZE [C. Studerus, A. von Manteuffel]
LiteRed [R. Lee]
Kira [P. Maierhoefer, J. Usovitsch, P. Uwer]

Methods to evaluate master integrals

Methods to evaluate master integrals
■ Feynman (alpha) parameters

Methods to evaluate master integrals

- Feynman (alpha) parameters

The modern variant (analytical evaluation)
[F. Brown, E. Panzer, O. Schnetz, A. von Manteuffel, E. Panzer \& R.M. Schabinger, M. Hidding \& F. Moriello, ...]

Methods to evaluate master integrals

- Feynman (alpha) parameters

The modern variant (analytical evaluation)
[F. Brown, E. Panzer, O. Schnetz, A. von Manteuffel, E. Panzer \& R.M. Schabinger, M. Hidding \& F. Moriello, ...]

■ Sector decompositions (numerical evaluation)

Methods to evaluate master integrals

- Feynman (alpha) parameters

The modern variant (analytical evaluation)
[F. Brown, E. Panzer, O. Schnetz, A. von Manteuffel, E. Panzer \& R.M. Schabinger, M. Hidding \& F. Moriello, ...]

- Sector decompositions (numerical evaluation)
[T. Binoth \& G. Heinrich; C. Bogner \& S. Weinzierl;
A.V. Smirnov \& M.N. Tentyukov; J. Carter \& G. Heinrich,
S. Borowka, G. Heinrich' et al.'13-17]. Talk by S. Borowka

Methods to evaluate master integrals

- Feynman (alpha) parameters

The modern variant (analytical evaluation)
[F. Brown, E. Panzer, O. Schnetz, A. von Manteuffel, E. Panzer \& R.M. Schabinger, M. Hidding \& F. Moriello, ...]

- Sector decompositions (numerical evaluation)
[T. Binoth \& G. Heinrich; C. Bogner \& S. Weinzierl;
A.V. Smirnov \& M.N. Tentyukov; J. Carter \& G. Heinrich,
S. Borowka, G. Heinrich' et al.'13-17]. Talk by S. Borowka

Public computer codes:
SecDec, sector_decomposition, FIESTA

■ Mellin-Barnes representation

■ Mellin-Barnes representation
[V.A. Smirnov'99; J.B. Tausk'99]

■ Mellin-Barnes representation
[V.A. Smirnov'99; J.B. Tausk'99]
Public computer codes [M. Czakon, A.\& V. Smirnov;
D. Kosower; J. Gluza, K. Kajda \& T. Riemann,...]

■ Mellin-Barnes representation
[V.A. Smirnov'99; J.B. Tausk'99]
Public computer codes [M. Czakon, A.\& V. Smirnov;
D. Kosower; J. Gluza, K. Kajda \& T. Riemann,...]

Talks by
E. Dubovyk, J. Usovitsch, M. Prausa, W. Flieger, R. Boels

■ Differential equations

■ Differential equations
[A.V. Kotikov'91,
E. Remiddi'97, T. Gehrmann \& E. Remiddi'00, J. Henn'13]

- Differential equations
[A.V. Kotikov'91,
E. Remiddi'97, T. Gehrmann \& E. Remiddi'00,
J. Henn'13]

Gehrmann \& Remiddi: a method to evaluate master integrals.

- Differential equations
[A.V. Kotikov'91,
E. Remiddi'97, T. Gehrmann \& E. Remiddi'00, J. Henn'13]

Gehrmann \& Remiddi: a method to evaluate master integrals. Henn: use canonical bases.

- Differential equations
[A.V. Kotikov'91,
E. Remiddi'97, T. Gehrmann \& E. Remiddi'00,
J. Henn'13]

Gehrmann \& Remiddi: a method to evaluate master integrals.
Henn: use canonical bases.
The rhs is proportional to ε and singularities are Fuchsian.

How to turn to a canonical basis?

How to turn to a canonical basis?
First algorithm in the case of one variable [R.N. Lee'14]

How to turn to a canonical basis?
First algorithm in the case of one variable [R.N. Lee'14]
Public implementations:
Fuchsia [O. Gituliar \& V. Magerya'16], talk by O. Gituliar

How to turn to a canonical basis?
First algorithm in the case of one variable [R.N. Lee'14]
Public implementations:
Fuchsia [O. Gituliar \& V. Magerya'16], talk by O. Gituliar epsilon [M. Prausa'17]

How to turn to a canonical basis?
First algorithm in the case of one variable [R.N. Lee'14]
Public implementations:
Fuchsia [O. Gituliar \& V. Magerya'16], talk by O. Gituliar epsilon [M. Prausa'17]
An algorithm in the case of several variables [C. Meyer'16] with a public implementation

How to turn to a canonical basis?
First algorithm in the case of one variable [R.N. Lee'14]
Public implementations:
Fuchsia [O. Gituliar \& V. Magerya'16], talk by O. Gituliar epsilon [M. Prausa'17]
An algorithm in the case of several variables [C. Meyer'16] with a public implementation

DE in talks by O. Gituliar, J. Henn, C. Papadopoulos, S. Weinzierl, P. Marquard, VS

■ Difference equations

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]
R. Lee (DRA: equations wrt dimension)

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]
R. Lee (DRA: equations wrt dimension)

Applications [R. Lee, A.\&V. Smirnov]

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]
R. Lee (DRA: equations wrt dimension)

Applications [R. Lee, A.\&V. Smirnov]

- Unitarity method

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]
R. Lee (DRA: equations wrt dimension)

Applications [R. Lee, A.\&V. Smirnov]
■ Unitarity method
Talk by H. Ita

■ Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).

