Four-loop form factor in $\mathrm{N}=4$

/w Tobias Huber and Gang Yang, arXiv:I705.03444 \& arXiv:I7II. 08449

Rutger Boels
University of Hamburg

in short

fun result: a four loop form factor in $\mathrm{N}=4$

$$
\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}
$$

in short

fun result: a four loop form factor in $\mathrm{N}=4$

$$
\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}
$$

- at $-2,-1:!=0$
\rightarrow speculation in literature
- can be computed at all \rightarrow methods
fun result: a four loop form factor in $\mathrm{N}=4$

our approach is almost certainly wrong...

in short
fun result: a four loop form factor in $\mathrm{N}=4$

$$
\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}
$$

our approach is almost certainly wrong...
two poles of research here at the workshop
two poles of research here at the workshop

two poles of research here at the workshop

perturbative QFT talks cheatsheet

"preprocessing"
generate integrand
reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet

"preprocessing"

generate integrand

reduce to

simpler integrals

explicit integration

"postprocessing"

- govern IR/UV divergences [long literature, ~70 - today]

anomalous dimensions

- govern IR/UV divergences [long literature, ~70 - today]
- example: light-like cusp anomalous dimension

I anomalous dimension of light like cusped Wilson line
II leading infrared divergence of amplitudes
III logarithmic growth of high-spin Wilson operators
IV related to gluon Regge trajectory
\checkmark appears in AdS/CFT ($\mathrm{N}=4$)

$$
\int p^{2}=0
$$

anomalous dimensions

- govern IR/UV divergences [long literature, ~70 - today]
- example: light-like cusp anomalous dimension

I anomalous dimension of light like cusped Wilson line
II leading infrared divergence of amplitudes
III logarithmic growth of high-spin Wilson operators
IV related to gluon Regge trajectory
\checkmark appears in AdS/CFT ($\mathrm{N}=4$)

\rightarrow ample motivation to compute it!
(many approaches to compute it...)

anomalous dimensions

- here: two gluon + stress-tensor multiplet in $\mathrm{N}=4$

$$
\mathcal{F}^{(l)}=\mathcal{F}^{\text {tree }} g^{2 l}\left(-q^{2}\right)^{-l \epsilon} F^{(l)}
$$

$$
p_{1}^{2}=p_{2}^{2}=0
$$

anomalous dimensions

- here: two gluon + stress-tensor multiplet in $\mathrm{N}=4$

$$
\mathcal{F}^{(l)}=\mathcal{F}^{\text {tree }} g^{2 l}\left(-q^{2}\right)^{-l \epsilon} F^{(l)}
$$

- general theory of IR divergences:

$$
(\log F)^{(l)}=-\left[\frac{\gamma_{\text {cusp }}^{(l)}}{(2 l \epsilon)^{2}}+\frac{\mathcal{G}_{\text {coll }}^{(l)}}{2 l \epsilon}+\operatorname{Fin}^{(l)}\right]+\mathcal{O}(\epsilon)
$$

anomalous dimensions

- here: two gluon + stress-tensor multiplet in $\mathrm{N}=4$

$$
\mathcal{F}^{(l)}=\mathcal{F}^{\text {tree }} g^{2 l}\left(-q^{2}\right)^{-l \epsilon} F^{(l)}
$$

- general theory of IR divergences:

$$
(\log F)^{(l)}=-\left[\frac{\gamma_{\mathrm{cusp}}^{(l)}}{(2 l \epsilon)^{2}}+\frac{\mathcal{G}_{\mathrm{coll}}^{(l)}}{2 l \epsilon}+\operatorname{Fin}^{(l)}\right]+\mathcal{O}(\epsilon)
$$

- in N=4 two loop form factor: [Van Neerven, I 986], three loops [Gehrmann-Henn-Huber, II]

anomalous dimensions

- here: two gluon + stress-tensor multiplet in $\mathrm{N}=4$

$$
\mathcal{F}^{(l)}=\mathcal{F}^{\text {tree }} g^{2 l}\left(-q^{2}\right)^{-l \epsilon} F^{(l)}
$$

$$
p_{1}^{2}=p_{2}^{2}=0
$$

- general theory of IR divergences:

$$
(\log F)^{(l)}=-\left[\frac{\gamma_{\mathrm{cusp}}^{(l)}}{(2 l \epsilon)^{2}}+\frac{\mathcal{G}_{\text {coll }}^{(l)}}{2 l \epsilon}+\operatorname{Fin}^{(l)}\right]+\mathcal{O}(\epsilon)
$$

