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Apply IBP relations [K.G. Chetyrkin & F.V. Tka
hov℄ as

di�eren
e equations for Feynman integrals as fun
tions of

indi
es.

Any integral of the given family is expressed as a linear


ombination of some basi
 (master) integrals.

The whole problem of evaluation→

onstru
ting a redu
tion pro
edure

evaluating master integrals
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Gehrmann & Remiddi: a method to evaluate master integrals.

Henn: use 
anoni
al bases.

The rhs is proportional to ε and singularities are Fu
hsian.
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Turn to a 
anoni
al basis (ε-basis) where DE take the form

∂
x

J = ǫM (x) J .

Then solving DE is mu
h simpler.

The ε-form is not always possible. The simplest 
ounter

example is the two-loop sunset diagram with three equal

non-zero masses.
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iani, V. Del Du
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Ellipti
 fun
tions appear only in two se
tors and �nal results

are expressed either in terms of multiple polylogarithms or, for
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 se
tors, in terms of two and three-fold iterated

integrals suitable for numeri
al evaluation.
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lass of fun
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Some properties of the integrals are more a

essible via DE.

Singularities of DE provide a way to examine the bran
hing

properties of integrals.

Numeri
al values of the integrals 
an be obtained from a

numeri
al solution of DE.
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The idea: to use generalized power series expansions near the

singular points of the di�erential system and solve di�eren
e

equations for the 
orresponding 
oe�
ients in these

expansions.

Using su
h series is very well known in mathemati
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(evaluating expansions of solutions of DE at a given singular

point by di�eren
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(solving DE wrt η in propagators 1/(k2 + i0) → 1/(k2 + iη))
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oe�
ients

of the series expansions at a given singular point.

A mat
hing pro
edure whi
h enables us to 
onne
t series

expansions at two neighboring points and thereby obtain

a solution of DE at all real values.

As a proof of 
on
ept: a 
omputer 
ode where this

algorithm is implemented for a simple example of a family

of four-loop Feynman integrals where the ǫ-form is

impossible.
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DE

∂
x

J = M (x) J .

One 
an turn to a new basis, J → T · J, with the new matrix

T

−1(M · T − ∂
x

T ).

We imply that all the singular points of DE are regular, i.e. we


an redu
e the DE to a lo
al Fu
hsian form at any singular

point, i.e. if x

i

is a singular point then

M (x) =
A

i

(x)

x − x

i

where A

i

(x) is regular at x = x

i

and A

i

(x
i

) 6= 0.
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General solution

J (x) = U (x)C ,

where C is a 
olumn of 
onstants, and U is an evolution

operator

U (x) = P exp

[∫

M (x) dx

]

.



A mini review of methods of evaluating Feynman integrals

Series expansions singular points

Expanding in a vi
inity of ea
h singular point.



A mini review of methods of evaluating Feynman integrals

Series expansions singular points

Expanding in a vi
inity of ea
h singular point.

Take x = 0.



A mini review of methods of evaluating Feynman integrals

Series expansions singular points

Expanding in a vi
inity of ea
h singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞∑

n=0

Kλ∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number 
orresponding to the

the maximal power of the logarithm.



A mini review of methods of evaluating Feynman integrals

Series expansions singular points

Expanding in a vi
inity of ea
h singular point.

Take x = 0.

The expansion is

U (x) =
∑

λ∈S

x

λ

∞∑

n=0

Kλ∑

k=0

1

k!
C (n + λ, k) xn lnk x ,

where S is a �nite set of powers of the form λ = rǫ with
integer r , Kλ > 0 is an integer number 
orresponding to the

the maximal power of the logarithm.

The goal is to determine S , Kλ, and the matrix 
oe�
ients

C (n + λ, k).
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Suppose that DE are in a global normalized Fu
hsian form

M (x) =
A

0

x

+

s∑

k=1

A

k

x − x

k

and for any k = 0, . . . , s the matrix A

k

is free of resonan
es,

i.e. the di�eren
e of any two of its distin
t eigenvalues is not

integer.

In parti
ular, the `ellipti
' 
ases, as a rule, 
an algorithmi
ally

be redu
ed to a global normalized Fu
hsian form using, e.g.,

the algorithm of Lee [R.N. Lee'14℄.
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Multiply both sides by the 
ommon denominator xQ(x), where

Q (x) =

s∏

k=1

(x − x

k

) =

s∑

m=0

q

m

x

m .

with q

0

6= 0.

De�ne the polynomial matrix B (x , α) and its 
oe�
ients

B

m

(α) by

B (x , α) = Q (x) (xM (x)− α) =

s∑

m=0

B

m

(α) xm .

with B

0

(α) = q

0

(A
0

− α).
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Then the DE lead to the following re
urren
e relations

− BJF(B
0

(λ+ n),−q

0

,Kλ)C (λ+ n, 0..Kλ)

=
s∑

m=1

BJF(B
m

(λ+ n −m) ,−q

m

,Kλ)C (λ+ n −m, 0..Kλ) .

(BJF means `Blo
k Jordan Form'.)

C (α, 0..K ) =






C (α, 0)
.

.