Applications [S. Laporta, Y. Schröder,...]
R. Lee (DRA: equations wrt dimension)

Applications [R. Lee, A.\&V. Smirnov]
■ Unitarity method
Talk by H. Ita
■ FDR: direct calculation of multiloop integrals in $d=4$. Talk by R. Pittau

■ Solving differential equations for Feynman integrals by expansions near singular points

■ Solving differential equations for Feynman integrals by expansions near singular points

- Three-loop massive form factors: complete light-fermion corrections for the vector current

Solving differential equations for Feynman integrals by expansions near singular points Based on [R. Lee, A. Smirnov \& V.S. '17]

Solving differential equations for Feynman integrals by expansions near singular points Based on [R. Lee, A. Smirnov \& V.S. '17]

■ Motivation

Solving differential equations for Feynman integrals by expansions near singular points
Based on [R. Lee, A. Smirnov \& V.S. '17]
■ Motivation
■ Generalized series expansion near a singular point

Solving differential equations for Feynman integrals by expansions near singular points
Based on [R. Lee, A. Smirnov \& V.S. '17]
■ Motivation
■ Generalized series expansion near a singular point
■ Matching

Solving differential equations for Feynman integrals by expansions near singular points
Based on [R. Lee, A. Smirnov \& V.S. '17]

- Motivation
- Generalized series expansion near a singular point
- Matching

■ Computer code in a simple example

Solving differential equations for Feynman integrals by expansions near singular points
Based on [R. Lee, A. Smirnov \& V.S. '17]

- Motivation
- Generalized series expansion near a singular point
- Matching
- Computer code in a simple example
- Perspectives

Let us consider Feynman integrals with two scales and let x be the ratio of these scales.

Let us consider Feynman integrals with two scales and let x be the ratio of these scales.
DE

$$
\partial_{x} \boldsymbol{J}=M(x, \epsilon) \boldsymbol{J}
$$

where J is a column-vector of N primary master integrals, and M is an $N \times N$ matrix with elements which are rational functions of x and $\epsilon=(4-D) / 2$.
Turn to a canonical basis (ε-basis) where DE take the form

$$
\partial_{x} \boldsymbol{J}=\epsilon M(x) \boldsymbol{J}
$$

Let us consider Feynman integrals with two scales and let x be the ratio of these scales.
DE

$$
\partial_{x} \boldsymbol{J}=M(x, \epsilon) \boldsymbol{J},
$$

where J is a column-vector of N primary master integrals, and M is an $N \times N$ matrix with elements which are rational functions of x and $\epsilon=(4-D) / 2$.
Turn to a canonical basis (ε-basis) where DE take the form

$$
\partial_{x} \boldsymbol{J}=\epsilon M(x) \boldsymbol{J} .
$$

Then solving DE is much simpler.

Let us consider Feynman integrals with two scales and let x be the ratio of these scales.
DE

$$
\partial_{x} \boldsymbol{J}=M(x, \epsilon) \boldsymbol{J},
$$

where J is a column-vector of N primary master integrals, and M is an $N \times N$ matrix with elements which are rational functions of x and $\epsilon=(4-D) / 2$.
Turn to a canonical basis (ε-basis) where DE take the form

$$
\partial_{x} \boldsymbol{J}=\epsilon M(x) \boldsymbol{J} .
$$

Then solving DE is much simpler.
The ε-form is not always possible. The simplest counter example is the two-loop sunset diagram with three equal non-zero masses.

Elliptic generalization of multiple polylogarithms motivated by two-loop examples, where the ε-form is impossible [L. Adams, C. Bogner, A. Schweitzer \& S. Weinzierl'16; E. Remiddi \& L. Tancredi'17; M. Hidding \& F. Moriello'17; J. Broedel, C. Duhr, F. Dulat \& L. Tancredi'17]

Elliptic generalization of multiple polylogarithms motivated by two-loop examples, where the ε-form is impossible [L. Adams, C. Bogner, A. Schweitzer \& S. Weinzierl'16; E. Remiddi \& L. Tancredi'17; M. Hidding \& F. Moriello'17; J. Broedel, C. Duhr, F. Dulat \& L. Tancredi'17]

An example of a calculation of a full set of the master integrals with 'elliptic sectors'
[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello \& V.S. '16]

Elliptic generalization of multiple polylogarithms motivated by two-loop examples, where the ε-form is impossible [L. Adams, C. Bogner, A. Schweitzer \& S. Weinzierl'16; E. Remiddi \& L. Tancredi'17; M. Hidding \& F. Moriello'17; J. Broedel, C. Duhr, F. Dulat \& L. Tancredi'17]

An example of a calculation of a full set of the master integrals with 'elliptic sectors'
[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello \& V.S. '16]

Elliptic functions appear only in two sectors and final results are expressed either in terms of multiple polylogarithms or, for the elliptic sectors, in terms of two and three-fold iterated integrals suitable for numerical evaluation.

We are very far, even in lower loops orders, from answering the following question:
'What is the class of functions which can appear in results for Feynman integrals in situations where ϵ-form is impossible'?

We are very far, even in lower loops orders, from answering the following question:
'What is the class of functions which can appear in results for Feynman integrals in situations where ϵ-form is impossible'?

Knowing a differential system and the corresponding boundary conditions gives almost as much information about Feynman integrals as knowing their explicit expressions in terms of some class of functions.

We are very far, even in lower loops orders, from answering the following question:
'What is the class of functions which can appear in results for Feynman integrals in situations where ϵ-form is impossible'?

Knowing a differential system and the corresponding boundary conditions gives almost as much information about Feynman integrals as knowing their explicit expressions in terms of some class of functions.

Some properties of the integrals are more accessible via DE.

We are very far, even in lower loops orders, from answering the following question:
'What is the class of functions which can appear in results for Feynman integrals in situations where ϵ-form is impossible'?

Knowing a differential system and the corresponding boundary conditions gives almost as much information about Feynman integrals as knowing their explicit expressions in terms of some class of functions.

Some properties of the integrals are more accessible via DE. Singularities of DE provide a way to examine the branching properties of integrals.

We are very far, even in lower loops orders, from answering the following question:
'What is the class of functions which can appear in results for Feynman integrals in situations where ϵ-form is impossible'?
Knowing a differential system and the corresponding boundary conditions gives almost as much information about Feynman integrals as knowing their explicit expressions in terms of some class of functions.

