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Part I

Periodic functions and periods



Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.

A period ω of the function f is a constant such that for all z:

f (z+ω) = f (z)

The set of all periods of f forms a lattice, which is either

• trivial (i.e. the lattice consists of ω = 0 only),

• a simple lattice, Λ = {nω | n ∈ Z},

• a double lattice, Λ = {n1ω1+n2ω2 | n1,n2 ∈ Z}.



Examples of periodic functions

• Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi.

• Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(

1

(z+ω)2
− 1

ω2

)

, Λ = {n1ω1+n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.



Inverse functions

The corresponding inverse functions are in general multivalued functions.

• For the exponential function x = exp(z) the inverse function is the logarithm

z = ln(x) .

• For Weierstrass’s elliptic function x =℘(z) the inverse function is an elliptic integral

z =

∞∫

x

dt
√

4t3−g2t −g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.



Periods as integrals over algebraic functions

In both examples the periods can be expressed as integrals involving only algebraic

functions.

• Period of the exponential function:

2πi = 2i

1∫

−1

dt√
1− t2

.

• Periods of Weierstrass’s ℘-function: Assume that g2 and g3 are two given algebraic

numbers. Then

ω1 = 2

t2∫

t1

dt
√

4t3−g2t −g3

, ω2 = 2

t2∫

t3

dt
√

4t3−g2t −g3

,

where t1, t2 and t3 are the roots of the cubic equation 4t3−g2t −g3 = 0.



Numerical periods

Kontsevich and Zagier suggested the following generalisation:

A numerical period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients, over

domains in R
n given by polynomial inequalities with rational coefficients.

Remarks:

• One can replace “rational” with “algebraic”.

• The set of all periods is countable.

• Example: ln2 is a numerical period.

ln2 =

2∫

1

dt

t
.



Part II

Review of differential equations and multiple polylogarithms



Differential equations

Let t be an external invariant (e.g. t = (pi + p j)
2) or an internal mass. Let Ii ∈

{I1, ..., IN} be a master integral. Carrying out the derivative

∂

∂t
Ii

under the integral sign and using integration-by-parts identities allows us to express

the derivative as a linear combination of the master integrals.

∂

∂t
Ii =

N

∑
j=1

ai jI j

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)



Differential equations

More generally:

~I = (I1, ..., IN) , set of master integrals,

~x = (x1, ...,xn) , set of kinematic variables the master integrals depend on.

We obtain a system of differential equations of Fuchsian type

d~I = A~I,

where A is a matrix-valued one-form

A =
n

∑
i=1

Aidxi.

The matrix-valued one-form A satisfies the integrability condition

dA−A∧A = 0.



Multiple polylogarithms

Definition based on nested sums:

Lim1,m2,...,mk
(x1,x2, ...,xk) =

∞

∑
n1>n2>...>nk>0

x
n1
1

n
m1
1

· x
n2
2

n
m2
2

· ... · x
nk
k

n
mk
k

Definition based on iterated integrals:

G(z1, ...,zk;y) =

y∫

0

dt1

t1 − z1

t1∫

0

dt2

t2 − z2

...

tk−1∫

0

dtk

tk − zk

Conversion:

Lim1,...,mk
(x1, ...,xk) = (−1)kGm1,...,mk

(
1

x1

,
1

x1x2

, ...,
1

x1...xk

;1

)

Short hand notation:

Gm1,...,mk
(z1, ...,zk;y) = G(0, ...,0

︸ ︷︷ ︸
m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸
mk−1

,zk;y)



The ε-form of the differential equation

If we change the basis of the master integrals ~J =U~I, the differential equation becomes

d~J = A′~J, A′ =UAU−1 −UdU−1

Suppose one finds a transformation matrix U , such that

A′ = ε∑
j

C j d ln p j(~x),

where

- ε appears only as prefactor,

- C j are matrices with constant entries,

- p j(~x) are polynomials in the external variables,

then the system of differential equations is easily solved in terms of multiple

polylogarithms.