- in N=4 two loop form factor: [Van Neerven, I986], three loops [Gehrmann-Henn-Huber, II]
- in QCD, three loops [Gehrmann et.al, 06] - [Baikov et.al, 09]

anomalous dimensions

- here: two gluon + stress-tensor multiplet in $\mathrm{N}=4$

$$
\mathcal{F}^{(l)}=\mathcal{F}^{\text {tree }} g^{2 l}\left(-q^{2}\right)^{-l \epsilon} F^{(l)}
$$

$$
p_{1}^{2}=p_{2}^{2}=0
$$

- general theory of IR divergences:

$$
(\log F)^{(l)}=-\left[\frac{\gamma_{\text {cusp }}^{(l)}}{(2 l \epsilon)^{2}}+\frac{\mathcal{G}_{\text {coll }}^{(l)}}{2 l \epsilon}+\operatorname{Fin}^{(l)}\right]+\mathcal{O}(\epsilon)
$$

- in N=4 two loop form factor: [Van Neerven, I986], three loops [Gehrmann-Henn-Huber, II]
- in QCD, three loops [Gehrmann et.al, 06] - [Baikov et.al, 09]
- planar limit known exactly [Beisert-Eden-Staudacher, 06]

4 loop Sudakov form factor

- function of coupling constant, group theory:

$$
\begin{aligned}
& \gamma_{\text {cusp }}=\sum_{l} g^{2 l} \gamma_{\text {cusp }}^{(l)}= \\
& \quad a_{1} g^{2} C_{A}+a_{2} g^{4} C_{A}^{2}+a_{3} g^{6} C_{A}^{3}+g^{8}\left(a_{4}^{\mathrm{P}} C_{A}^{4}+a_{4}^{\mathrm{NP}} d_{44}\right)+\mathcal{O}\left(g^{9}\right)
\end{aligned}
$$

4 loop Sudakov form factor

- function of coupling constant, group theory:

$$
\begin{aligned}
& \gamma_{\text {cusp }}=\sum_{l} g^{2 l} \gamma_{\text {cusp }}^{(l)}=\sim N_{c}^{4} \longrightarrow \sim . . N_{c}^{4}+. . N_{c}^{2} \\
& a_{1} g^{2} C_{A}+a_{2} g^{4} C_{A}^{2}+a_{3} g^{6} C_{A}^{3}+g^{8}\left(a_{4}^{\mathrm{P}} C_{A}^{4}+a_{4}^{\mathrm{NP}} d_{44}\right)+\mathcal{O}\left(g^{9}\right) \\
& \text { - first "non-planar" correction at four loops! }
\end{aligned}
$$

4 loop Sudakov form factor

- function of coupling constant, group theory:

$$
\begin{gathered}
\gamma_{\text {cusp }}=\sum_{l} g^{2 l} \gamma_{\text {cusp }}^{(l)}=
\end{gathered} N_{c}^{4} \sim N_{c}^{4}+. . N_{c}^{2}
$$

- first "non-planar" correction at four loops!
- $\mathrm{a}^{4} \mathrm{NP}$ conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]

4 loop Sudakov form factor

- function of coupling constant, group theory:

$$
\begin{gathered}
\gamma_{\text {cusp }}=\sum_{l} g^{2 l} \gamma_{\text {cusp }}^{(l)}=
\end{gathered} N_{c}^{4} \sim N_{c}^{4}+. . N_{c}^{2}
$$

- first "non-planar" correction at four loops!
- $\mathrm{a}^{4} \mathrm{NP}$ conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]
- today: the first computation of nonplanar cusp in any QFT

4 loop Sudakov form factor

- function of coupling constant, group theory:

$$
\begin{gathered}
\gamma_{\text {cusp }}=\sum_{l} g^{2 l} \gamma_{\text {cusp }}^{(l)}=\sim N_{c}^{4} \longrightarrow \sim . . N_{c}^{4}+. . N_{c}^{2} \\
a_{1} g^{2} C_{A}+a_{2} g^{4} C_{A}^{2}+a_{3} g^{6} C_{A}^{3}+g^{8}\left(a_{4}^{\mathrm{P}} C_{A}^{4}+a_{4}^{\mathrm{NP}} d_{44}\right) \neq \mathcal{O}\left(g^{9}\right)
\end{gathered}
$$

- first "non-planar" correction at four loops!
- $\mathrm{a}^{4} \mathrm{NP}$ conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]
- today: the first computation of nonplanar cusp in any QFT
(see also more recent: [Moch-Ruijl-Ueda-Vermaseren-Vogt, I7], [Grozin-Henn-Stahlhofen, I7])

perturbative QFT talks cheatsheet

"preprocessing"

- what to compute and why?
- define 'success’
- how badly do we want it?

perturbative QFT talks cheatsheet

"preprocessing"

