Prospects for the Numerical Unitarity Approach @ Multi Loops

Harald Ita
based on work with S. Abreu, F. Febres Cordero, M. Jaquier, B. Page,
V. Sotnikov, M. Zeng

University of Freiburg, Germany
FCC-ee Physics Mini-Workshop: Precision EW and QCD calculations for the FCC studies: methods and techniques

CERN Jan. II - 13, 2018

Scope

Questions:
Prediction for 3-loop EW/QCD Z-boson observables?
Predictions from 2-loop, 3-loop unitarity methods for multi-loop/scale effects beyond NNLO?

Available amplitudes from unitarity methods:
I-loop QCD/EW
N=4 SYM multi-loop
2-loop QCD
=> Indicators \& extrapolate

Indicator: I-loop QCD

Multi-leg amplitudes as cuts of multi-loop amplitudes:

- However: simpler integrals, less inclusive => full NLO predictions better indicator

Multi-leg NLO predictions:

- 7-point: e.g. 5jets, tt3jets [NJet, OpenLoops, Recola] — cut of 3-point 3-loop
- 8-point: e.g.V5jets,Wbb3jets [BlackHat; Goetz, Reuschle, Schwan,Weinzierl] - cut of 4point 3-loop

Explicit helicity amplitudes: 5-point: $\mathrm{V}^{*}+4$-partons [Bern, Dixon, Kosower], partial results 6 -partons [collected by Dunbar]
=> generic 3/4-point 3-loop amplitudes achievable

Indicator: N=4 SYM

$\mathrm{N}=4$ SYM is toy model for QCD-like theories:

- Conformal symmetries [Drummond, Henn, Korchemsky, Sokatchev], color-kinematic duality [Bern, Carrasco, Johansson]
- Simpler/absent integration-by-parts reduction

Example amplitudes:

- 4 gluon 5-loop non-planar integrand [Bern, Carrasco, Dixon, Johansson, Roiban]
- 4 gluon I/2/3-loop non-planar [Bern, Rozowsky, Yan; Henn, Mistlberger]
=> 4-point multi-loop amplitudes achievable
=> Many ideas to exploit for QCD/EW theory

Indicator: 2-loop unitarity

Status unitarity methods @ 2-loop QCD:

- analytic: 4-partons [Bern, Dixon, Kosower]
all-plus helicity 5/6/7-gluons [contributions by groups: Badger, Frellesvig, Mogull, Peraro; Gehrmann, Henn, Lo Presti; Dunbar, Perkins] — N=4 SYM-like
- floating-point: 4-gluons planar [Abreu et al.]
- exact arithmetics: 4/5-gluons planar [Badger et al., Abreu et al.; ; integrals from Frellesvig, Papadopoulos,Wever]
=> first steps and much more possible, indicators see below

Unitarity variants

Master equation:
Ongoing amplitudes field [Chew, Mandelstam;
$A\left(p_{i}\right)=\int\left[d^{(n D)} \ell\right] \tilde{A}\left(\ell, p_{i}\right)=\sum_{\text {integral basis }} c_{j}\left(p_{i}\right) \int\left[d^{(n D)} \ell\right] \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \cdots \rho^{N}}$
Cut equations:
Eden, Landshoff, Olive, Polkinghorne;Veneziano; Virasoro, Shapiro; ...Bern, Dixon, Dunbar, Kosover; Arkani-Hammed, Cachazo, ... amplitudes community]
$\int_{\mathcal{C}}[\mathrm{dLIPS}] \tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)$
Remankesis with cuts $c_{j}\left(p_{i}\right) \int_{\mathcal{C}}[\mathrm{dLIPS}] \frac{m_{j}\left(\ell, p_{i}\right)}{\text { (uncut propagator terms) }}$

- Tree-diagram input
- Passarino-Veltman reduction from cutting
- Integral reduction from integration (challenging)
- Analytic work to disentangle hierarchy of cuts

Unitarity — integrands

Master equation for integrand basis:

$$
\tilde{A}\left(\ell, p_{i}\right)=\sum_{j \text { jin integrand basis }} c_{j}\left(p_{i}\right) \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \ldots \rho^{N}}
$$

Classification of integrands [Badger, Frellesvig, Zhang; Mastrolia, Mirabella, Ossola, Peraro]

Algebraic generalised cut equations:

$$
\tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)=\quad \sum_{\substack{\mathrm{j} \text { in large integrands } \\+ \\ \text { previously computed topologies }}} c_{j}\left(p_{i}\right) m_{j}\left(\ell, p_{i}\right)
$$

Remarks:

- Tree diagram input
- Passarino-Veltman reduction from cutting
- Integral reduction postponed
- Fitting \& solving equations

Integrand ansatz as masters and surface terms:

$$
\tilde{A}\left(\ell, p_{i}\right)=\sum_{\text {jin maser integrands }} c_{j}\left(p_{i}\right) \frac{m_{j}\left(\ell, p_{i}\right)}{\rho^{1} \ldots \rho^{N}}+\sum_{\text {jin surface terms }} \hat{c}_{j}\left(p_{i}\right) \frac{\hat{m}_{j}(\ell,-)}{\rho^{2} \ldots \rho^{N}}
$$

@ two/multi-loop [HII5]
Algebraic cut equations:

$$
\begin{aligned}
& \quad \tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)=\quad \begin{array}{r}
\sum_{\text {jin large integrands }} c_{j}\left(p_{i}\right) m_{j}\left(\ell, p_{i}\right) \\
\text { + previously computed topologies }
\end{array} \\
& \text { Remarks: }
\end{aligned}
$$

-Tree-diagram input

- Passarino-Veltman reduction from cutting
- Fitting and solving for coefficients
- IBP reduction from equation solving

Surface Terms

Surface terms as integration-by-parts (IBP) identities.