Henn ’13



Transformation to the ε-form

We may

• perform a rational / algebraic transformation on the kinematic variables

(x1, ...,xn) → (x′1, ...,x
′
n),

often done to absorb square roots.

• change the basis of the master integrals

~I → U~I,

where U is rational in the kinematic variables

Henn ’13; Gehrmann, von Manteuffel, Tancredi, Weihs ’14; Argeri et al. ’14; Lee ’14; Meyer ’16; Prausa ’17; Gituliar, Magerya

’17; Lee, Pomeransky ’17;



Numerical evaluations of multiple polylogarithms

Multiple polylogarithms have branch cuts.

Numerical evaluation of multiple polylogarithms Lim1,m2,...,,mk
(x1,x2, ...,xk) as a function

of k complex variables x1, x2, ..., xk:

• Use truncated sum representation within its region of convergence.

• Use integral representation to map arguments into this region.

• Acceleration techniques to speed up the computation.

Implementation in GiNaC, using arbitrary precision arithmetic in C++.

J. Vollinga, S.W. ’04



Part III

Elliptic generalisations



Single scale integrals beyond multiple polylogarithms

Starting from two-loops, there are integrals which cannot be

expressed in terms of multiple polylogarithms.

Simplest example: Two-loop sunrise integral with equal masses.

Slightly more complicated: Two-loop kite integral.

Both integrals depend on a single scale t/m2.

Change variable from t/m2 to the nome q or the parameter τ
with q = eiπτ.

Sabry, Broadhurst, Fleischer, Tarasov, Bauberger, Berends, Buza, Böhm, Scharf, Weiglein, Caffo, Czyz, Laporta, Remiddi,

Groote, Körner, Pivovarov, Bailey, Borwein, Glasser, Adams, Bogner, Müller-Stach, Schweitzer, S.W, Zayadeh, Bloch,

Vanhove, Pozzorini, Gunia, Broedel, Duhr, Dulat, Tancredi, ...



The elliptic curve

How to get the elliptic curve?

• From the Feynman graph polynomial:

−x1x2x3t +m2 (x1 + x2+ x3)(x1x2+ x2x3+ x3x1) = 0

• From the maximal cut:

y2−
(

x− t

m2

)(

x− t −4m2

m2

)(

x2+2x+1−4
t

m2

)

= 0

Baikov ’96; Lee ’10; Kosower, Larsen, ’11; Caron-Huot, Larsen, ’12; Frellesvig, Papadopoulos, ’17; Bosma, Sogaard,

Zhang, ’17; Harley, Moriello, Schabinger, ’17

The periods ψ1, ψ2 of the elliptic curve are solutions of the homogeneous differential

equation.

Adams, Bogner, S.W., ’13; Primo, Tancredi, ’16

Set τ =
ψ2

ψ1

, q = eiπτ.



The elliptic dilogarithm

Recall the definition of the classical polylogarithms:

Lin (x) =
∞

∑
j=1

x j

jn
.

Generalisation, the two sums are coupled through the variable q:

ELin;m (x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn

yk

km
q jk.

Elliptic dilogarithm:

E2;0 (x;y;q) =
1

i

[
1

2
Li2 (x)−

1

2
Li2
(
x−1
)
+ELi2;0 (x;y;q)−ELi2;0

(
x−1;y−1;q

)
]

.

Various definitions of elliptic polylogarithms can be found in the literature

Beilinson ’94, Levin ’97, Wildeshaus ’97, Brown, Levin ’11, Bloch, Vanhove ’13, Adams, Bogner, S.W. ’14, Remiddi, Tancredi

’17, Broedel, Duhr, Dulat, Tancredi ’17



Elliptic generalisations

In order to express the sunrise/kite integral to all orders in ε introduce

ELin1,...,nl;m1,...,ml ;2o1,...,2ol−1
(x1, ...,xl;y1, ...,yl;q) =

=
∞

∑
j1=1

...
∞

∑
jl=1

∞

∑
k1=1

...
∞

∑
kl=1

x
j1
1

j
n1
1

...
x

jl
l

j
nl
l

y
k1
1

k
m1
1

...
y

kl
l

k
ml
l

q j1k1+...+ jlkl

l−1

∏
i=1

( jiki+ ...+ jlkl)
oi

.