- what to compute and why?
- define 'success’
- how badly do we want it?
- non-planar correction to the 'Sudakov’ form factor in $\mathrm{N}=4$ at four loops to at least leading divergent term: $\epsilon^{-2}, \epsilon^{-1}$
- is it zero? \rightarrow numerics (may) suffice
- quite... \rightarrow long-standing conjecture

perturbative QFT talks cheatsheet

"preprocessing"
generate integrand
reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet

- Feynman graphs
- unitarity based approaches
- (string theory)
generate integrand

reduce to

simpler integrals
explicit integration
"postprocessing"

Intermezzo: color kinematic duality

- write a gauge theory tree amplitude as:

$$
\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}}
$$

- write a gauge theory tree amplitude as:

$$
\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \underbrace{\frac{n_{i} c_{i}}{s_{i}}}_{\text {sum over trivalent, connected tree graphs }}
$$

Intermezzo: color kinematic duality

- write a gauge theory tree amplitude as:
color structure for each graph

$$
\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i} \longleftrightarrow} \frac{n_{i} c_{i}}{s_{i}}
$$

sum over trivalent, connected tree graphs

Intermezzo: color kinematic duality [Bern-CarrascoJohannson, 08,I0]

- write a gauge theory tree amplitude as:
"kinematic numerator"
color structure for each graph

$$
\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}}
$$

sum over trivalent, connected tree graphs

Intermezzo: color kinematic duality [Bern-CarrascoJohannson, 08,I0]

- write a gauge theory tree amplitude as:
"kinematic numerator"
color structure for each graph
$\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}} \quad$ propagators
sum over trivalent, connected tree graphs
- write a gauge theory tree amplitude as:
"kinematic numerator"
color structure for each graph
$\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}}, \quad$ propagators
sum over trivalent, connected tree graphs
- \exists color

Jacobi identities:

Intermezzo: color kinematic duality
[Bern-CarrascoJohannson, 08,10]

- write a gauge theory tree amplitude as:
"kinematic numerator"
color structure for each graph
$\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}}, \quad$ propagators
sum over trivalent, connected tree graphs
- ヨ color

Jacobi identities:

- demand that the kinematic numerators satisfy same Jacobi's:

$$
\forall\left\{c_{i}=c_{k}-c_{j}\right\} \Rightarrow n_{i}=n_{k}-n_{j}
$$

Intermezzo: color kinematic duality [Bern-CarrascoJohannson, 08, I0]

- write a gauge theory tree amplitude as:
"kinematic numerator"
color structure for each graph
$\mathcal{A}_{n}=g_{y m}^{n-2} \sum_{\Gamma_{i}} \frac{n_{i} c_{i}}{s_{i}}$ propagators
sum over trivalent, connected tree graphs
- \exists color

Jacobi identities:

- demand that the kinematic numerators satisfy same Jacobi's:

$$
\forall\left\{c_{i}=c_{k}-c_{j}\right\} \Rightarrow n_{i}=n_{k}-n_{j}
$$

- always possible at tree level, very similar looking loop level conjecture, see review in [Isermann, I3]

suspicion of duality enough as "Ansatz-generator"

inspired by amplitude computation [Bern-et.al, I2]:
inspired by amplitude computation [Bern-et.al, I 2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
- check Ansatz using cuts
inspired by amplitude computation [Bern-et.al, I 2]:
- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
- check Ansatz using cuts

$$
\text { e.g. N=4, 2pt @ } 2 \text { loops }
$$

inspired by amplitude computation [Bern-et.al, I 2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
- check Ansatz using cuts

$$
\text { e.g. N=4, 2pt @ } 2 \text { loops }
$$

(a)

$$
\begin{aligned}
\mathcal{F}_{2}^{(2)} & =s_{12}^{2} \mathcal{F}^{(0)} \sum_{\sigma_{2}} \sum_{i=a}^{b} \frac{1}{S_{i}} C_{i} I_{i} \\
& =N_{c}^{2} \delta^{a_{1} a_{2}} s_{12}^{2}\left(4 I_{1}+I_{2}\right)
\end{aligned}
$$

inspired by amplitude computation [Bern-et.al, I 2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
- check Ansatz using cuts

$$
\text { e.g. N=4, 2pt @ } 2 \text { loops }
$$

(a)

$$
\begin{aligned}
\mathcal{F}_{2}^{(2)} & =s_{12}^{2} \mathcal{F}^{(0)} \sum_{\sigma_{2}} \sum_{i=a}^{b} \frac{1}{S_{i}} C_{i} I_{i}, \\
& =N_{c}^{2} \delta^{a_{1} a_{2}} s_{12}^{2}\left(4 I_{1}+I_{2}\right) \boldsymbol{V}
\end{aligned}
$$

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

(1)

(5)

(9)

(2)

(6)

(3)

(7)

(4)

