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Multi-particle collisions as the next frontier

picture: Quanta Magazine

* at high energies, many particles produced
* challenge to evaluate the virtual corrections

* Les Houches 2017 wishlist, e.g.

pp — 3jets  pp— H +2jets  pp—V + 2 jets

* challenge: 5-particle processes at NNLO



Bootstrap approach

2 kinematic dependence
D =4 — 2e¢ dimension |

A(Z, €) = Z Cijk — fe(T) + O(e)

62

1,0,k
* Laurent expansion in ¢

controlled by leading singularities, generalized cuts

* special functions
ansatz (educated guess, information from Feynman integrals)

* unknowns: finite number of coefficients
fix from physical input, e.g. soft and Regge limit, discontinuities




Bootstrap (pre)history

* |960’s: determine S-matrix
from analytic properties

* 1994:°One loop n point gauge theory Bern, Dixon.
amplitudes, unitarity and collinear limits’ 2" osower

* 201 |: bootstrap in planar maximally [Dixon, Drummond, JMH]
supersymmetric Yang-Mills theory

many further developments [Almelid, Bartels, Bargheer, Caron-Huot, Del Duca, Dixon, Druc,
Drummond, Duhr, Dulat, Gardi, Harrington, JMH, von Hippel, Marzucca, McLeod, Paulos,Pennington,
Parker, Papathanasiou, Scherlis, Schomerus, Sprenger, Spradlin, Trnka, Verbeek,Volovich]

* 2017:first application to multi-loop QCD
integrals, non-planar [Chicherin, JMH, Mitev]



Bootstrapping pentagon functions

[arXiv:1712.09610 [hep-th]] with D. Chicherin and V. Mitev

Dima Viladimir

Many thanks to my fantastic collaborators!
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Strange Numbers Found in Particle Collisions

An unexpected connection has emerged between the results of physics experiments and an
important, seemingly unrelated set of numbers in pure mathematics.

By Kevin Hartnett
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Strange Numbers Found in Particle Collisions

An unexpected connection has emerged between the results of physics experiments and an
important, seemingly unrelated set of numbers in pure mathematics.

By Kevin Hartnett

Xiaolin Zeng for Quanta Magazine

1 2
Strange numbers,e.g. =) 5= %

E>1

...coming from

: : : : . v d :
interesting special functions, e.g. Lix(z) = —/O log(1 — y)gy, Liz(1) = G2

AF &) = e (7) (@) + O(e)

— €
1,7,k



Multiple polylogarithms, iterated integrals,
symbols, and all that...

* many Feynman integrals evaluate to multiple

polylogarithms; conveniently described by ‘symbols’
[Goncharov, Spradlin,Volovich,Vergu, 2010]

* those special functions are best thought of as

solutions to differential equations in canonical form
[JMH, 2013]

—

df(Ze) =ed | > Aplogon(Z)| f(Ze)

constant matrices |etters (alphabet)




Iterated integrals

* Logarithm and dilogarithm are first examples of iterated integrals
with special 'd-log " integration kernels
dt —dt dt

@ _ —% _ dlog(1 — D dlog(1 4+
; dlogt —; = dlog(1 1) g = dlog(1+1)

* these are called harmonic polylogarithms (HPL)  [Remiddi,Vermaseren]

v diCl /:131 dCBQ
eg. Hi_+(x) =
L 1( ) /O 1 — X1 Jo 1 —|—QZ‘2

* Natural generalization: multiple polylogarithms  riso: hyperlogarithms;

Gonch lyl ith
allow kernels w = dlog(t — a) oncharov polylogarithms]

Gal,...an(z):/ at Gag,...,an(t)
0

t—CLl

* Chen iterated integrals
/ W13 . . . Wn C : [O, 1] —— M (space of kinematical variables)
C

Alphabet: set of differential forms w; = dlog q;



The kinematic invariants

For five points we have
e s = 2p;- p; = (ij|ji] of which five are independent:

Vi = 512 Vo = S23 -+ V5 = 551

where A = det(2p,- - pj)



The alphabet

The planar case Ap

W; = vi = 2p1 - po and 4 cyclic
Ws = v3 + v4 = 2p4 - (3 + ps) and 4 cyclic
Wit = v —v4 = 2p3 - (P4 + PS) and 4 cyclic

Wie = vi + vo — v4 = —2p4 - p3 and 4 cyclic

W26 _ V{iVo—VoV3+V3V4—ViV5—V4V5— VA

and 4 cyclic
ViVo—VaV3+VaVa—Vi Vs—VaVs+ VA y

Wi, = VA



The alphabet

The non-planar case Anp
o Wi = vy =2ps:poand4 cyclic

o Wg =vVv3+Vv4=2p4- (p3 + p5) and 4 cyclic
o Wi1 =vi—v4 =2p3- (p4 + PS) and 4 cyclic
o Wig =Vvi+ vo— vy =-2p1 - p3and 4 cyclic

o Woi =v3+Vv4—vVvi—Vo=2p3- (p1 - P4) and 4 cyclic

W26 _ V{Vo—VoV3+V3V4—V{V5—V4V5— VA
ViVo—VoV3+V3V4—ViVs—V4V5+ VA

o W3 = VA

and 4 cyclic

Even and odd

fpie R = VA* = —-+A
Hence W = W' and log(W;") = —log(W) for j = 26, ..., 30



Symbols of the functions

Once we have the alphabet, we can construct
the symbol of all the functions F

At weight w, the symbol looks like

—

constants

It's a short form for “iterated integrals”

(Wa,,...,W, ]| = fdlog(Wa1)---deog(WaW)



‘'symbols’ vs. iterated integrals

* roughly speaking, symbols are iterated
integrals, forgetting about integration constants