Some properties of the integrals are more accessible via DE. Singularities of DE provide a way to examine the branching properties of integrals.
Numerical values of the integrals can be obtained from a numerical solution of $D E$.

The goal: to describe an algorithm which enables one to find a solution of a given differential system in the form of an ϵ-expansion series with numerical coefficients.

The goal: to describe an algorithm which enables one to find a solution of a given differential system in the form of an ϵ-expansion series with numerical coefficients.
The idea: to use generalized power series expansions near the singular points of the differential system and solve difference equations for the corresponding coefficients in these expansions.

The goal: to describe an algorithm which enables one to find a solution of a given differential system in the form of an ϵ-expansion series with numerical coefficients.
The idea: to use generalized power series expansions near the singular points of the differential system and solve difference equations for the corresponding coefficients in these expansions.
Using such series is very well known in mathematics.

A mini review of methods of evaluating Feynman integrals

-Motivation

In high-energy physics:

In high-energy physics:
[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17]
(evaluating three-loop massive vacuum diagrams)

In high-energy physics:
[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17]
(evaluating three-loop massive vacuum diagrams)
[R. Mueller \& D. G. Öztürk'16; J. M. Henn, A. V. Smirnov \& V. A. Smirnov'16]
(applying general theory of DE for evaluating expansion of two-scale integrals at a given singular point)

In high-energy physics:
[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17]
(evaluating three-loop massive vacuum diagrams)
[R. Mueller \& D. G. Öztürk'16; J. M. Henn, A. V. Smirnov \&
V. A. Smirnov'16]
(applying general theory of DE for evaluating expansion of two-scale integrals at a given singular point)
[K. Melnikov, L. Tancredi and C. Wever'16]
(evaluating expansions of solutions of DE at a given singular point by difference equations)

In high-energy physics:
[B. A. Kniehl, A. F. Pikelner O. L. Veretin'17]
(evaluating three-loop massive vacuum diagrams)
[R. Mueller \& D. G. Öztürk'16; J. M. Henn, A. V. Smirnov \& V. A. Smirnov'16]
(applying general theory of DE for evaluating expansion of two-scale integrals at a given singular point)
[K. Melnikov, L. Tancredi and C. Wever'16]
(evaluating expansions of solutions of DE at a given singular point by difference equations)
[X. Liu, Y.Q. Ma \& C.Y. Wang'17]
(solving DE wrt η in propagators $1 /\left(k^{2}+i 0\right) \rightarrow 1 /\left(k^{2}+i \eta\right)$)

We present (in the case of one variable)

- An algorithm to solve difference equations for coefficients of the series expansions at a given singular point.

We present (in the case of one variable)

- An algorithm to solve difference equations for coefficients of the series expansions at a given singular point.
■ A matching procedure which enables us to connect series expansions at two neighboring points and thereby obtain a solution of DE at all real values.

We present (in the case of one variable)
■ An algorithm to solve difference equations for coefficients of the series expansions at a given singular point.
■ A matching procedure which enables us to connect series expansions at two neighboring points and thereby obtain a solution of DE at all real values.

- As a proof of concept: a computer code where this algorithm is implemented for a simple example of a family of four-loop Feynman integrals where the ϵ-form is impossible.

DE

$$
\partial_{x} \boldsymbol{J}=M(x) \boldsymbol{J} .
$$

DE

$$
\partial_{x} \boldsymbol{J}=M(x) \boldsymbol{J} .
$$

One can turn to a new basis, $\boldsymbol{J} \rightarrow T \cdot \boldsymbol{J}$, with the new matrix

$$
T^{-1}\left(M \cdot T-\partial_{x} T\right)
$$

DE

$$
\partial_{x} \boldsymbol{J}=M(x) \boldsymbol{J} .
$$

One can turn to a new basis, $\boldsymbol{J} \rightarrow T \cdot \boldsymbol{J}$, with the new matrix

$$
T^{-1}\left(M \cdot T-\partial_{x} T\right)
$$

We imply that all the singular points of DE are regular, i.e. we can reduce the DE to a local Fuchsian form at any singular point, i.e. if x_{i} is a singular point then

$$
M(x)=\frac{A_{i}(x)}{x-x_{i}}
$$

where $A_{i}(x)$ is regular at $x=x_{i}$ and $A_{i}\left(x_{i}\right) \neq 0$.

General solution

$$
\boldsymbol{J}(x)=U(x) \boldsymbol{C}
$$

General solution

$$
\boldsymbol{J}(x)=U(x) C
$$

where C is a column of constants, and U is an evolution operator

$$
U(x)=P \exp \left[\int M(x) d x\right]
$$

Expanding in a vicinity of each singular point.

Expanding in a vicinity of each singular point. Take $x=0$.

Expanding in a vicinity of each singular point.
Take $x=0$.
The expansion is

$$
U(x)=\sum_{\lambda \in S} x^{\lambda} \sum_{n=0}^{\infty} \sum_{k=0}^{K_{\lambda}} \frac{1}{k!} C(n+\lambda, k) x^{n} \ln ^{k} x,
$$

where S is a finite set of powers of the form $\lambda=r \epsilon$ with integer $r, K_{\lambda} \geqslant 0$ is an integer number corresponding to the the maximal power of the logarithm.

Expanding in a vicinity of each singular point.
Take $x=0$.
The expansion is

$$
U(x)=\sum_{\lambda \in S} x^{\lambda} \sum_{n=0}^{\infty} \sum_{k=0}^{K_{\lambda}} \frac{1}{k!} C(n+\lambda, k) x^{n} \ln ^{k} x,
$$

where S is a finite set of powers of the form $\lambda=r \in$ with integer $r, K_{\lambda} \geqslant 0$ is an integer number corresponding to the the maximal power of the logarithm.
The goal is to determine S, K_{λ}, and the matrix coefficients $C(n+\lambda, k)$.

