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m Integration by parts

Evaluating a family of Feynman integrals corresponding to a
given graph which are also functions of integer powers of
propagators (indices)

Fr(qi,. - qn d;a1,...,a1)
/ / (Gus- - o ks kpay, ... a)d%kd%%;, ... d%,

where /(qy,...,a.) =[], ﬁ and momenta of the
lines p; are linearly expressed in terms of the loop momenta k;

and external momenta g;.
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Apply IBP relations as
difference equations for Feynman integrals as functions of
indices.

Any integral of the given family is expressed as a linear
combination of some basic (master) integrals.

The whole problem of evaluation—

m constructing a reduction procedure

m evaluating master integrals
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Methods to evaluate master integrals
m Feynman (alpha) parameters

The modern variant (analytical evaluation)
[F. Brown, E. Panzer, O. Schnetz, A. von Manteuffel,
E. Panzer & R.M. Schabinger, M. Hidding & F. Moriello, ...

m Sector decompositions (numerical evaluation)

[T. Binoth & G. Heinrich; C. Bogner & S. Weinzierl;
A.V. Smirnov & M.N. Tentyukov; J. Carter & G. Heinrich,
S. Borowka, G. Heinrich’ et al."13-17]. Talk by S. Borowka

Public computer codes:
SecDec, sector_decomposition, FIESTA



m Mellin-Barnes representation

«0O0)>» «F»r «=>»

<

v
it

DA



m Mellin-Barnes representation

[V.A. Smirnov'99; J.B. Tausk'99]

DA



m Mellin-Barnes representation

[V.A. Smirnov'99; J.B. Tausk'99]

Public computer codes [M. Czakon, A& V. Smirnov;
D. Kosower; J. Gluza, K. Kajda & T. Riemann,...]

DA



m Mellin-Barnes representation

[V.A. Smirnov'99; J.B. Tausk'99]

Public computer codes [M. Czakon, A& V. Smirnov;
D. Kosower; J. Gluza, K. Kajda & T. Riemann,...]
Talks by

E. Dubovyk, J. Usovitsch, M. Prausa, W. Flieger, R. Boels
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m Differential equations

[A.V. Kotikov'01,

E. Remiddi'97, T. Gehrmann & E. Remiddi’00,
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m Differential equations
[A.V. Kotikov'01,

E. Remiddi'97, T. Gehrmann & E. Remiddi’00,
J. Henn'13]

Gehrmann & Remiddi: a method to evaluate master integrals.

u]
b}
it
int

DA



A mini review of methods of evaluating Feynman integrals

LA mini review

m Differential equations

Gehrmann & Remiddi: a method to evaluate master integrals.

Henn: use canonical bases.



A mini review of methods of evaluating Feynman integrals

LA mini review

m Differential equations

Gehrmann & Remiddi: a method to evaluate master integrals.

Henn: use canonical bases.
The rhs is proportional to ¢ and singularities are Fuchsian.
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How to turn to a canonical basis?
First algorithm in the case of one variable

Public implementations:
Fuchsia , talk by

epsilon

An algorithm in the case of several variables
with a public implementation

DE in talks by
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m Difference equations
S. Laporta (equations wrt exponent of a chosen propagator).
Applications
R. Lee (DRA: equations wrt dimension)
Applications

m Unitarity method
Talk by

m FDR: direct calculation of multiloop integrals in d = 4.
Talk by
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expansions near singular points

m Three-loop massive form factors: complete light-fermion
corrections for the vector current
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Solving differential equations for Feynman integrals by
expansions near singular points

Based on

Motivation

Generalized series expansion near a singular point

[
[

m Matching
m Computer code in a simple example
[

Perspectives
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Let us consider Feynman integrals with two scales and let x be
the ratio of these scales.
DE

Od =M (x,€)d,

where J is a column-vector of N primary master integrals, and
M is an N x N matrix with elements which are rational
functions of x and e = (4 — D) /2.