* upgrade to functions by specifying boundary point

* example:
Definition: boundary point v; = —1.
W3 /W1, Wis/Wh] = |v3/v1,1 — v3/v1]

— yvl_y
| | -

v3 /v1 Y
:/ dlog(1l — y)/ dlog(z)
1 1

— _Li, (1 _ @)
U1



The transcendental functions

Planar case
All planar pentagon functions F; are known to 2-loops from

‘Gehrmann, Henn, LoPresti, 2015]  [related work: Papadopoulos,
' Tommasini, Wever, 201 5]

ts alphabet Ap has 26 letters

Non-planar case

At the non-planar level, there is a natural generalization of the
alphabet by making it permutation invariant

The alphabet Anp has 31 letters [Chicherin, J]MH, Mitev, 2017]



Integrability of the symbols

q The function F that

represents should be invariant under infinitesi-
P mal deformations of the integration contour

“The rotation is zero”

This imposes

—~ dlog W, dlog Wi,
Zam ..... aW[...Wai, Wai—|—1’...]{ avr aVS +1 —(I’<—>S) :O

forallr<s=1,....,.5andi=1,...,w-—1



The first and second entry conditions

First entry condition

o Planar case: s1» and 4 cyclic permutation: {W;}>_,

20

o Non-planar case: si2 and 9 permutation: {W;}>_, U {W;}22.

Second entry condition

o Experimental fact in the planar case that some pairs
[Wi, W,,---] do not appear in the Feynman integrals

e |n the non-planar case we close the pairs under Ss
permutations



How many functions do we have?
o Weight 0: one function, the constant

o Weight 1: 10 functions due to the first entry condition
|OQ(S,‘j) with symbols [W1], ce ey [W5], [W16], ce e [WQO]

o Weight 2: 79 functions written as products of logs and
dilogarithms in the W, letters

e Weight 3: 616 functions

o Weight 4: 4927 functions



Mellin-Barnes integral representation
Main identity

o dz V4 a—2z
(X—|- Y)a B a)f o [(-z)l (a+2z)X°Y" (%)

Procedure and Properties
e Start with Feynman parametrization of  and use (x)

I:f[dx]# F = X1X3S12 + - -
N + 1 terms in Feynman polynomial = N-fold MB integral
e The MB representation is not unique!

e In the non-planar case beware of (—1)
Use global Feynman parametrization



Advantages of the MB representation

Derivatives and limits are easy

Using packages such as MB, MBasymptotics, MBsum, ...
one can easily compute limits

The limits reduce the number of integrations

Discontinuities are easy

1 . .
Discyf(X)x=-y = — [f(ye_’”) — f(ye’”)] , ¥y>0.

2mi
= Discy [f dz XZQ(Z)L_—y = — fdz y? F(—zfr((z1) )




Summary bootstrap strategy

2 kinematic dependence
D =4 — 2e¢ dimension

. 1 .
A(Z,e) =) Cijk f1(Z) + Ofe)
1,J,K
° computed by leading singularities

see e.g. [Arkani-Hamed, Bourijaily, Cachazo, Trnka, 2010]
* special functions: pentagon functions

¢ fix coefficients from Mellin-Barnes limits, discontinuities

* we apply this to integrals of the topologies:




The topology (i)

-3 5
 pP(e) (e e,
iy =7 (=3¢) J (2ri)° l_[ (=2)

(24 2€+ 212345) (1 + Z1.45)
[(2 + Z1.45)
F(—1 — 2€ — 21,2,4)F(—1 — 2€ — Z1,3,5)

4 X

r(—26 — Z1 ,2,4)r(—26 — Z1 ’3,5)
X (—815)“" (—812)*? (—513)*® (—S25)“

> (_335)25 (_323)—2—26—21 23,45

Zii = Zip + o+ Zj [dz] = dzy...dzs



Ansatz

1 [P Ps
[ = | - P4+ O
0= Vrle T 4 + O(¢)
where each ¥, is an MB integral
Weight 2| 3 4

# of odd symbols for the topology (i) | 9 | 180 | 2730
with first entries sqo, S34, . .. 1 13 143
So X 83 symmetry 1 4 21

second entry condition 1 3 12




Weight 2

SB|[P>] 202( — [Wh, Wao| — [W3, Wog]
+ Wy, Wag| 4 [Wa, Wso] + [Ws, Wog]
+ [Ws, Wao] — [Wie, Wog] — [W47, Wso])

Discontinuities
Discy, .o SB[P>] = —CQ[W30”V1 0= Cz([Vz — Va] + [va] — [va4] - [VS])

. . P2 mB -3
DlSCV5~OD|SCV1 ~0 TYF/— —

VA Va(v2 — va)

- .
= Discy,~gDiscy, -0

SB[?Z] B Co

~0 -
VA VA

Since \/Z‘v5~0 — V3(V2 — V4) = C> =3

VA ~0



Results

e For SB[#>] we find

P> =6 Li2(W26) -+ Li2(W3o) — Li2(W26 W30)
1 2
— ~ log Wag log Wig — —]
5 0g V26 109 W30 5
o We obtained the symbols of 3 and P4
e We obtained the symbols of /) -
7
6

1




Conclusions

* first application of bootstrap method to non-
planar multi-leg integrals

* proposed space of pentagon functions for
scattering amplitudes

* conjectural second-entry condition - relation
to Steinmann relations!?

* possible applications to amplitudes where
‘integrand’ is available,
e.g. all-plus amplitude, supergravity



Pentagons are full of surprises...!

C2-Quantamacazine

The (Math) Problem With Pentagons

Triangles fit effortlessly together, as do squares. When it comes to pentagons, what gives?

By Patrick Honner




