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Questions: 

Prediction for 3-loop EW/QCD Z-boson observables?

Predictions from 2-loop, 3-loop unitarity methods for multi-loop/scale effects 
beyond NNLO?

Available amplitudes from unitarity methods: 

1-loop QCD/EW

N=4 SYM multi-loop

2-loop QCD

=> Indicators & extrapolate

Scope



Multi-leg amplitudes as cuts of multi-loop amplitudes: 

- However:  simpler integrals, less inclusive  =>  full NLO predictions better 
indicator 

Multi-leg NLO predictions: 

- 7-point: e.g. 5jets, tt3jets [NJet, OpenLoops, Recola]     —   cut of 3-point 3-loop

- 8-point: e.g. V5jets, Wbb3jets [BlackHat; Goetz, Reuschle, Schwan, Weinzierl]  —  cut of 4-
point 3-loop

Explicit helicity amplitudes:  5-point:  V*+4-partons [Bern, Dixon, Kosower], partial results 
6-partons [collected by Dunbar]

=> generic 3/4-point 3-loop amplitudes achievable

Indicator: 1-loop QCD



N=4 SYM is toy model for QCD-like theories:

- Conformal symmetries [Drummond, Henn, Korchemsky, Sokatchev], color-kinematic duality 
[Bern, Carrasco, Johansson] 

- Simpler/absent integration-by-parts reduction

Example amplitudes:

- 4 gluon 5-loop non-planar integrand [Bern, Carrasco, Dixon, Johansson, Roiban]

- 4 gluon 1/2/3-loop non-planar [Bern, Rozowsky, Yan; Henn, Mistlberger] 

=> 4-point multi-loop amplitudes achievable

=> Many ideas to exploit for QCD/EW theory

Indicator: N=4 SYM



Status unitarity methods @ 2-loop QCD:

- analytic: 4-partons [Bern, Dixon, Kosower]

all-plus helicity 5/6/7-gluons [contributions by groups: Badger, Frellesvig, Mogull, Peraro; 

Gehrmann, Henn, Lo Presti; Dunbar, Perkins] — N=4 SYM-like

- floating-point: 4-gluons planar [Abreu et al.] 

- exact arithmetics: 4/5-gluons planar [Badger et al.,  Abreu et al.; integrals from Frellesvig, 
Papadopoulos,Wever]

=> first steps and much more possible, indicators see below

Indicator: 2-loop unitarity



Master equation:

Cut equations:

Remarks:

- Tree-diagram input

- Passarino-Veltman reduction from cutting

- Integral reduction from integration (challenging)

- Analytic work to disentangle hierarchy of cuts

Unitarity variants
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[dLIPS] Ã1(`, pi)⇥ · · ·⇥ Ãm(`, pi)
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Ongoing amplitudes field [Chew, Mandelstam; 
Eden, Landshoff, Olive, Polkinghorne; Veneziano;  
Virasoro, Shapiro; …Bern, Dixon, Dunbar, 
Kosover;  Arkani-Hammed, Cachazo, … 
amplitudes community]

Duality of master integrals & 
contours [Kosower, Larsen 11; 
C a r o n - H u o t , L a r s e n 1 2 ; 
Georgoudis, Zhang 15; Sogaard, 
Zhang 14; HI 15; Harley, Moriello, 
Schabinger; Bosma, Sogaard, Zhang; 
Primo, Tancredi 17]
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Master equation for integrand basis:

Algebraic generalised cut equations:

Remarks: 

- Tree diagram input

- Passarino-Veltman reduction from cutting

- Integral reduction postponed 

- Fitting & solving equations

Unitarity — integrands

Classification of integrands [Badger, Frellesvig, 
Zhang; Mastrolia, Mirabella, Ossola, Peraro]
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Integrand ansatz as masters and surface terms:

Algebraic cut equations:

Remarks:  

-Tree-diagram input 

- Passarino-Veltman reduction from cutting 

- Fitting and solving for coefficients

- IBP reduction from equation solving

Unitarity —  surface terms

@ one-loop [Ossola Papadopoulos, Pittau 07; Ellis, 
Giele Kunszt 07; Giele Kunszt, Melnikov 08]

@ two/multi-loop [HI15]
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Surface terms as integration-by-parts (IBP) 
identities. 

- No need to do Laporta inversion but stopping 
IBP reduction early.

A) Control propagator powers with special vector 
fields [Gluza, Kajda, Kosower].

- Methods in algebraic geometry (see below) 

B) Determine complete and independent set of IBP 
relations: 

- On-shell, numerical for simplification, natural to 
change power counting [Ita; Zhang, Larsen;  Abreu et al. ] 

Surface Terms
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Formulations of equations:

- Syzygy-module equations [Gluza, Kajda, Kosower; Ita; Abreu et al.]

- Syzygy equations from Baikov polynomial [Zhang, Larsen]

Origin of syzygy module equations (‘compute polynomial kernel of polynomial 
matrix’):

Syzygy-module equations



Vectors from kernel of polynomial matrix:

- Finite integrals complete solution (Cramer’s rule)

- Singular-program (Groebner basis methods; slimgb)

Expectations: 

- Indicator: degrees of freedom, rank of matrix

- Planar vs. non-planar

- Currently tested: all planar and non-planar 2-loop integrals for 5-partons ~ 15 vars

=> 4-parton 3-loops similar (ladder diagram has similar count of variables)

scalar products of 
propagator 

momenta and 
external/loop 

momenta

diagonal matrix 
with propagators 

as entries

Form of matrix:

number of propagators

(loop order) x (momenta in topology)



1) Sampling to generate equations:

Evaluation of trees / integrand ansatz / subtraction

2) Inversion of linear system in coefficients

3) Fitting of spin dimension Ds

4) Fitting of D dependence

Limiting factors: 

Number of numerators & diagrams

Depth of hierarchy => precision loss

Fitting procedure
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Complexity of fitting
5-gluon hierarchy:
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Scaling in loops:

- Number of independent tensor grow by 
order of magnitude with loop order 
(estimated from factored topologies).

Planar 4-point 2-loop total timing: 

- core-seconds/PS point/helicity

- core-minutes to reconstruct analytic 
helicity amplitude 

=> 4-point 3-loops achievable



Floating point numerics [one-loop generators; Abreu et al.]:   

+ process independence

-  stability => improved integral basis for 
cancellations

Exact arithmetic [Manteuffel, Schabinger; Peraro; recently: Badger et 

al.; Abreu et al.]:

+ works already up to two scales: @ 4-gluon 2-loop: 
minutes/planar helicity amplitude 

- many variables {D,Ds, s_ij} => (expected 
power)^vars evaluations/helicity config.

Numerical strategies

Correct digits floating vs analytic
@ planar, 4-gluon, 2-loop



Conclusions
Discussed rough estimates from unitarity approach:

• Non-standard in unitarity indicators 

• New approach for surface terms / integration-by-parts 

• Numerical approach and analytic reconstruction

Future:

• Numerical approach suggests room for adding scales and that 3-loop 4-parton 
amplitudes are in reach now.

Discussion:

• Bite-size wishlist 

• Help from established reduction programs (stop early) 

• Numerical evaluation of pure/finite integrals 