Suppose that DE are in a global normalized Fuchsian form

$$
M(x)=\frac{A_{0}}{x}+\sum_{k=1}^{s} \frac{A_{k}}{x-x_{k}}
$$

Suppose that DE are in a global normalized Fuchsian form

$$
M(x)=\frac{A_{0}}{x}+\sum_{k=1}^{s} \frac{A_{k}}{x-x_{k}}
$$

and for any $k=0, \ldots, s$ the matrix A_{k} is free of resonances, i.e. the difference of any two of its distinct eigenvalues is not integer.

Suppose that DE are in a global normalized Fuchsian form

$$
M(x)=\frac{A_{0}}{x}+\sum_{k=1}^{s} \frac{A_{k}}{x-x_{k}}
$$

and for any $k=0, \ldots, s$ the matrix A_{k} is free of resonances, i.e. the difference of any two of its distinct eigenvalues is not integer.
In particular, the 'elliptic' cases, as a rule, can algorithmically be reduced to a global normalized Fuchsian form using, e.g., the algorithm of Lee [R.N. Lee'14].

Multiply both sides by the common denominator $x Q(x)$, where

$$
Q(x)=\prod_{k=1}^{s}\left(x-x_{k}\right)=\sum_{m=0}^{s} q_{m} x^{m}
$$

with $q_{0} \neq 0$.

Multiply both sides by the common denominator $x Q(x)$, where

$$
Q(x)=\prod_{k=1}^{s}\left(x-x_{k}\right)=\sum_{m=0}^{s} q_{m} x^{m} .
$$

with $q_{0} \neq 0$.
Define the polynomial matrix $B(x, \alpha)$ and its coefficients $B_{m}(\alpha)$ by

$$
B(x, \alpha)=Q(x)(x M(x)-\alpha)=\sum_{m=0}^{s} B_{m}(\alpha) x^{m} .
$$

with $B_{0}(\alpha)=q_{0}\left(A_{0}-\alpha\right)$.

Then the DE lead to the following recurrence relations

$$
\begin{aligned}
& -\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right) C\left(\lambda+n, 0 . . K_{\lambda}\right) \\
= & \sum_{m=1}^{s} \operatorname{BJF}\left(B_{m}(\lambda+n-m),-q_{m}, K_{\lambda}\right) C\left(\lambda+n-m, 0 . . K_{\lambda}\right) .
\end{aligned}
$$

Then the DE lead to the following recurrence relations

$$
\begin{aligned}
& -\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right) C\left(\lambda+n, 0 . . K_{\lambda}\right) \\
= & \sum_{m=1}^{s} \operatorname{BJF}\left(B_{m}(\lambda+n-m),-q_{m}, K_{\lambda}\right) C\left(\lambda+n-m, 0 . . K_{\lambda}\right) .
\end{aligned}
$$

(BJF means 'Block Jordan Form'.)

Then the DE lead to the following recurrence relations

$$
\begin{aligned}
& -\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right) C\left(\lambda+n, 0 . . K_{\lambda}\right) \\
= & \sum_{m=1}^{s} \operatorname{BJF}\left(B_{m}(\lambda+n-m),-q_{m}, K_{\lambda}\right) C\left(\lambda+n-m, 0 . . K_{\lambda}\right) .
\end{aligned}
$$

(BJF means 'Block Jordan Form'.)
$C(\alpha, 0 . . K)=\left[\begin{array}{c}C(\alpha, 0) \\ \vdots \\ C(\alpha, K)\end{array}\right]$ denotes a $(K+1) N \times N$ matrix
built from blocks $C(\alpha, k)$,

Then the DE lead to the following recurrence relations

$$
\begin{aligned}
& -\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right) C\left(\lambda+n, 0 . . K_{\lambda}\right) \\
= & \sum_{m=1}^{s} \operatorname{BJF}\left(B_{m}(\lambda+n-m),-q_{m}, K_{\lambda}\right) C\left(\lambda+n-m, 0 . . K_{\lambda}\right) .
\end{aligned}
$$

(BJF means 'Block Jordan Form'.)
$C(\alpha, 0 . . K)=\left[\begin{array}{c}C(\alpha, 0) \\ \vdots \\ C(\alpha, K)\end{array}\right]$ denotes a $(K+1) N \times N$ matrix
built from blocks $C(\alpha, k)$,

$$
\operatorname{BJF}(A, B, K)=\underbrace{\left[\begin{array}{cccc}
0 & \ddots & \ddots & 0 \\
0 & 0 & \ddots & B \\
0 & 0 & 0 & A
\end{array}\right]}_{K+1}
$$

The matrix $-\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right)$ on the lhs of the difference equation is invertible for $\lambda \in S$ and $n>0$ because

$$
\begin{aligned}
& \operatorname{det} \operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right)=\left(\operatorname{det} B_{0}(\lambda+n)\right)^{K_{\lambda}+1} \\
& =q_{0}^{\left(K_{\lambda}+1\right) n}\left[\operatorname{det}\left(A_{0}-\lambda-n\right)\right]^{K_{\lambda}+1}
\end{aligned}
$$

with $q_{0} \neq 0$ and (due to the absence of resonances in A_{0}) $\operatorname{det}\left(A_{0}-\lambda-n\right) \neq 0$,

The matrix $-\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right)$ on the lhs of the difference equation is invertible for $\lambda \in S$ and $n>0$ because

$$
\begin{aligned}
\operatorname{det} \operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}\right. & \left., K_{\lambda}\right)=\left(\operatorname{det} B_{0}(\lambda+n)\right)^{K_{\lambda}+1} \\
& =q_{0}^{\left(K_{\lambda}+1\right) n}\left[\operatorname{det}\left(A_{0}-\lambda-n\right)\right]^{K_{\lambda}+1}
\end{aligned}
$$

with $q_{0} \neq 0$ and (due to the absence of resonances in A_{0}) $\operatorname{det}\left(A_{0}-\lambda-n\right) \neq 0$,
The recurrence relation takes the form

$$
C\left(\lambda+n, 0 . . K_{\lambda}\right)=\sum_{m=1}^{s} T(\lambda, n, m) C\left(\lambda+n-m, 0 . . K_{\lambda}\right)
$$