Turn to a canonical basis (s-basis) where DE take the form

Ohd=eM(x)J.

Then solving DE is much simpler.

The e-form is not always possible. The simplest counter
example is the two-loop sunset diagram with three equal
NON-zero masses.



Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

[L. Adams, C. Bogner, A. Schweitzer & S. Weinzierl'16;

E. Remiddi & L. Tancredi'17; M. Hidding & F. Moriello’17;

J. Broedel, C. Duhr, F. Dulat & L. Tancredi'17]
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Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

[L. Adams, C. Bogner, A. Schweitzer & S. Weinzierl'16;

E. Remiddi & L. Tancredi'17; M. Hidding & F. Moriello’17;
J. Broedel, C. Duhr, F. Dulat & L. Tancredi'17]

An example of a calculation of a full set of the master
integrals with ‘elliptic sectors’

[R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn,
F. Moriello & V.S. "16]
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Elliptic generalization of multiple polylogarithms motivated by
two-loop examples, where the e-form is impossible

An example of a calculation of a full set of the master
integrals with ‘elliptic sectors’

Elliptic functions appear only in two sectors and final results
are expressed either in terms of multiple polylogarithms or, for
the elliptic sectors, in terms of two and three-fold iterated
integrals suitable for numerical evaluation.



A mini review of methods of evaluating Feynman integrals

L Motivation

We are very far, even in lower loops orders, from answering the
following question:

‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?



A mini review of methods of evaluating Feynman integrals

L Motivation

We are very far, even in lower loops orders, from answering the

following question:
‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?

Knowing a differential system and the corresponding boundary
conditions gives almost as much information about Feynman
integrals as knowing their explicit expressions in terms of some
class of functions.



A mini review of methods of evaluating Feynman integrals

L Motivation

We are very far, even in lower loops orders, from answering the

following question:
‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?

Knowing a differential system and the corresponding boundary
conditions gives almost as much information about Feynman
integrals as knowing their explicit expressions in terms of some
class of functions.

Some properties of the integrals are more accessible via DE.



A mini review of methods of evaluating Feynman integrals

L Motivation

We are very far, even in lower loops orders, from answering the
following question:

‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?

Knowing a differential system and the corresponding boundary
conditions gives almost as much information about Feynman
integrals as knowing their explicit expressions in terms of some
class of functions.

Some properties of the integrals are more accessible via DE.
Singularities of DE provide a way to examine the branching
properties of integrals.



A mini review of methods of evaluating Feynman integrals

L Motivation

We are very far, even in lower loops orders, from answering the
following question:

‘What is the class of functions which can appear in results for
Feynman integrals in situations where e-form is impossible’?

Knowing a differential system and the corresponding boundary
conditions gives almost as much information about Feynman
integrals as knowing their explicit expressions in terms of some
class of functions.

Some properties of the integrals are more accessible via DE.
Singularities of DE provide a way to examine the branching
properties of integrals.

Numerical values of the integrals can be obtained from a
numerical solution of DE.
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L Motivation

The goal: to describe an algorithm which enables one to find a
solution of a given differential system in the form of an
e-expansion series with numerical coefficients.

The idea: to use generalized power series expansions near the
singular points of the differential system and solve difference
equations for the corresponding coefficients in these
expansions.

Using such series is very well known in mathematics.
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In high-energy physics:

(evaluating three-loop massive vacuum diagrams)

(applying general theory of DE for evaluating expansion of
two-scale integrals at a given singular point)

(evaluating expansions of solutions of DE at a given singular
point by difference equations)

(solving DE wrt 7 in propagators 1/(k? 4+ i0) — 1/(k* + in))
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L Motivation

We present (in the case of one variable)

m An algorithm to solve difference equations for coefficients
of the series expansions at a given singular point.

m A matching procedure which enables us to connect series
expansions at two neighboring points and thereby obtain
a solution of DE at all real values.

m As a proof of concept: a computer code where this
algorithm is implemented for a simple example of a family
of four-loop Feynman integrals where the e-form is
impossible.
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I—Series expansions singular points

DE
Od=M(x)J.