(8)

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

(31)

(14)

(32)

(15)

(33)

(16)

(34)

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

(29)

(22)

(24)

Application: form factors

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$
\mathcal{F}_{2}^{(4)}=s_{12}^{2} \mathcal{F}_{2}^{(0)} \sum_{\sigma_{2}} \sum_{i=1}^{34} \frac{1}{S_{i}} C_{i} I_{i}
$$

Application: form factors

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$
\mathcal{F}_{2}^{(4)}=s_{12}^{2} \mathcal{F}_{2}^{(0)} \sum_{\sigma_{2}} \sum_{i=1}^{34} \frac{1}{S_{i}} C_{i} I_{i}
$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$
\mathcal{F}_{2}^{(4)}=s_{12}^{2} \mathcal{F}_{2}^{(0)} \sum_{\sigma_{2}} \sum_{i=1}^{34} \frac{1}{S_{i}} C_{i} I_{i}
$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left
\rightarrow color-kinematic duality exists up to four loops for (some) form factors

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$
\mathcal{F}_{2}^{(4)}=s_{12}^{2} \mathcal{F}_{2}^{(0)} \sum_{\sigma_{2}} \sum_{i=1}^{34} \frac{1}{S_{i}} C_{i} I_{i}
$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left
\rightarrow color-kinematic duality exists up to four loops for (some) form factors
[Yang, 16]: five loop case
constructing the form factor integrand

Integral statistics after generation:

- 34 integrals
- I3 have a non-planar color part
- IO are purely non-planar color
- mostly quadratic in 6 irreducible numerators
- topology 26: no internal boxes

(26)

constructing the form factor integrand

Integral statistics after generation:

- 34 integrals
- I3 have a non-planar color part
- IO are purely non-planar color
- mostly quadratic in 6 irreducible numerators
- topology 26: no internal boxes
\rightarrow way to complicated!

(26)
constructing the form factor integrand

Inte recent progress planar, Nf dependent pieces:

- 3
- 1
- I
[Henn-Lee-Smirnov^2-Steinhauser, 16]
[Von Manteuffel-Schabinger, I6]
[Lee-Smirnov^2-Steinhauser, 17]
- m [Ahmed-Henn-Steinhauser, 17]
- to [Grozin-Henn-Stahlhofen, I7]
\rightarrow Volodya Smirnov, Peter Marquard's talks
\rightarrow way Lo Complicateo:

perturbative QFT talks cheatsheet

"preprocessing"
generate integrand
reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet

"preprocessing"
generate
integrand
reduce to simpler integrals

- integration-by-parts identities
- graph symmetries
- dimensional shifts
- choice of basis

explicit integration

"postprocessing"
simplification?

simplification?

- integration-by-parts identities

$$
\int d^{D} l_{1} \ldots d^{D} l_{L} \frac{\partial}{\partial l_{i}^{\mu}}(\text { integrand })=0
$$

- LARGE systems of linear equations, solution in terms of choice of master integrals
- Laporta algorithm, implemented in e.g. LiteRed, FIRE, Reduze, Kira, Air, private \rightarrow Volodya's talk

simplification?

- integration-by-parts identities

$$
\int d^{D} l_{1} \ldots d^{D} l_{L} \frac{\partial}{\partial l_{i}^{\mu}}(\text { integrand })=0
$$

- LARGE systems of linear equations, solution in terms of choice of master integrals
- Laporta algorithm, implemented in e.g. LiteRed, FIRE, Reduze, Kira, Air, private \rightarrow Volodya's talk
- here: Reduze ([Von Manteuffel-Studerus, I2]) in [Boels-KniehlYang, I5]
two problems:
- too many hard master integrals
- epsilon dependent coefficients

$$
\mathrm{FF}=\ldots+\left(\frac{\sim 1}{\epsilon^{4}}+\frac{\sim 10}{\epsilon^{3}}+\ldots\right) I_{\text {master }}
$$

good master integrals?

key idea: uniformly transcendental integrals are good

good master integrals?

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values

$$
\text { e.g. } \zeta(n)
$$

not that many constants:

$$
\{1\},\{ \},\left\{\pi^{2}\right\},\left\{\zeta_{3}\right\},\left\{\pi^{4}\right\},\left\{\pi^{2} \zeta_{3}, \zeta_{5}\right\},\left\{\pi^{6}, \zeta_{3}^{2}\right\}, \ldots
$$

good master integrals?

key idea: uniformly transcendental integrals are good
in expansions of Feynman integrals certain constants always appear: multiple zeta values

$$
\text { e.g. } \zeta(n)
$$

not that many constants:

$$
\{1\},\{ \},\left\{\pi^{2}\right\},\left\{\zeta_{3}\right\},\left\{\pi^{4}\right\},\left\{\pi^{2} \zeta_{3}, \zeta_{5}\right\},\left\{\pi^{6}, \zeta_{3}^{2}\right\}, \ldots
$$