.

C (α,K )




 denotes a (K + 1)N × N matrix

built from blo
ks C (α, k),

BJF(A,B,K ) =








A B 0 0

0

.

.

.

.

.

.

0

0 0

.

.

.

B

0 0 0 A








︸ ︷︷ ︸

K+1
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,Kλ) = (detB
0
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= q

(Kλ+1)n
0
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0

− λ− n)]Kλ+1

with q

0

6= 0 and (due to the absen
e of resonan
es in A

0

)

det(A
0

− λ− n) 6= 0,

The re
urren
e relation takes the form

C (λ+ n, 0..Kλ) =

s∑

m=1

T (λ, n,m)C (λ+ n −m, 0..Kλ) ,

with

T (λ, n,m) = − [BJF(B
0

(λ+ n),−q

0

,Kλ)]
−1

× BJF(B
m

(λ+ n −m) ,−q

m

,Kλ) .
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This �nite-order re
urren
e relation, together with the initial


onditions, is solved with a linear growth of the 
omputational


omplexity wrt the number of expansion terms.

The evolution operator U is determined up to a multipli
ation

by a 
onstant matrix from the right. We �x it by the 
ondition

U(x)
x→0∼ x

A

0

We determine S , i.e. the set of distin
t eigenvalues of A

0

, and

Kλ, i.e. the highest power of the logarithm, and the leading


oe�
ients C (λ, k), representing

x

A

0 =
∑

λ∈S

x

λ

Kλ∑

k=0

1

k!
C (λ, k) lnk x .
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Mat
hing

After solving the re
urren
e relations, the evolution operator


an be evaluated within the 
onvergen
e region of the power

series.

In order to perform an analyti
al 
ontinuation to the whole


omplex plane, one may use the same approa
h for the

expansion around other singular points.

Suppose that the next singular point 
losest to the origin is

x = 1.

We 
an 
onstru
t the evolution operator also in an expansion

near this point. Let it be Ũ (x). Due to the freedom in

de�nition of the evolution operator, we have

U (x) = Ũ (x) L .

where L is a 
onstant matrix.
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−1 (1/2)U (1/2),
so that in the whole 
onvergen
e region of Ũ we have
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U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti
 
ontinuation to the whole 
omplex plane of x .

In the 
ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we 
an avoid

expansions near regular points. A sequen
e of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1



A mini review of methods of evaluating Feynman integrals

Mat
hing

To �x L, 
hoose a point whi
h belongs to both regions of


onvergen
e, e.g. x = 1/2. We obtain L = Ũ

−1 (1/2)U (1/2),
so that in the whole 
onvergen
e region of Ũ we have

U (x) = Ũ (x) Ũ−1 (1/2)U (1/2) .

Analyti
 
ontinuation to the whole 
omplex plane of x .

In the 
ase where the singularities lie on the real axis and if we

are interested in the evaluation for real x , we 
an avoid

expansions near regular points. A sequen
e of the singular

points

x

0

< x

1

< . . . x
s

< ∞ = x

s+1

= x−1

then for ea
h 0 6 k 6 s we make the (Moebius)

transformation

y

k

(x) =
ax + b


x + d
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Mat
hing

whi
h maps the points x

k−1

, x

k

, x

k+1

to ∓1, 0, ±1,

respe
tively.

Expli
itly,

y

k

(x) = ± (x − x

k

) (x
k+1

− x

k−1

)

(x − x

k+1

)(x
k−1

− x

k

) + (x − x

k−1

)(x
k+1

− x

k

)

The boundary 
onditions are in
luded at one of the points,

e.g. x = 0 and then series expansions at other points 
an be

obtained by mat
hing, step by step, pairs of expansions at

neighboring points.
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D

k
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. . . d
D

k

4

(k
1

· p)a6(k
2

· p)a7(k
3

· p)a8(k
4

· p)a9
(−k2

1

)a1(−k2
2

)a2(m2 − k

2

3

)a3(m2 − k

2

4

)a4(m2 − (
∑

k

i

+ p)2)a5

× (k
1

· k
2

)a10(k
1

· k
3

)a11(k
1

· k
4

)a12(k
2

· k
3

)a13(k
2

· k
4

)a14 ,

with x = p

2/m2
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)a14 ,

with x = p

2/m2

.

There are four master integrals in this family. We 
hoose

J

0

= {F
1,1,1,1,1,0,...,0, F1,1,2,1,1,0,...,0, F1,2,1,1,1,0,...,0, F1,2,1,1,2,0,...,0} .
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f
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= (9− x)/(7+ x), f
3

= −9/(2x − 9).

In new variables, the radii of 
onvergen
e are equal to 1.

For adja
ent regions i and i + 1 we sear
h the best possible

mat
hing point whi
h is su
h x that it lies between x

i

and x

i+1

and that |f
i

(x)| = |f
i+1

(x)|.
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We turn to the basis J = T

−1 · J
0

where DE are in a global

normalized Fu
hsian form

The singular points are

x

0

= 0, x
1

= 1, x
2

= 9, x
3

= x−1

= ∞
The variable 
hanges 
orresponding to the singular points are

f

0

= x/(2− x), f
1

= (x − 1)/(1+ 7x/9),
f

2

= (9− x)/(7+ x), f
3

= −9/(2x − 9).