One can turn to a new basis, J — T - J, with the new matrix

T-Y M- T—9T).

We imply that all the singular points of DE are regular, i.e. we
can reduce the DE to a local Fuchsian form at any singular
point, i.e. if x; is a singular point then

M (x) =

X — Xj

where A;(x) is regular at x = x; and A;(x;) # 0.
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A mini review of methods of evaluating Feynman integrals

I—Series expansions singular points

General solution
J(x)=U(x)C,

where C is a column of constants, and U is an evolution
operator

U(x) = Pexp {/M(x)dx}
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The expansion is
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where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.
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I—Series expansions singular points

Expanding in a vicinity of each singular point.
Take x = 0.
The expansion is

ooKAl

U(X):ZXAZZHC(H—F)\,k)annkX,

AES n=0 k=0

where S is a finite set of powers of the form A = re with
integer r, K\ > 0 is an integer number corresponding to the
the maximal power of the logarithm.

The goal is to determine S, K), and the matrix coefficients
C(n+X\k).
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I—Series expansions singular points

Suppose that DE are in a global normalized Fuchsian form

M(x):@—i—z al

X

and for any k =0, ..., s the matrix A, is free of resonances,
i.e. the difference of any two of its distinct eigenvalues is not
integer.

In particular, the ‘elliptic’ cases, as a rule, can algorithmically
be reduced to a global normalized Fuchsian form using, e.g.,
the algorithm of Lee
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I—Series expansions singular points

Multiply both sides by the common denominator xQ(x), where

Q(x):H X — Xk) qux

with go # 0.
Define the polynomial matrix B (x, «) and its coefficients

B (a) by
B(x,a) = Q(x)(xM(x) —a) = > Bn () x

with Bo (Oé) = qO(AO — Oé).
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I—Series expansions singular points
Then the DE lead to the following recurrence relations
- BJF(B()(A + ), —Aqo, K)\)C ()\ + n, OKA)

—ZBJF A+n—m), —qm K.)C (A +n—m,0.Ky) .

(BJF means ‘Block Jordan Form’.)

C(x,0)
C(a,0.K) = : denotes a (K + 1)N x N matrix
C(o,K)
built from blocks C («, k), A 0 0
BJF(A, B, K) = 0 - 0
0 O . B
0O 0 0 A
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I—Series expansions singular points

The matrix —BJF(By(A + n), —qo, K)) on the lhs of the
difference equation is invertible for A € S and n > 0 because

det BIF(Bo(A + n), —qo, Ky) = (det Bo(A + n))" "
g7 [det(Ag — A — n)]f T

with go # 0 and (due to the absence of resonances in Ap)
det(Ao — A= n) 7& 0,

The recurrence relation takes the form

C(A+n,0.K)) = XS: T(A,n,m)C(A+n—m,0.K,),

with m=
T()‘> n, m) = [BJF(BO()‘ + n)> —do;, K)\)]_l

X BJE(Bn(A+n—m), —qm, K) -
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I—Series expansions singular points

This finite-order recurrence relation, together with the initial
conditions, is solved with a linear growth of the computational
complexity wrt the number of expansion terms.

The evolution operator U is determined up to a multiplication
by a constant matrix from the right. We fix it by the condition

U(x) =0 x40

We determine S, i.e. the set of distinct eigenvalues of Ay, and
K., i.e. the highest power of the logarithm, and the leading
coefficients C(\, k), representing

Kx

xA = ZXAZ%C()\, k) In* x .

AeS k=0



A mini review of methods of evaluating Feynman integrals
L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.



A mini review of methods of evaluating Feynman integrals
L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.



A mini review of methods of evaluating Feynman integrals
L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.

Suppose that the next singular point closest to the origin is
x=1.



A mini review of methods of evaluating Feynman integrals

L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.

Suppose that the next singular point closest to the origin is
x = 1.