The matrix $-\operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right)$ on the lhs of the difference equation is invertible for $\lambda \in S$ and $n>0$ because

$$
\begin{aligned}
\operatorname{det} \operatorname{BJF}\left(B_{0}(\lambda+n),-q_{0}\right. & \left., K_{\lambda}\right)=\left(\operatorname{det} B_{0}(\lambda+n)\right)^{K_{\lambda}+1} \\
& =q_{0}^{\left(K_{\lambda}+1\right) n}\left[\operatorname{det}\left(A_{0}-\lambda-n\right)\right]^{K_{\lambda}+1}
\end{aligned}
$$

with $q_{0} \neq 0$ and (due to the absence of resonances in A_{0}) $\operatorname{det}\left(A_{0}-\lambda-n\right) \neq 0$,
The recurrence relation takes the form
with

$$
C\left(\lambda+n, 0 . . K_{\lambda}\right)=\sum_{m=1}^{s} T(\lambda, n, m) C\left(\lambda+n-m, 0 . . K_{\lambda}\right)
$$

$$
\begin{aligned}
T(\lambda, n, m)=-[\operatorname{BJF}(& \left.\left.B_{0}(\lambda+n),-q_{0}, K_{\lambda}\right)\right]^{-1} \\
& \times \operatorname{BJF}\left(B_{m}(\lambda+n-m),-q_{m}, K_{\lambda}\right)
\end{aligned}
$$

This finite-order recurrence relation, together with the initial conditions, is solved with a linear growth of the computational complexity wrt the number of expansion terms.

This finite-order recurrence relation, together with the initial conditions, is solved with a linear growth of the computational complexity wrt the number of expansion terms.
The evolution operator U is determined up to a multiplication by a constant matrix from the right.

This finite-order recurrence relation, together with the initial conditions, is solved with a linear growth of the computational complexity wrt the number of expansion terms.
The evolution operator U is determined up to a multiplication by a constant matrix from the right. We fix it by the condition

$$
U(x) \stackrel{x \rightarrow 0}{\sim} x^{A_{0}}
$$

This finite-order recurrence relation, together with the initial conditions, is solved with a linear growth of the computational complexity wrt the number of expansion terms.
The evolution operator U is determined up to a multiplication by a constant matrix from the right. We fix it by the condition

$$
U(x) \stackrel{x \rightarrow 0}{\sim} x^{A_{0}}
$$

We determine S, i.e. the set of distinct eigenvalues of A_{0}, and K_{λ}, i.e. the highest power of the logarithm, and the leading coefficients $C(\lambda, k)$, representing

$$
x^{A_{0}}=\sum_{\lambda \in S} x^{\lambda} \sum_{k=0}^{K_{\lambda}} \frac{1}{k!} C(\lambda, k) \ln ^{k} x .
$$

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.
In order to perform an analytical continuation to the whole complex plane, one may use the same approach for the expansion around other singular points.

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.
In order to perform an analytical continuation to the whole complex plane, one may use the same approach for the expansion around other singular points.
Suppose that the next singular point closest to the origin is $x=1$.

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.
In order to perform an analytical continuation to the whole complex plane, one may use the same approach for the expansion around other singular points.
Suppose that the next singular point closest to the origin is $x=1$.
We can construct the evolution operator also in an expansion near this point.

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.
In order to perform an analytical continuation to the whole complex plane, one may use the same approach for the expansion around other singular points.
Suppose that the next singular point closest to the origin is $x=1$.
We can construct the evolution operator also in an expansion near this point. Let it be $\tilde{U}(x)$.

After solving the recurrence relations, the evolution operator can be evaluated within the convergence region of the power series.
In order to perform an analytical continuation to the whole complex plane, one may use the same approach for the expansion around other singular points.
Suppose that the next singular point closest to the origin is $x=1$.
We can construct the evolution operator also in an expansion near this point. Let it be $\tilde{U}(x)$. Due to the freedom in definition of the evolution operator, we have

$$
U(x)=\tilde{U}(x) L
$$

where L is a constant matrix.

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$.

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$,

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$, so that in the whole convergence region of \tilde{U} we have

$$
U(x)=\tilde{U}(x) \tilde{U}^{-1}(1 / 2) U(1 / 2)
$$

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$, so that in the whole convergence region of \tilde{U} we have

$$
U(x)=\tilde{U}(x) \tilde{U}^{-1}(1 / 2) U(1 / 2) .
$$

Analytic continuation to the whole complex plane of x.

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$, so that in the whole convergence region of \tilde{U} we have

$$
U(x)=\tilde{U}(x) \tilde{U}^{-1}(1 / 2) U(1 / 2) .
$$

Analytic continuation to the whole complex plane of x. In the case where the singularities lie on the real axis and if we are interested in the evaluation for real x, we can avoid expansions near regular points.

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$, so that in the whole convergence region of \tilde{U} we have

$$
U(x)=\tilde{U}(x) \tilde{U}^{-1}(1 / 2) U(1 / 2) .
$$

Analytic continuation to the whole complex plane of x. In the case where the singularities lie on the real axis and if we are interested in the evaluation for real x, we can avoid expansions near regular points. A sequence of the singular points

$$
x_{0}<x_{1}<\ldots x_{s}<\infty=x_{s+1}=x_{-1}
$$

To fix L, choose a point which belongs to both regions of convergence, e.g. $x=1 / 2$. We obtain $L=\tilde{U}^{-1}(1 / 2) U(1 / 2)$, so that in the whole convergence region of \tilde{U} we have

$$
U(x)=\tilde{U}(x) \tilde{U}^{-1}(1 / 2) U(1 / 2)
$$

Analytic continuation to the whole complex plane of x. In the case where the singularities lie on the real axis and if we are interested in the evaluation for real x, we can avoid expansions near regular points. A sequence of the singular points

$$
x_{0}<x_{1}<\ldots x_{s}<\infty=x_{s+1}=x_{-1}
$$

then for each $0 \leqslant k \leqslant s$ we make the (Moebius) transformation

$$
y_{k}(x)=\frac{a x+b}{c x+d}
$$

which maps the points x_{k-1}, x_{k}, x_{k+1} to $\mp 1,0, \pm 1$, respectively.
which maps the points x_{k-1}, x_{k}, x_{k+1} to $\mp 1,0, \pm 1$, respectively.