- every order in epsilon expansion typically has a maximal 'weight'
- in $\mathrm{N}=4$, only maximal terms observed
- maximal transcedental part of QCD $\leftrightarrow N=4$

good master integrals?

key idea: uniformly transcendental integrals are good
in expansions of Feynman integrals certain constants always appear: multiple zeta values

$$
\text { e.g. } \zeta(n)
$$

not that many constants:

$$
\{1\},\{ \},\left\{\pi^{2}\right\},\left\{\zeta_{3}\right\},\left\{\pi^{4}\right\},\left\{\pi^{2} \zeta_{3}, \zeta_{5}\right\},\left\{\pi^{6}, \zeta_{3}^{2}\right\}, \ldots
$$

- every order in epsilon expansion typically has a maximal 'weight'
- in $N=4$, only maximal terms observed
- maximal transcedental part of QCD $\leftrightarrow \mathrm{N}=4$
- idea: find integrals only have maximal terms

good master integrals?

key idea: uniformly transcendental integrals are good
in expansions of Feynman integrals certain constants always appear: multiple zeta values

$$
\text { e.g. } \zeta(n)
$$

not that many constants:

$$
\{1\},\{ \},\left\{\pi^{2}\right\},\left\{\zeta_{3}\right\},\left\{\pi^{4}\right\},\left\{\pi^{2} \zeta_{3}, \zeta_{5}\right\},\left\{\pi^{6}, \zeta_{3}^{2}\right\}, \ldots
$$

- every order in epsilon expansion typically has a maximal 'weight'
- in $N=4$, only maximal terms observed
- maximal transcedental part of QCD $\leftrightarrow N=4$
- idea: find integrals that are uniformly transcendental

good master integrals?

key idea: uniformly transcendental integrals are good
in expansions of Feynman integrals certain constants always appear: multiple zeta values

$$
\text { e.g. } \zeta(n)
$$

not that many constants:

$$
\{1\},\{ \},\left\{\pi^{2}\right\},\left\{\zeta_{3}\right\},\left\{\pi^{4}\right\},\left\{\pi^{2} \zeta_{3}, \zeta_{5}\right\},\left\{\pi^{6}, \zeta_{3}^{2}\right\}, \ldots
$$

- every order in epsilon expansion typically has a maximal 'weight'
- in $\mathrm{N}=4$, only maximal terms observed
- maximal transcedental part of QCD $\leftrightarrow N=4$
- idea: find integrals that are uniformly transcendental
- cf. [Gehrman-Henn-Huber, I I] at 3 loops

when is an integral uniformly transcendental?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$
\begin{aligned}
I_{12 \text { prop }}= & \frac{1}{576}+\epsilon^{2} \frac{1}{216} \pi^{2}+\epsilon^{3} \frac{151}{864} \zeta_{3}+\epsilon^{4} \frac{173}{10368} \pi^{4}+\epsilon^{5}\left[\frac{505}{1296} \pi^{2} \zeta_{3}+\frac{5503}{1440} \zeta_{5}\right]+ \\
& +\epsilon^{6}\left[\frac{6317}{155520} \pi^{6}+\frac{9895}{2592} \zeta_{3}^{2}\right]+\epsilon^{7}\left[\frac{89593}{77760} \pi^{4} \zeta_{3}+\frac{3419}{270} \pi^{2} \zeta_{5}-\frac{169789}{4032} \zeta_{7}\right]
\end{aligned}
$$

when is an integral uniformly transcendental?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$
\begin{aligned}
I_{12 \text { prop }}= & \frac{1}{576}+\epsilon^{2} \frac{1}{216} \pi^{2}+\epsilon^{3} \frac{151}{864} \zeta_{3}+\epsilon^{4} \frac{173}{10368} \pi^{4}+\epsilon^{5}\left[\frac{505}{1296} \pi^{2} \zeta_{3}+\frac{5503}{1440} \zeta_{5}\right]+ \\
& +\epsilon^{6}\left[\frac{6317}{155520} \pi^{6}+\frac{9895}{2592} \zeta_{3}^{2}\right]+\epsilon^{7}\left[\frac{89593}{77760} \pi^{4} \zeta_{3}+\frac{3419}{270} \pi^{2} \zeta_{5}-\frac{169789}{4032} \zeta_{7}\right]
\end{aligned}
$$

can you tell an integral is UT without integrating it?