In new variables, the radii of 
onvergen
e are equal to 1.

For adja
ent regions i and i + 1 we sear
h the best possible

mat
hing point whi
h is su
h x that it lies between x

i

and x

i+1

and that |f
i

(x)| = |f
i+1

(x)|.
Mat
hing points are {−3, 3(3− 2

√
2), 3, 3(3+ 2

√
2)}.
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Computer 
ode in a simple example

To �x boundary 
onditions we 
hoose the point x = 0 where

the integrals of the given family be
ome va
uum integrals.

To evaluate the four master integrals at x = 0 we derive

onefold Mellin-Barnes representations for them and obtain the

possibility to a
hieve a high pre
ision for any given 
oe�
ient

in the ε-expansion.

Using mat
hing we perform an analyti
 
ontinuation and

obtain 
onvergent series expansion in ea
h region.

The 
ode DESS.m as well �les with input data 
an be

downloaded from

https://bitbu
ket.org/feynmanintegrals/dess.

https://bitbucket.org/feynmanintegrals/dess
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For example, at x

0

= 25, we obtain the following result (shown

with a trun
ation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .
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Computer 
ode in a simple example

For example, at x

0

= 25, we obtain the following result (shown

with a trun
ation to 10 digits) for the �rst primary integral:

− 0.25

ǫ4
+

2.125

ǫ3
− 0.2391337000

ǫ2
− 5.2663306926

ǫ

− 185.9464179437+ 6.5261388472 i

− (1825.1476432369− 48.9550593728 i)ǫ

− (8406.8551978029− 176.0638485153 i)ǫ2

− (58330.4283767260− 401.9617475893 i)ǫ3 .

We 
he
ked results at sample points (between singular points

and mat
hing points) with FIESTA [A.V. Smirnov'16℄.
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Perspe
tives

An algorithm for the numeri
al evaluation of a set of

master integrals depending nontrivially on one variable at

a given real point with a required a

ura
y.

The algorithm is oriented at situations where 
anoni
al

form of the DE is impossible.

We provided a 
omputer implementation of the algorithm

in a simple example.

This 
ode is similar in spirit to the well-known existing


odes to evaluate harmoni
 polylogarithms and multiple

polylogarithms, where the problem of evaluation redu
es

to summing up appropriate series.

Our publi
 pa
kage in
ludes tools for a de
omposition of

the real axis into domains, a subsequent mapping and an

introdu
tion of appropriate new variables.
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Three-loop massive form fa
tors:


omplete light-fermion 
orre
tions for the ve
tor 
urrent

[R. Lee, A. Smirnov, V.S. & M. Steinhauser℄

Three-loop QCD 
orre
tions to F

1

and F

2

in the large-N




limit

[J. Henn, A. Smirnov,V. Smirnov & M. Steinhauser'16℄

Planar diagrams. The evaluation of the 
orresponding planar

master integrals

[J. Henn, A. Smirnov and V. Smirnov'16℄
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µ(q
1

, q
2

) = ū(q
1

)Γµ(q
1

, q
2

)v(q
2
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where the 
olour indi
es are suppressed and ū(q
1

) and v(q
2

)
are the spinors of the quark and anti-quark, respe
tively. q

1

is

in
oming and q

2

is outgoing with q

2

1

= q

2

2

= m

2

.
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The quark-photon vertex

V

µ(q
1

, q
2

) = ū(q
1

)Γµ(q
1

, q
2

)v(q
2

) ,

where the 
olour indi
es are suppressed and ū(q
1

) and v(q
2

)
are the spinors of the quark and anti-quark, respe
tively. q

1

is

in
oming and q

2

is outgoing with q

2

1

= q

2

2

= m

2

.

Two s
alar form fa
tors (ele
tri
 and magneti
 form fa
tors)

Γµ(q
1

, q
2

) = Q

q

[

F

1

(q2)γµ − i

2m

F

2

(q2)σµν
qν

]

,

where q = q

1

− q

2

is the outgoing momentum of the photon

and σµν = i [γµ, γν]/2. Q
q

is the 
harge of the 
onsidered

quark.
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Three-loop massive form fa
tors

Results in terms of Gon
harov polylogarithms of the variable x

given by

s

m

2

= −(1− x)2

x

The values x = 1 and x = −1 
orrespond to

s = 0 and s = 4m

2

.

The three-loop QCD 
orre
tions to the massive

quark-anti-quark-photon form fa
tors F

1

and F

2

involving a


losed loop of massless fermions, i.e. proportional to n

l

.
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Sample three-loop diagrams 
ontributing to F

1

and F

2

(a) (b) (
) (d) (e)
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Agreement of our results with known results in various limits.

We have also reprodu
ed the two-loop results for the form

fa
tors obtained quite re
ently

[J. Ablinger, A. Behring, J. Bl�umlein, G. Fal
ioni,

A. De Freitas, P. Marquard, N. Rana & C. S
hneider℄
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to be 
ontinued