Explicitly,

$$
y_{k}(x)= \pm \frac{\left(x-x_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x-x_{k+1}\right)\left(x_{k-1}-x_{k}\right)+\left(x-x_{k-1}\right)\left(x_{k+1}-x_{k}\right)}
$$

which maps the points x_{k-1}, x_{k}, x_{k+1} to $\mp 1,0, \pm 1$, respectively.

Explicitly,

$$
y_{k}(x)= \pm \frac{\left(x-x_{k}\right)\left(x_{k+1}-x_{k-1}\right)}{\left(x-x_{k+1}\right)\left(x_{k-1}-x_{k}\right)+\left(x-x_{k-1}\right)\left(x_{k+1}-x_{k}\right)}
$$

The boundary conditions are included at one of the points, e.g. $x=0$ and then series expansions at other points can be obtained by matching, step by step, pairs of expansions at neighboring points.

Feynman integrals corresponding to the generalized sunset graph with two massless and three massive lines

Feynman integrals corresponding to the generalized sunset graph with two massless and three massive lines

$$
\begin{aligned}
& F_{a_{1}, \ldots, a_{14}}= \\
& \int \ldots \int \frac{d^{D} k_{1} \ldots d^{D} k_{4}\left(k_{1} \cdot p\right)^{a_{6}}\left(k_{2} \cdot p\right)^{a_{7}}\left(k_{3} \cdot p\right)^{a_{8}}\left(k_{4} \cdot p\right)^{a_{9}}}{\left(-k_{1}^{2}\right)^{a_{1}}\left(-k_{2}^{2}\right)^{a_{2}}\left(m^{2}-k_{3}^{2}\right)^{a_{3}}\left(m^{2}-k_{4}^{2}\right)^{a_{4}}\left(m^{2}-\left(\sum k_{i}+p\right)^{2}\right)^{a_{5}}} \\
& \quad \times\left(k_{1} \cdot k_{2}\right)^{a_{10}}\left(k_{1} \cdot k_{3}\right)^{a_{11}}\left(k_{1} \cdot k_{4}\right)^{a_{12}}\left(k_{2} \cdot k_{3}\right)^{a_{13}}\left(k_{2} \cdot k_{4}\right)^{a_{14}}
\end{aligned}
$$

with $x=p^{2} / m^{2}$.

Feynman integrals corresponding to the generalized sunset graph with two massless and three massive lines

$$
\begin{aligned}
& F_{a_{1}, \ldots, a_{14}}= \\
& \int \ldots \int \frac{d^{D} k_{1} \ldots d^{D} k_{4}\left(k_{1} \cdot p\right)^{a_{6}}\left(k_{2} \cdot p\right)^{a_{7}}\left(k_{3} \cdot p\right)^{a_{8}}\left(k_{4} \cdot p\right)^{a_{9}}}{\left(-k_{1}^{2}\right)^{a_{1}}\left(-k_{2}^{2}\right)^{a_{2}}\left(m^{2}-k_{3}^{2}\right)^{a_{3}}\left(m^{2}-k_{4}^{2}\right)^{a_{4}}\left(m^{2}-\left(\sum k_{i}+p\right)^{2}\right)^{a_{5}}} \\
& \quad \times\left(k_{1} \cdot k_{2}\right)^{a_{10}}\left(k_{1} \cdot k_{3}\right)^{a_{11}}\left(k_{1} \cdot k_{4}\right)^{a_{12}}\left(k_{2} \cdot k_{3}\right)^{a_{13}}\left(k_{2} \cdot k_{4}\right)^{a_{14}}
\end{aligned}
$$

with $x=p^{2} / m^{2}$.
There are four master integrals in this family.

Feynman integrals corresponding to the generalized sunset graph with two massless and three massive lines

$$
\begin{aligned}
& F_{3_{1}, \ldots, a_{14}}= \\
& \int \ldots \int \frac{\mathrm{d}^{D} k_{1} \ldots \mathrm{~d}^{D} k_{4}\left(k_{1} \cdot p\right)^{a^{2}}\left(k_{2} \cdot p\right)^{2^{7}}\left(k_{3} \cdot p\right)^{2_{8}}\left(k_{4} \cdot p\right)^{a^{9}}}{\left(-k_{1}^{2}\right)^{a_{1}}\left(-k_{2}^{2}\right)^{a_{2}}\left(m^{2}-k_{3}^{2}\right)^{a_{3}}\left(m^{2}-k_{4}^{2}\right)^{a_{4}}\left(m^{2}-\left(\sum k_{i}+p\right)^{2 a^{25}}\right.} \\
& \times\left(k_{1} \cdot k_{2}\right)^{a_{10}}\left(k_{1} \cdot k_{3}\right)^{a_{11}}\left(k_{1} \cdot k_{4}\right)^{a_{21}}\left(k_{2} \cdot k_{3}\right)^{a_{13}}\left(k_{2} \cdot k_{4}\right)^{a_{14}} \text {, }
\end{aligned}
$$

with $x=p^{2} / m^{2}$.
There are four master integrals in this family. We choose

$$
J_{0}=\left\{F_{1,1,1,1,1,0, \ldots, 0}, F_{1,1,2,1,1,0, \ldots, 0}, F_{1,2,1,1,1,0, \ldots, 0}, F_{1,2,1,1,2,0, \ldots, 0}\right\} .
$$