when is an integral uniformly transcendental?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$
\begin{aligned}
I_{12 \text { prop }}= & \frac{1}{576}+\epsilon^{2} \frac{1}{216} \pi^{2}+\epsilon^{3} \frac{151}{864} \zeta_{3}+\epsilon^{4} \frac{173}{10368} \pi^{4}+\epsilon^{5}\left[\frac{505}{1296} \pi^{2} \zeta_{3}+\frac{5503}{1440} \zeta_{5}\right]+ \\
& +\epsilon^{6}\left[\frac{6317}{155520} \pi^{6}+\frac{9895}{2592} \zeta_{3}^{2}\right]+\epsilon^{7}\left[\frac{89593}{77760} \pi^{4} \zeta_{3}+\frac{3419}{270} \pi^{2} \zeta_{5}-\frac{169789}{4032} \zeta_{7}\right]
\end{aligned}
$$

can you tell an integral is UT without integrating it?
(differential equations)

when is an integral uniformly transcendental?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$
\begin{aligned}
I_{12 \text { prop }}= & \frac{1}{576}+\epsilon^{2} \frac{1}{216} \pi^{2}+\epsilon^{3} \frac{151}{864} \zeta_{3}+\epsilon^{4} \frac{173}{10368} \pi^{4}+\epsilon^{5}\left[\frac{505}{1296} \pi^{2} \zeta_{3}+\frac{5503}{1440} \zeta_{5}\right]+ \\
& +\epsilon^{6}\left[\frac{6317}{155520} \pi^{6}+\frac{9895}{2592} \zeta_{3}^{2}\right]+\epsilon^{7}\left[\frac{89593}{77760} \pi^{4} \zeta_{3}+\frac{3419}{270} \pi^{2} \zeta_{5}-\frac{169789}{4032} \zeta_{7}\right]
\end{aligned}
$$

can you tell an integral is UT without integrating it?

when is an integral uniformly transcendental?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$
\begin{aligned}
I_{12 \text { prop }}= & \frac{1}{576}+\epsilon^{2} \frac{1}{216} \pi^{2}+\epsilon^{3} \frac{151}{864} \zeta_{3}+\epsilon^{4} \frac{173}{10368} \pi^{4}+\epsilon^{5}\left[\frac{505}{1296} \pi^{2} \zeta_{3}+\frac{5503}{1440} \zeta_{5}\right]+ \\
& +\epsilon^{6}\left[\frac{6317}{155520} \pi^{6}+\frac{9895}{2592} \zeta_{3}^{2}\right]+\epsilon^{7}\left[\frac{89593}{77760} \pi^{4} \zeta_{3}+\frac{3419}{270} \pi^{2} \zeta_{5}-\frac{169789}{4032} \zeta_{7}\right]
\end{aligned}
$$

can you tell an integral is UT without integrating it?

- dLog form exist: certainly UT
- conjecture: constant ‘leading singularity’ integrals are UT
[Bern-Hermann-Litsey-Stankowicz-Trnka, 14]
[Henn-Smirnov-Smirnov-Steinhauser, 16]
finding UT integrals
express all loop momenta in a four D basis:

$$
l^{i}=\alpha_{1}^{i} p_{1}+\alpha_{2}^{i} p_{2}+\alpha_{3}^{i} q_{1}+\alpha_{4}^{i} q_{2}
$$

consider integrand $I\left(\vec{\alpha}^{i}\right)$ in $\mathrm{D}=4$
'constant leading singularity' \rightarrow simple poles in all variables

finding UT integrals

express all loop momenta in a four D basis:

$$
l^{i}=\alpha_{1}^{i} p_{1}+\alpha_{2}^{i} p_{2}+\alpha_{3}^{i} q_{1}+\alpha_{4}^{i} q_{2}
$$

consider integrand $I\left(\vec{\alpha}^{i}\right)$ in $\mathrm{D}=4$
'constant leading singularity' \rightarrow simple poles in all variables
if non-simple pole appears in taking multi-residues: integral not UT

finding UT integrals

express all loop momenta in a four D basis:

$$
l^{i}=\alpha_{1}^{i} p_{1}+\alpha_{2}^{i} p_{2}+\alpha_{3}^{i} q_{1}+\alpha_{4}^{i} q_{2}
$$

consider integrand $I\left(\vec{\alpha}^{i}\right)$ in $\mathrm{D}=4$
'constant leading singularity' \rightarrow simple poles in all variables
if non-simple pole appears in taking multi-residues: integral not UT

integral property from integrand

- many multi residues possible ($4 * 4=16$ variables)
- pick random sequences: non-UT integrals tend to fail quickly
\rightarrow double or higher poles
finding UT integrals: algorithm
if non-simple pole appears in taking multi-residues: integral certainly not UT
- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues: integral certainly not UT

- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
\rightarrow output is a set of integrals that pass checks: $\underline{U T}$ candidates
finding UT integrals: algorithm
if non-simple pole appears in taking multi-residues: integral certainly not UT
- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
\rightarrow output is a set of integrals that pass checks: $\underline{U T}$ candidates
maximal initial set of integrals from dimensional analysis: here quadratic numerator integrals (190)
finding UT integrals: algorithm
if non-simple pole appears in taking multi-residues: integral certainly not UT
- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
\rightarrow output is a set of integrals that pass checks: $\underline{U T}$ candidates
maximal initial set of integrals from dimensional analysis: here quadratic numerator integrals (190)
(some topologies have no candidates!)

express form factor in terms of UT integrals

- now known: form factor \& a set of candidate UT integrals \& IBP solution \rightarrow in principle enough information
result: full form factor expressed in UT-candidate integrals
express form factor in terms of UT integrals
- now known: form factor \& a set of candidate UT integrals \& IBP solution \rightarrow in principle enough information
- refinement: IBP relations without epsilon dependence
- can be obtained directly, but here from IBPsubreduction, [Boels-Kniehl-Yang, 16]
- output is a minimal set of rational IBP relations for given set of integrals - advantage: fits easily in laptop memory!
- disadvantage: less powerful
result: full form factor expressed in UT-candidate integrals
express form factor in terms of UT integrals
- now known: form factor \& a set of candidate UT integrals \& IBP solution \rightarrow in principle enough information
- refinement: IBP relations without epsilon dependence
- can be obtained directly, but here from IBPsubreduction, [Boels-Kniehl-Yang, 16]
- output is a minimal set of rational IBP relations for given set of integrals - advantage: fits easily in laptop memory!
- disadvantage: less powerful
result: full form factor expressed in UT-candidate integrals
form factor is (likely) maximally transcendental

express form factor in terms of UT integrals

- want to put UT integrals into product form for easy input into FIESTA / MB

$$
\sum c_{i} \mathrm{UTC}_{i}=\left(\text { quadratic in } l_{i}\right)\left(\text { quadratic in } l_{i}\right)
$$

- brute force using Mathematica
- aim to minimise number of integrals for form factor
- found choice of 23 / 34 UT integrals non-planar/planar
- all passing > 10.000 random residue checks separately
- dLog:

perturbative QFT talks cheatsheet

"preprocessing"
generate integrand
reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet

"preprocessing"
generate integrand

reduce to

simpler integrals
explicit integration
"postprocessing"

- Mellin-Barnes representation
- dimensional recurrences
- sector decomposition
- otherwise

numerical integration, non-planar

 important observation: UT integrals are simpler to integrate numerically than non-UT ones!
numerical integration, non-planar

 important observation: UT integrals are simpler to integrate numerically than non-UT ones!- for some integrals derived low-dimensional valid MB representation by hand $\&$ inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov^2, 07], [Gluza, Kajda, Riemann, 07 / I I], [Blümlein et.al, I4]
- one integral known analytically
numerical integration, non-planar important observation: UT integrals are simpler to integrate numerically than non-UT ones!
- for some integrals derived low-dimensional valid MB representation by hand $\&$ inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov^2, 07], [Gluza, Kajda, Riemann, 07 / I I], [Blümlein et.al, I4]
- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09] [Smirnov, 13,15$]$ + [Hahn, 04]
numerical integration, non-planar important observation: UT integrals are simpler to integrate numerically than non-UT ones!
- for some integrals derived low-dimensional valid MB representation by hand $\&$ inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov^2,

07], [Gluza, Kajda, Riemann, 07 / I I], [Blümlein et.al, I4]

- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09] [Smirnov, I 3,15$]$ + [Hahn, 04]
- FIESTA uses sector decomposition (cf Sophia Borowska's talk)
numerical integration, non-planar important observation: UT integrals are simpler to integrate numerically than non-UT ones!
- for some integrals derived low-dimensional valid MB representation by hand $\&$ inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov^2,

07], [Gluza, Kajda, Riemann, 07 / I I], [Blümlein et.al, I4]

- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09] [Smirnov, I 3,15] + [Hahn, 04]
- FIESTA uses sector decomposition (cf Sophia Borowska's talk)
- (some cross-checks for simple integrals)

numerical integration and results

limiting factor:
improvements of accuracy scale as $\sqrt{\text { maxeval }}$ integration time scales as maxeval

numerical integration and results

limiting factor:
improvements of accuracy scale as $\sqrt{\text { maxeval }}$ integration time scales as maxeval
other users of the local cluster after some time:

numerical integration and results

- integrals diverge as $\quad \sim \frac{1}{\epsilon^{8}}$
- non-planar cusp is at $\sim \frac{1}{\epsilon^{2}}$ (transcendentality 6) seven orders of expansion, first six should cancel