- No need to do Laporta inversion but stopping

$$
\int \prod_{l=1, L} d^{D} \ell_{l} \sum_{k} \frac{\partial}{\partial \ell_{k}^{\nu}}\left[\frac{u_{k}^{\nu}}{\prod_{j \in P_{\Gamma}} \rho_{j}}\right]=0
$$ IBP reduction early.

A) Control propagator powers with special vector

$$
\partial_{\mu}\left(\frac{u^{\mu}}{\rho^{i}}\right)=\frac{1}{\rho^{i}} \partial_{\mu} u^{\mu}-\frac{1}{\left(\rho^{i}\right)^{2}} u^{\mu} \partial_{\mu} \rho^{i}
$$ fields [Gluza, Kajda, Kosower].

- Methods in algebraic geometry (see below)
$\longrightarrow u_{i}^{\nu} \frac{\partial}{\partial \ell_{i}^{\nu}} \rho_{j}=f_{j} \rho_{j}$
B) Determine complete and independent set of IBP relations:
- On-shell, numerical for simplification, natural to change power counting [tta;Zhang, Larsen; Abreu et al.]

Syzygy-module equations

Formulations of equations:

- Syzygy-module equations [Gluza, Kajda, Kosower; Ita;Abreu et al.]
- Syzygy equations from Baikov polynomial [Zhang, Larsen]

Origin of syzygy module equations ('compute polynomial kernel of polynomial matrix'):

$$
\begin{gathered}
u_{i}^{\nu} \frac{\partial}{\partial \ell_{i}^{\nu}} \rho_{j}=f_{j} \rho_{j} \\
\left(u_{k a}^{\nu} \frac{\partial}{\partial \ell_{k}^{\nu}}=\left(u_{k a}^{\mathrm{loop}} \ell_{a}^{\nu}+u_{k c}^{\mathrm{ext}} p_{c}^{\nu}\right) \frac{\partial}{\partial \ell_{k}^{\nu}}\right. \\
\left(\begin{array}{l}
\text { loop } \\
k c \\
\nu
\end{array}\right) \\
\vdots \\
\left.\rho_{j(|\Gamma|)}^{\mathrm{ext}} p_{c}^{\nu}\right) \frac{\partial}{\partial \ell_{k}^{\nu}}\left(\begin{array}{c}
\rho_{j(1)} \\
\rho_{j(2)} \\
\\
f_{j(|\Gamma|)} \rho_{j(|\Gamma|)}
\end{array}\right)
\end{gathered}
$$

Form of matrix:

Vectors from kernel of polynomial matrix:

- Finite integrals complete solution (Cramer's rule)
- Singular-program (Groebner basis methods; slimgb)

Expectations:

- Indicator: degrees of freedom, rank of matrix
- Planar vs. non-planar
- Currently tested: all planar and non-planar 2-loop integrals for 5-partons \sim I5 vars
=> 4-parton 3-loops similar (ladder diagram has similar count of variables)

Fitting procedure

I) Sampling to generate equations:

Evaluation of trees / integrand ansatz / subtraction
2) Inversion of linear system in coefficients
3) Fitting of spin dimension Ds
4) Fitting of D dependence

Limiting factors:
Number of numerators \& diagrams
Depth of hierarchy => precision loss

$$
\tilde{A}_{1}\left(\ell, p_{i}\right) \times \cdots \times \tilde{A}_{m}\left(\ell, p_{i}\right)=
$$

$$
\sum_{\substack{\mathrm{j} \text { in large integrands }}} c_{j}\left(p_{i}\right) m_{j}\left(\ell, p_{i}\right)
$$

Complexity of fitting

5-gluon hierarchy:

=> 4-point 3-loops achievable

Numerical strategies

Floating point numerics [one-loop generators;Abreu et al.]:

+ process independence
- stability => improved integral basis for cancellations

Correct digits floating vs analytic
@ planar, 4-gluon, 2-loop
 \# digits

Exact arithmetic [Manteuffel, Schabinger; Peraro; recently: Badger et al.;Abreu et al.]:

+ works already up to two scales: @ 4-gluon 2-loop: minutes/planar helicity amplitude
- many variables $\left\{\mathrm{D}, \mathrm{Ds}, \mathrm{s}_{1} \mathrm{ij}\right\}$ => (expected power)^vars evaluations/helicity config.

Conclusions

Discussed rough estimates from unitarity approach:

- Non-standard in unitarity indicators
- New approach for surface terms / integration-by-parts
- Numerical approach and analytic reconstruction

Future:

- Numerical approach suggests room for adding scales and that 3-loop 4-parton amplitudes are in reach now.

Discussion:

- Bite-size wishlist
- Help from established reduction programs (stop early)
- Numerical evaluation of pure/finite integrals