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot \boldsymbol{J}_{\mathbf{0}}$ where DE are in a global normalized Fuchsian form

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot J_{0}$ where DE are in a global normalized Fuchsian form

The singular points are

$$
x_{0}=0, x_{1}=1, x_{2}=9, x_{3}=x_{-1}=\infty
$$

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot J_{0}$ where DE are in a global normalized Fuchsian form
The singular points are

$$
x_{0}=0, x_{1}=1, x_{2}=9, x_{3}=x_{-1}=\infty
$$

The variable changes corresponding to the singular points are $f_{0}=x /(2-x), f_{1}=(x-1) /(1+7 x / 9)$,
$f_{2}=(9-x) /(7+x), f_{3}=-9 /(2 x-9)$.

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot \boldsymbol{J}_{0}$ where DE are in a global normalized Fuchsian form

The singular points are

$$
x_{0}=0, x_{1}=1, x_{2}=9, x_{3}=x_{-1}=\infty
$$

The variable changes corresponding to the singular points are $f_{0}=x /(2-x), f_{1}=(x-1) /(1+7 x / 9)$,
$f_{2}=(9-x) /(7+x), f_{3}=-9 /(2 x-9)$.
In new variables, the radii of convergence are equal to 1 .

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot \boldsymbol{J}_{0}$ where DE are in a global normalized Fuchsian form
The singular points are

$$
x_{0}=0, x_{1}=1, x_{2}=9, x_{3}=x_{-1}=\infty
$$

The variable changes corresponding to the singular points are $f_{0}=x /(2-x), f_{1}=(x-1) /(1+7 x / 9)$,
$f_{2}=(9-x) /(7+x), f_{3}=-9 /(2 x-9)$.
In new variables, the radii of convergence are equal to 1 .
For adjacent regions i and $i+1$ we search the best possible matching point which is such x that it lies between x_{i} and x_{i+1} and that $\left|f_{i}(x)\right|=\left|f_{i+1}(x)\right|$.

We turn to the basis $\boldsymbol{J}=T^{-1} \cdot J_{0}$ where DE are in a global normalized Fuchsian form
The singular points are

$$
x_{0}=0, x_{1}=1, x_{2}=9, x_{3}=x_{-1}=\infty
$$

The variable changes corresponding to the singular points are $f_{0}=x /(2-x), f_{1}=(x-1) /(1+7 x / 9)$,
$f_{2}=(9-x) /(7+x), f_{3}=-9 /(2 x-9)$.
In new variables, the radii of convergence are equal to 1 .
For adjacent regions i and $i+1$ we search the best possible matching point which is such x that it lies between x_{i} and x_{i+1} and that $\left|f_{i}(x)\right|=\left|f_{i+1}(x)\right|$.
Matching points are $\{-3,3(3-2 \sqrt{2}), 3,3(3+2 \sqrt{2})\}$.

To fix boundary conditions we choose the point $x=0$ where the integrals of the given family become vacuum integrals.

To fix boundary conditions we choose the point $x=0$ where the integrals of the given family become vacuum integrals.

To evaluate the four master integrals at $x=0$ we derive onefold Mellin-Barnes representations for them and obtain the possibility to achieve a high precision for any given coefficient in the ε-expansion.

To fix boundary conditions we choose the point $x=0$ where the integrals of the given family become vacuum integrals.

To evaluate the four master integrals at $x=0$ we derive onefold Mellin-Barnes representations for them and obtain the possibility to achieve a high precision for any given coefficient in the ε-expansion.

Using matching we perform an analytic continuation and obtain convergent series expansion in each region.

To fix boundary conditions we choose the point $x=0$ where the integrals of the given family become vacuum integrals.

To evaluate the four master integrals at $x=0$ we derive onefold Mellin-Barnes representations for them and obtain the possibility to achieve a high precision for any given coefficient in the ε-expansion.
Using matching we perform an analytic continuation and obtain convergent series expansion in each region.
The code DESS.m as well files with input data can be downloaded from https://bitbucket.org/feynmanintegrals/dess.

For example, at $x_{0}=25$, we obtain the following result (shown with a truncation to 10 digits) for the first primary integral:

$$
\begin{array}{r}
-\frac{0.25}{\epsilon^{4}}+\frac{2.125}{\epsilon^{3}}-\frac{0.2391337000}{\epsilon^{2}}-\frac{5.2663306926}{\epsilon} \\
-185.9464179437+6.5261388472 \mathrm{i} \\
-(1825.1476432369-48.9550593728 \mathrm{i}) \epsilon \\
-(8406.8551978029-176.0638485153 \mathrm{i}) \epsilon^{2} \\
-(58330.4283767260-401.9617475893 \mathrm{i}) \epsilon^{3}
\end{array}
$$

For example, at $x_{0}=25$, we obtain the following result (shown with a truncation to 10 digits) for the first primary integral:

$$
\begin{gathered}
-\frac{0.25}{\epsilon^{4}}+\frac{2.125}{\epsilon^{3}}-\frac{0.2391337000}{\epsilon^{2}}-\frac{5.2663306926}{\epsilon} \\
-185.9464179437+6.5261388472 \mathrm{i} \\
-(1825.1476432369-48.9550593728 \mathrm{i}) \epsilon \\
-(8406.8551978029-176.0638485153 \mathrm{i}) \epsilon^{2} \\
-(58330.4283767260-401.9617475893 \mathrm{i}) \epsilon^{3}
\end{gathered}
$$

We checked results at sample points (between singular points and matching points) with FIESTA [A.V. Smirnov'16].

■ An algorithm for the numerical evaluation of a set of master integrals depending nontrivially on one variable at a given real point with a required accuracy.