numerical integration and results

$\begin{array}{ll}\text { - integrals diverge as } & \sim \frac{1}{\epsilon^{8}} \\ \text { - non-planar cusp is at } & \sim \frac{1}{\epsilon^{2}}\end{array}$
(transcendentality 6)
seven orders of expansion, first six should cancel
numerics for first five orders good enough to apply "PSLQ"
to convert to "small rational * zeta value"
(mathematica:"FindlntegerNullVector")

numerical integration and results

$\begin{array}{ll}\text { - integrals diverge as } & \sim \frac{1}{\epsilon^{8}} \\ \text { - non-planar cusp is at } & \sim \frac{1}{\epsilon^{2}}\end{array}$
(transcendentality 6) seven orders of expansion, first six should cancel
numerics for first five orders good enough to apply "PSLQ" to convert to "small rational * zeta value"
(mathematica:"FindIntegerNullVector")
\rightarrow non-planar form factor cancels analytically down to $\sim \frac{1}{\epsilon^{4}}$ $\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}$

some sample result...

$$
\begin{aligned}
& I_{7}^{(26)}= \overbrace{6}^{4} \times\left\{4\left[\left(\ell_{4}-\ell_{5}\right)\left(\ell_{3}-\ell_{4}+\ell_{5}-p_{1}\right)\right]\left[\left(\ell_{4}-\ell_{6}\right)\left(\ell_{3}-\ell_{4}+\ell_{6}-p_{2}\right)\right]\right. \\
&-\ell_{5}^{2}\left(\ell_{6}-p_{2}\right)^{2}-4\left(\ell_{4}-\ell_{5}\right)^{2}\left(\ell_{3}-\ell_{4}+\ell_{6}-p_{2}\right)^{2}-\ell_{6}^{2}\left(\ell_{5}-p_{1}\right)^{2} \\
&\left.-\left(\ell_{3}-\ell_{4}\right)^{2}\left(\ell_{5}+\ell_{6}-\ell_{4}\right)^{2}-\ell_{4}^{2}\left(\ell_{3}-\ell_{4}+\ell_{5}+\ell_{6}-p_{1}-p_{2}\right)^{2}\right\} \\
&= \frac{0.00347222}{\epsilon^{8}}-\frac{0.0000000013}{\epsilon^{7}}+\frac{0.0114231(17)}{\epsilon^{6}}+\frac{1.1631(3)}{\epsilon^{5}}+\frac{2.90880(35)}{\epsilon^{4}} \\
&-\frac{12.2720(43)}{\epsilon^{3}}+\frac{29.708(57)}{\epsilon^{2}}+\frac{3185.60 \pm 2.63}{\epsilon}, \\
& \quad I_{7, \text { PSLQ }}^{(26)}=\frac{1}{288 \epsilon^{8}}+\frac{\zeta_{2}}{144 \epsilon^{6}}+\frac{209 \zeta_{3}}{216 \epsilon^{5}}+\frac{43 \zeta_{4}}{16 \epsilon^{4}}+\mathcal{O}\left(\epsilon^{-3}\right) .
\end{aligned}
$$

$\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}$
integration error is somewhat naive
(cf. [Marquard-Smirnov^2-Steinhauser-Wellmann, I6])

- MB, exact cross-checks
- PSLQ possible
- eps^-3 coefficient central value
- checked stability of central value with increasing points
- error dominated by very few integrals

the rug: example check

- take PSLQ result as exact result, and study numerical deviation
$\frac{\mid \text { FIESTAError }_{k} \mid}{I_{k, \text { FIESTA }}-I_{k, \text { PSLQ }}}>0$

- $\frac{1}{\epsilon^{5}}$
- $\frac{1}{\epsilon^{4}}$
- uses number theory to check numerical computations!

in short

fun result: a four loop form factor in $N=4$

- at $-2,-$ I: != 0
- can be computed at all \rightarrow methods

in short

fun result: a four loop form factor in $\mathrm{N}=4$
$\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}$

- at $-2,-\mathrm{I}: ~!=0$
- can be computed at all \rightarrow methods
fun result: a four loop form factor in $\mathrm{N}=4$
$\ldots+(0.0007 \pm 0.0186) \epsilon^{-3}+(1.60 \pm 0.19) \epsilon^{-2}+(-17.98 \pm 3.47) \epsilon^{-1}$
- at $-2,-1:!=0$
\rightarrow speculation in literature
- can be computed at all \rightarrow methods
- extend UT finding to other integrals (five loops!)
- analytical results for integrals needed...
- QCD applications: nice choice of basis
- input for non-planar Beisert-Eden-Staudacher

THANKS FOR A NICE

 WORKSHOP!Your Question
Here?