We can construct the evolution operator also in an expansion
near this point.



A mini review of methods of evaluating Feynman integrals

L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.

Suppose that the next singular point closest to the origin is
x = 1.

We can construct the evolution operator also in an expansion
near this point. Let it be U (x).



A mini review of methods of evaluating Feynman integrals
L Matching

After solving the recurrence relations, the evolution operator
can be evaluated within the convergence region of the power
series.

In order to perform an analytical continuation to the whole
complex plane, one may use the same approach for the
expansion around other singular points.

Suppose that the next singular point closest to the origin is
x=1.

We can construct the evolution operator also in an expansion
near this point. Let it be U (x). Due to the freedom in
definition of the evolution operator, we have

Ux)=U(x)L.

where L is a constant matrix.



To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2.

«0O)>» «F)»r « =

DA



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U~ (1/2) U (1/2),



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U~'(1/2) U (1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U~'(1/2) U (1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .

Analytic continuation to the whole complex plane of x.



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U~'(1/2) U (1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .

Analytic continuation to the whole complex plane of x.

In the case where the singularities lie on the real axis and if we
are interested in the evaluation for real x, we can avoid
expansions near regular points.



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U~'(1/2) U (1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .

Analytic continuation to the whole complex plane of x.
In the case where the singularities lie on the real axis and if we
are interested in the evaluation for real x, we can avoid
expansions near regular points. A sequence of the singular
points

Xo < X3 <...Xs <00 = Xs41 = X1



A mini review of methods of evaluating Feynman integrals
L Matching

To fix L, choose a point which belongs to both regions of
convergence, e.g. x = 1/2. We obtain L = U™ (1/2) U(1/2),
so that in the whole convergence region of U we have

Ux)=Ux) 0 (1/2)U(1)2) .

Analytic continuation to the whole complex plane of x.
In the case where the singularities lie on the real axis and if we
are interested in the evaluation for real x, we can avoid
expansions near regular points. A sequence of the singular
points

Xo < X3 <...Xs <00 = Xs41 = X1

then for each 0 < k <'s we make the (Moebius)

transformation
ax+ b

cx +d

yk(x) =



which maps the points xx_1, Xk, Xxy1 to F1, 0, +1,
respectively.
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Explicitly,

(x = xk) (Xk+1 — Xk—1)
(x = Xoq1) (X1 — xic) + (X = Xu—1) (Xkg1 — Xx)

yi(x) =+
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L Matching

which maps the points xx_1, Xk, Xxy1 to F1, 0, +1,
respectively.

Explicitly,

(x = xk) (Xk+1 — Xk—1)

yi(x) = i(x — Xkt 1) (Xk—1 — Xk) + (X — Xe—1) (Xe1 — xk)

The boundary conditions are included at one of the points,
e.g. x = 0 and then series expansions at other points can be
obtained by matching, step by step, pairs of expansions at
neighboring points.
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I—Compul:er code in a simple example

Feynman integrals corresponding to the generalized sunset
graph with two massless and three massive lines

317 414 T

/ / d® k1 .dPky (ky - p)?e(ka - p)?7 (ks - p)? (ks - p)*
R ()R — Ry — K)es(m? — (K P
(k1 - kp)M0(ky - k3)?* (ky - ka)?2 (ko - k3)™2 (ko - ka)™*

with x = p?/m?.
There are four master integrals in this family. We choose

Jo = {F1,1,1,1,1,0,...,0, Fii12110,..05 F121110,..0 F1,2,1,1,2,0,...,0}-
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I—Compul:er code in a simple example

We turn to the basis J = T~ - Jy where DE are in a global
normalized Fuchsian form

The singular points are
X=0,xx=1,x%=9 x3=x1 =00

The variable changes corresponding to the singular points are
fo=x/(2—x),fi=(x—1)/(1+7x/9),
h=09—x)/(T+x),=-9/(2x —9).

In new variables, the radii of convergence are equal to 1.