Numerical evaluation: G. Passarino ’16



The all-order in ε result (ELi-representation)

Taylor expansion of the sunrise integral around D = 2−2ε:

S =
ψ1

π

∞

∑
j=0

ε jE( j)

Each term in the ε-series is of the form

E( j) ∼ linear combination of ELin1,...,nl;m1,...,ml;2o1,...,2ol−1
and Lin1,...,nl

Using dimensional-shift relations this translates to the expansion around 4−2ε.

⇒ The multiple polylogarithms extended by ELin1,...,nl;m1,...,ml ;2o1,...,2ol−1
are the class of

functions to express the equal mass sunrise graph to all orders in ε.

Adams, Bogner, S.W., ’15



Bases of lattices

The periods ψ1 and ψ2 generate a lattice. Any other basis as good as (ψ2,ψ1).
Convention: Normalise (ψ2,ψ1)→ (τ,1) where τ = ψ2/ψ1.

1

τ τ′

Change of basis:

(
ψ′

2

ψ′
1

)

=

(
a b

c d

)(
ψ2

ψ1

)

,

Transformation should be invertible:

(
a b

c d

)

∈ SL2 (2,Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d



Modular forms

Denote by H the complex upper half plane. A meromorphic function f : H → C is a

modular form of modular weight k for SL2(Z) if

(i) f transforms under Möbius transformations as

f

(
aτ+b

cτ+d

)

= (cτ+d)k · f (τ) for

(
a b

c d

)

∈ SL2(Z)

(ii) f is holomorphic on H,

(iii) f is holomorphic at ∞.



Congruence subgroups

Apart from SL2(2,Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(
a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =

{(
a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}

Γ(N) =

{(
a b

c d

)

∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}

Modular forms for congruence subgroups: Require “nice” transformation properties

only for subgroup Γ (plus holomorphicity on H and at the cusps).



Dirichlet character

Let N be a positive integer. A function χ : Z→C is called a Dirichlet character modulo

N, if

(i) χ(n) = χ(n+N) ∀n ∈ Z,

(ii) χ(n) = 0 if gcd(n,N)> 1 and χ(n) 6= 0 if gcd(n,N) = 1,

(iii) χ(nm) = χ(n)χ(m) ∀ n,m ∈ Z.

The conductor of χ is the smallest positive divisor d|N such that there is a character χ′

modulo d with

χ(n) = χ′(n) ∀ n ∈ Z with gcd(n,N) = 1.



Modular forms with character

We may relax the transformation law:

Let N be a positive integer and let χ be a Dirichlet character modulo N. A function

f : H→ C is a modular form of weight k for Γ0(N) with character χ if

(i) f is holomorphic on H,

(ii) f is holomorphic at the cusps of Γ1(N),

(iii) f

(
aτ+b

cτ+d

)

= χ(d)(cτ+d)k f (τ) for

(
a b

c d

)

∈ Γ0(N).



The space of modular forms

• The modular forms for a given congruence subgroup form a vectorspace.

• This vectorspace is finite dimensional.

• It decomposes into a subspace of cusp forms and the Eisenstein subspace.

• We have

Mk(Γ1(N)) =
⊕

χ

Mk(N,χ)

and similar for the subspace of cusp forms and the Eisenstein subspace.

• Basis of Eisenstein subspace Ek(N,χ) given in terms of generalised Eisenstein

series.



Iterated integrals of modular forms

Iterated integrals of modular forms:

I ( f1, f2, ..., fn;q) = (2πi)n

τ∫

τ0

dτ1 f1 (τ1)

τ1∫

τ0

dτ2 f2 (τ2) ...

τn−1∫

τ0

dτn fn (τn)

Notation:

I
(

{ f}k
;q
)

= I

(

f , f , ..., f
︸ ︷︷ ︸

k

;q

)

An integral over a modular form is in general not a modular form.

Analogy: An integral over a rational function is in general not a rational function.



