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Scope

Questions:
Prediction for 3-loop EW/QCD Z-boson observables!?

Predictions from 2-loop, 3-loop unitarity methods for multi-loop/scale effects
beyond NNLO?

Available amplitudes from unitarity methods:

|-loop QCD/EW
N=4 SYM multi-loop
2-loop QCD

=> |ndicators & extrapolate



Indicator: |-loop QCD

Multi-leg amplitudes as cuts of multi-loop amplitudes:

- However: simpler integrals, less inclusive => full NLO predictions better
indicator

Multi-leg NLO predictions:

- /-point: e.g. 5jets, tt3jets [NJet, OpenLoops, Recola] ~— cut of 3-point 3-loop
- 8-point: e.g.VSjets,Wbb3jets [BlackHat; Goetz, Reuschle, Schwan,Weinzierl] — cut of 4-
point 3-loop

Explicit helicity amplitudes: 5-point: V*+4-partons [Bern, Dixon, Kosower], partial results
6-partons [collected by Dunbar]

=> generic 3/4-point 3-loop amplitudes achievable



Indicator: N=4 SYM

N=4 SYM is toy model for QCD-like theories:

- Conformal symmetries [Drummond, Henn, Korchemsky, Sokatchev], color-kinematic duality

[Bern, Carrasco, Johansson]

- Simpler/absent integration-by-parts reduction

Example amplitudes:
- 4 gluon 5-loop non-planar integrand [Bern, Carrasco, Dixon, Johansson, Roiban]

-4 gluon |/2/3-|OOP non-planar [Bern, Rozowsky, Yan; Henn, Mistlberger]

=> 4-point multi-loop amplitudes achievable

=> Many ideas to exploit for QCD/EW theory



Indicator: 2-loop unitarity

Status unitarity methods @ 2-loop QCD:
- analytic: 4-partons [Bern, Dixon, Kosower]

aII-pIus helicity 5/6/7-g|uons [contributions by groups: Badger, Frellesvig, Mogull, Peraro;
Gehrmann, Henn, Lo Presti; Dunbar, Perkins] — N=4 SYM-like

- floating-point: 4-gluons planar [Abreu et al ]

- exact arithmetics: 4/5-gluons planar [Badger et al., Abreu et al.; integrals from Frellesvig,
Papadopoulos,Wever]

=> first steps and much more possible, indicators see below



Unitarity variants

Master equation:

A= [@P0 Aer) = 3 el flann )

integral basis

Cut equations:
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Re maIﬁI@SﬂS with cuts (U.IlCllt propagator termS)
- Tree-diagram input
- Passarino-Veltman reduction from cutting

- Integral reduction from integration (challenging)

- Analytic work to disentangle hierarchy of cuts

Ongoing amplitudes field [Chew, Mandelstam;
Eden, Landshoff, Olive, Polkinghorne;Veneziano;
Virasoro, Shapiro; ...Bern, Dixon, Dunbar,
Kosover; Arkani-Hammed, Cachazo, ...
amplitudes community]

Duality of master integrals &
contours [Kosower, Larsen |I;
Caron-Huot, Larsen 12;
Georgoudis, Zhang 15; Sogaard,
Zhang 14; HI 15; Harley, Moriello,
Schabinger; Bosma, Sogaard, Zhang;
Primo, Tancredi |7]



Unitarity — integrands

Master equation for integrand basis:
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jinintegrand basis

Algebraic generalised cut equations:

Ay (i) % - x A (U, p;) = > cj(pi) m; (€, p;)

jin large integrands

+ previously computed topologies

Remarks:

- Tree diagram input

- Passarino-Veltman reduction from cutting
- Integral reduction postponed

- Fitting & solving equations

Classification of integrands [Badger, Frellesvig,
Zhang; Mastrolia, Mirabella, Ossola, Peraro]



Unitarity — surface terms

Integrand ansatz as masters and surface terms:

@ one-loop [Ossola Papadopoulos, Pittau 07; Ellis,
~ m; (¢, p;) ) m; (¢, ) Giele Kunszt 07; Giele Kunszt, Melnikov 08]
A(l,p;) = Z ci(pi) + Z (pi) 45
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jinsurface terms @ two/mu|ti-|OOP [HI I 5]

jin master integrands

Algebraic cut equations:

Av(lpi) x - x A (b)) = > cj(pi) m; (4, pi)

jinlarge integrands

+ previously computed topologies

Remarks:
-Tree-diagram input
- Passarino-Veltman reduction from cutting
- Fitting and solving for coefficients

- IBP reduction from equation solving



Surface Terms

Surface terms as integration-by-parts (IBP)
identities.
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- No need to do Laporta inversion but stopping
IBP reduction early.
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A) Control propagator powers with special vector 4 (p')?

fields [Gluza, Kajda, Kosower].

. . l oy Pj = prJ
- Methods in algebraic geometry (see below) i

B) Determine complete and independent set of IBP
relations:

- On-shell, numerical for simplification, natural to
change power counting [Ita; Zhang, Larsen; Abreu et al. ]



Syzygy-module equations

Formulations of equations:
- Syzygy-module equations [Gluza, Kajda, Kosower; Ita; Abreu et al.]

- Syzygy equations from Baikov polynomial [Zhang, Larsen]

Origin of syzygy module equations (‘compute polynomial kernel of polynomial
matrix’):

U 0 L loop pv ext v (9
( fiaPia) \
(uifjng fj(Z).Pj@) 0

\Jiarppiar) /



( \

Form of matrix: R
scalar products of

propagator diagonal matrix

momenta and with propagators number of propagators

external/loop as entries

momenta

v
- X /

(loop order) x (momenta in topology)

Vectors from kernel of polynomial matrix:
- Finite integrals complete solution (Cramer’s rule)

- Singular-program (Groebner basis methods; slimgb)

Expectations:
- Indicator: degrees of freedom, rank of matrix
- Planar vs. non-planar
- Currently tested: all planar and non-planar 2-loop integrals for 5-partons ~ |5 vars

=> 4-parton 3-loops similar (ladder diagram has similar count of variables)



Fitting procedure

~ ~

|) Sampling to generate equations: Ar(l,pi) X -+ X A (€, pi) =

Evaluation of trees / integrand ansatz / subtraction S ¢ (pi) m; (€, pi)
YAV g\t Ma

jin large integrands

2) Inversion of linear system in coefficients . .
+ previously computed topologies

3) Fitting of spin dimension Ds

4) Fitting of D dependence

Limiting factors:
Number of numerators & diagrams

Depth of hierarchy => precision loss



Complexity of fitting

5-gluon hierarchy:
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Scaling in loops:

- Number of independent tensor grow by
order of magnitude with loop order
(estimated from factored topologies).

Planar 4-point 2-loop total timing:
- core-seconds/PS point/helicity

- core-minutes to reconstruct analytic
helicity amplitude

=> 4-point 3-loops achievable



Numerical strategies

Correct digits floating vs analytic
@ planar, 4-gluon, 2-loop

Floating point NUMETrICS [one-loop generators;Abreu et al.]:
+ process independence Ew0-loop — — 4t

- stability => improved integral basis for
cancellations

# PS points

Exact arithmetic [Manteuffel, Schabinger; Peraro; recently: Badger et

al.;Abreu et al.]

+ works already up to two scales: @ 4-gluon 2-loop:
minutes/planar helicity amplitude

- many variables {D,Ds, s_ij} => (expected
power)”vars evaluations/helicity config.



Conclusions

Discussed rough estimates from unitarity approach:
® Non-standard in unitarity indicators
® New approach for surface terms / integration-by-parts
® Numerical approach and analytic reconstruction
Future:

® Numerical approach suggests room for adding scales and that 3-loop 4-parton
amplitudes are in reach now.

Discussion:
® Bite-size wishlist
® Help from established reduction programs (stop early)

® Numerical evaluation of pure/finite integrals