For adjacent regions i and i + 1 we search the best possible
matching point which is such x that it lies between x; and x;;

and that |fi(x)| = |fiy1(x)].
Matching points are {—3,3(3 — 2v/2),3,3(3 +2v2)}.
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I—Compul:er code in a simple example

To fix boundary conditions we choose the point x = 0 where
the integrals of the given family become vacuum integrals.

To evaluate the four master integrals at x = 0 we derive
onefold Mellin-Barnes representations for them and obtain the
possibility to achieve a high precision for any given coefficient
in the e-expansion.

Using matching we perform an analytic continuation and
obtain convergent series expansion in each region.

The code DESS.m as well files with input data can be
downloaded from
https://bitbucket.org/feynmanintegrals/dess.


https://bitbucket.org/feynmanintegrals/dess
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I—Compul:er code in a simple example

For example, at xo = 25, we obtain the following result (shown
with a truncation to 10 digits) for the first primary integral:

025 n 2.125  0.2391337000  5.2663306926
2

=z €3 € €
— 185.9464179437 + 6.5261388472 1
— (1825.1476432369 — 48.95505937281)¢
— (8406.8551978029 — 176.0638485153 1)62

— (58330.4283767260 — 401.9617475893i)¢>.
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I—Compul:er code in a simple example

For example, at xo = 25, we obtain the following result (shown
with a truncation to 10 digits) for the first primary integral:

025 n 2.125  0.2391337000  5.2663306926
2

=z €3 € €
— 185.9464179437 + 6.5261388472 1
— (1825.1476432369 — 48.95505937281)¢
— (8406.8551978029 — 176.0638485153 1)62

— (58330.4283767260 — 401.9617475893i)¢>.

We checked results at sample points (between singular points
and matching points) with FIESTA
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L Perspectives

m An algorithm for the numerical evaluation of a set of
master integrals depending nontrivially on one variable at
a given real point with a required accuracy.

m The algorithm is oriented at situations where canonical
form of the DE is impossible.

m We provided a computer implementation of the algorithm
in a simple example.

m This code is similar in spirit to the well-known existing
codes to evaluate harmonic polylogarithms and multiple
polylogarithms, where the problem of evaluation reduces
to summing up appropriate series.

m Our public package includes tools for a decomposition of

the real axis into domains, a subsequent mapping and an
introduction of appropriate new variables.
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I—Three—loop massive form factors

Three-loop massive form factors:
complete light-fermion corrections for the vector current

Three-loop QCD corrections to F; and F; in the large-N, limit

Planar diagrams. The evaluation of the corresponding planar
master integrals
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I—Three—loop massive form factors

The quark-photon vertex

VE(q1, q2) = (1) (g1, 92)v(q2)

where the colour indices are suppressed and @(q;) and v(qgz)
are the spinors of the quark and anti-quark, respectively. g; is

incoming and g, is outgoing with ¢ = g2 = m°.

Two scalar form factors (electric and magnetic form factors)

i
_F2(q2)0—lwa/ 9

ru(qb CI2) == Qq Fl(qz)’)/u - o'm

where g = gq; — @5 is the outgoing momentum of the photon
and o = i[y*,7"]/2. Qq is the charge of the considered
quark.
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I—Three—loop massive form factors

Results in terms of Goncharov polylogarithms of the variable x
given by
s (1 — x)?

m?2 X

The values x = 1 and x = —1 correspond to
s=0and s = 4m°.

The three-loop QCD corrections to the massive
quark-anti-quark-photon form factors F; and F, involving a
closed loop of massless fermions, i.e. proportional to ny.
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I—Three—loop massive form factors

Sample three-loop diagrams contributing to F; and F;

(a) (b) () (d) (e)
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I—Three—loop massive form factors

Four families of integrals corresponding to these graphs are
new, i.e. they were not involved in the large-N, calculation

1051 1104 1136 1147

Agreement of our results with known results in various limits.
We have also reproduced the two-loop results for the form
factors obtained quite recently
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to be continued