- An algorithm for the numerical evaluation of a set of master integrals depending nontrivially on one variable at a given real point with a required accuracy.
- The algorithm is oriented at situations where canonical form of the DE is impossible.
- An algorithm for the numerical evaluation of a set of master integrals depending nontrivially on one variable at a given real point with a required accuracy.
- The algorithm is oriented at situations where canonical form of the DE is impossible.
- We provided a computer implementation of the algorithm in a simple example.

■ An algorithm for the numerical evaluation of a set of master integrals depending nontrivially on one variable at a given real point with a required accuracy.

- The algorithm is oriented at situations where canonical form of the DE is impossible.
■ We provided a computer implementation of the algorithm in a simple example.
- This code is similar in spirit to the well-known existing codes to evaluate harmonic polylogarithms and multiple polylogarithms, where the problem of evaluation reduces to summing up appropriate series.
- An algorithm for the numerical evaluation of a set of master integrals depending nontrivially on one variable at a given real point with a required accuracy.
■ The algorithm is oriented at situations where canonical form of the DE is impossible.
■ We provided a computer implementation of the algorithm in a simple example.
- This code is similar in spirit to the well-known existing codes to evaluate harmonic polylogarithms and multiple polylogarithms, where the problem of evaluation reduces to summing up appropriate series.
■ Our public package includes tools for a decomposition of the real axis into domains, a subsequent mapping and an introduction of appropriate new variables.

Three-loop massive form factors:
complete light-fermion corrections for the vector current [R. Lee, A. Smirnov, V.S. \& M. Steinhauser]

Three-loop massive form factors:
complete light-fermion corrections for the vector current [R. Lee, A. Smirnov, V.S. \& M. Steinhauser]
Three-loop QCD corrections to F_{1} and F_{2} in the large- N_{c} limit [J. Henn, A. Smirnov, V. Smirnov \& M. Steinhauser'16]

Three-loop massive form factors:
complete light-fermion corrections for the vector current [R. Lee, A. Smirnov, V.S. \& M. Steinhauser]
Three-loop QCD corrections to F_{1} and F_{2} in the large- N_{c} limit [J. Henn, A. Smirnov, V. Smirnov \& M. Steinhauser'16]
Planar diagrams. The evaluation of the corresponding planar master integrals
[J. Henn, A. Smirnov and V. Smirnov'16]

The quark-photon vertex

$$
V^{\mu}\left(q_{1}, q_{2}\right)=\bar{u}\left(q_{1}\right) \Gamma^{\mu}\left(q_{1}, q_{2}\right) v\left(q_{2}\right),
$$

where the colour indices are suppressed and $\bar{u}\left(q_{1}\right)$ and $v\left(q_{2}\right)$ are the spinors of the quark and anti-quark, respectively. q_{1} is incoming and q_{2} is outgoing with $q_{1}^{2}=q_{2}^{2}=m^{2}$.

The quark-photon vertex

$$
V^{\mu}\left(q_{1}, q_{2}\right)=\bar{u}\left(q_{1}\right) \Gamma^{\mu}\left(q_{1}, q_{2}\right) v\left(q_{2}\right)
$$

where the colour indices are suppressed and $\bar{u}\left(q_{1}\right)$ and $v\left(q_{2}\right)$ are the spinors of the quark and anti-quark, respectively. q_{1} is incoming and q_{2} is outgoing with $q_{1}^{2}=q_{2}^{2}=m^{2}$.
Two scalar form factors (electric and magnetic form factors)

$$
\Gamma^{\mu}\left(q_{1}, q_{2}\right)=Q_{q}\left[F_{1}\left(q^{2}\right) \gamma^{\mu}-\frac{i}{2 m} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} q_{\nu}\right]
$$

where $q=q_{1}-q_{2}$ is the outgoing momentum of the photon and $\sigma^{\mu \nu}=i\left[\gamma^{\mu}, \gamma^{\nu}\right] / 2 . Q_{q}$ is the charge of the considered quark.

Results in terms of Goncharov polylogarithms of the variable x given by

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}
$$

Results in terms of Goncharov polylogarithms of the variable x given by

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}
$$

The values $x=1$ and $x=-1$ correspond to $s=0$ and $s=4 m^{2}$.

Results in terms of Goncharov polylogarithms of the variable x given by

$$
\frac{s}{m^{2}}=-\frac{(1-x)^{2}}{x}
$$

The values $x=1$ and $x=-1$ correspond to $s=0$ and $s=4 m^{2}$.

The three-loop QCD corrections to the massive quark-anti-quark-photon form factors F_{1} and F_{2} involving a closed loop of massless fermions, i.e. proportional to n_{l}.

Sample three-loop diagrams contributing to F_{1} and F_{2}

(a)

(b)

(c)

(d)

(e)

Four families of integrals corresponding to these graphs are new, i.e. they were not involved in the large- N_{c} calculation

1051

1104

1136

1147

Four families of integrals corresponding to these graphs are new, i.e. they were not involved in the large- N_{c} calculation

1051

1104

1136

1147

Agreement of our results with known results in various limits.

Four families of integrals corresponding to these graphs are new, i.e. they were not involved in the large- N_{c} calculation

1051

1104

1136

1147

Agreement of our results with known results in various limits.
We have also reproduced the two-loop results for the form factors obtained quite recently
[J. Ablinger, A. Behring, J. Blümlein, G. Falcioni,
A. De Freitas, P. Marquard, N. Rana \& C. Schneider]

A mini review of methods of evaluating Feynman integrals

-Three-loop massive form factors

Methods:

Methods:

■ IBP reduction with FIRE

Methods:

- IBP reduction with FIRE

■ Evaluation of the master integrals with DE using the private implementation of the Lee's algorithm

Methods:

- IBP reduction with FIRE

■ Evaluation of the master integrals with DE using the private implementation of the Lee's algorithm

Talk by P. Marquard

Methods:

- IBP reduction with FIRE

■ Evaluation of the master integrals with DE using the private implementation of the Lee's algorithm

Talk by P. Marquard
to be continued