The all-order in ε result (iterated integrals)

S =
ψ1

π
e
−εI( f2;q)+2

∞
∑

n=2

(−1)n

n ζnεn

{[
∞

∑
j=0

(

ε2 jI
(

{1, f4} j
;q
)

− 1

2
ε2 j+1I

(

{1, f4} j ,1;q
))
]

∞

∑
k=0

εkB(k)

+
∞

∑
j=0

ε j

⌊ j
2⌋

∑
k=0

I
(

{1, f4}k ,1, f3,{ f2} j−2k
;q
)







Uniform weight: At order ε j one has exactly ( j+2) integrations.

Alphabet given by modular forms 1, f2, f3, f4.

Adams, S.W., ’17



The letters

Example: The modular form f3 is given by

f3 = − 1

24

(ψ1

π

)3 t
(
t −m2

)(
t −9m2

)

m6

=
3

i

[
ELi0;−2 (r3;−1;−q)−ELi0;−2

(
r−1

3 ;−1;−q
)]

= 3
√

3
η(2τ2)

11 η(6τ2)
7

η(τ2)
5 η(4τ2)

5 η(3τ2)η(12τ2)

= 3
√

3 [E3 (τ2;χ1,χ0)+2E3 (2τ2;χ1,χ0)−8E3 (4τ2;χ1,χ0)]

with τ2 = τ/2, r3 = exp(2πi/3), Dedekind’s eta function η, Dirichlet characters χ0 =

(
1

n
), χ1 = (

−3

n
) and Eisenstein series E3.



The ε-form of the differential equation for the sunrise/kite

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or

a rational/algebraic transformation of the basis of master integrals.

However by the (non-algebraic) change of variables from t to τ and by factoring off the

(non-algebraic) expression ψ1/π from the master integrals in the sunrise sector one

obtains an ε-form for the kite/sunrise family:

d

dτ
~I = ε A(τ)~I,

where A(τ) is an ε-independent 8×8-matrix whose entries are modular forms.



Analytic continuation and numerical evaluations of the kite and

sunrise integral

Complete elliptic integrals efficiently computed from arithmetic-geometric mean.

q-series converges for all t ∈ R\{m2,9m2,∞}.

t/m2 ∈ [9,∞[
t/m2 ∈ [1 : 9]
t/m2 ∈ [0 : 1]

t/m2 ∈]−∞,0]

path in q

Re(q)

Im
(q
)

10.50−0.5−1

1

0.5

0

−0.5

−1

SecDec
our result

sunrise, real part

t/m
2

R
e(

I 1
0

1
0

1
)

151050−5

10

8

6

4

2

0

SecDec
our result

sunrise, imaginary part

t/m
2

Im
(I

1
0

1
0

1
)

151050−5

10

8

6

4

2

0

No need to distinguish the cases t < 0, 0 < t < m2, m2 < t < 9m2, 9m2 < t !

Bogner, Schweitzer, S.W., ’17



Summary numerical evaluation

Given t and m, compute the periods ψ1 and ψ2 through arithmetic-geometric mean.

Set τ = ψ2

ψ1
, q = eiπτ.

Evaluate the truncated series

S = 3
√

3
ψ1

π

{
1√
3
Cl2

(
2π

3

)

+q+
5

4
q2+q3+

11

16
q4+

24

25
q5+

5

4
q6+

50

49
q7+

53

64
q8

+q9+
6

5
q10+

120

121
q11+

11

16
q12+

170

169
q13+

125

98
q14+

24

25
q15+

203

256
q16+

288

289
q17

+
5

4
q18+

362

361
q19

}

+O
(
q20
)
.



Conclusions

• Differential equations are a powerful tool to compute Feynman integrals.

• If a system can be transformed to an ε-form, a solution in terms of multiple

polylogarithm is easily obtained.

• There are system, where within rational transformations at order ε0 two coupled

equations remain.

Kite/sunrise family:

– Sum representation in terms of ELi-functions.

– Iterated integral representation involving modular forms

– Analytic continuation / numerical evaluation easy.


