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• what to compute and why?
• define ‘success’
• how badly do we want it?
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• govern IR/UV divergences [long literature, ~70 - today]

• example: light-like cusp anomalous dimension

1   anomalous dimension of light like cusped Wilson line
II   leading infrared divergence of amplitudes
III  logarithmic growth of high-spin Wilson operators
IV  related to gluon Regge trajectory
V   appears in AdS/CFT (N=4)

→ ample motivation to compute it!
(many approaches to compute it…)

k2 = 0

p2 = 0
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• in N=4 two loop form factor: [Van Neerven, 1986], 
three loops [Gehrmann-Henn-Huber, 11]

• in QCD, three loops [Gehrmann et.al, 06] - [Baikov et.al, 09]
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• planar limit known exactly [Beisert-Eden-Staudacher, 06]
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c ⇠ ..N4

c + ..N2
c

• first “non-planar” correction at four loops!

• today: the first computation of nonplanar cusp in any QFT

(see also more recent: [Moch-Ruijl-Ueda-Vermaseren-Vogt, 17],
[Grozin-Henn-Stahlhofen, 17])
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• what to compute and why?
• define ‘success’
• how badly do we want it?

perturbative QFT talks cheatsheet

• non-planar correction to the ‘Sudakov’ form 
factor in N=4 at four loops to at least leading 
divergent term: 

• is it zero? → numerics (may) suffice

• quite… → long-standing conjecture

✏�2, ✏�1
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“preprocessing”

generate 
integrand

explicit integration

reduce to 
simpler integrals

“postprocessing”

• Feynman graphs
• unitarity based approaches
• (string theory)
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color structure for each graph
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propagators

• ∃ color 
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• always possible at tree level, very similar looking loop level 
conjecture, see review in [Isermann, 13]
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• checked 3 loop-2 point, 2 loop-3 point results (simple!)
• result for 4 loop-2 point:

• 34 graphs, 2 “master” graphs. 
• first true non-planar corrections
• Ansatz constructed, most unitarity cuts checked
• 1 truly free parameter left

[RB-Kniehl-Tarasov-Yang]

→ color-kinematic duality exists up to four loops for (some) 
form factors

[Yang, 16]: five loop case
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constructing the form factor integrand

Integral statistics after generation:

• 34 integrals
• 13 have a non-planar color part
• 10 are purely non-planar color

• mostly quadratic in 6 irreducible numerators
• topology 26: no internal boxes

→ way to complicated!

recent progress planar, Nf dependent pieces:

[Henn-Smirnov^2-Steinhauser, 16]
[Henn-Lee-Smirnov^2-Steinhauser, 16]

[Von Manteuffel-Schabinger, 16]
[Lee-Smirnov^2-Steinhauser, 17]
[Ahmed-Henn-Steinhauser, 17]
[Grozin-Henn-Stahlhofen, 17]

→ Volodya Smirnov, Peter Marquard’s talks
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integrand

explicit integration

reduce to 
simpler integrals
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• integration-by-parts identities
• graph symmetries
• dimensional shifts
• choice of basis
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• integration-by-parts identities
Z

dDl1 . . . d
DlL

@

@lµi
(integrand) = 0

• LARGE systems of linear equations, solution in terms of 
choice of master integrals
• Laporta algorithm, implemented in e.g.  LiteRed, FIRE, 
Reduze, Kira, Air, private → Volodya’s talk
• here: Reduze ([Von Manteuffel-Studerus, 12]) in [Boels-Kniehl-
Yang, 15]
two problems:

• too many hard master integrals 
• epsilon dependent coefficients

FF = . . .+

✓
⇠ 1

✏4
+

⇠ 10

✏3
+ . . .

◆
Imaster
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good master integrals?

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants 
always appear: multiple zeta values

e.g. ⇣(n)

{1}, { }, {⇡2}, {⇣3}, {⇡4}, {⇡2⇣3, ⇣5}, {⇡6, ⇣23}, . . .
not that many constants:

• in N=4, only maximal terms observed

• every order in epsilon expansion typically has a maximal 
‘weight’

• maximal transcedental part of QCD ⇿ N=4

• idea: find integrals only have maximal termsthat are uniformly transcendental
• cf. [Gehrman-Henn-Huber, 11] at 3 loops
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when is an integral uniformly transcendental?

• conjecture: constant ‘leading singularity’ integrals are UT  
[Bern-Hermann-Litsey-Stankowicz-Trnka, 14]  
[Henn-Smirnov-Smirnov-Steinhauser, 16]

• dLog form exist: certainly UT

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

can you tell an integral is UT without integrating it?
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express all loop momenta in a four D basis:
li = ↵i

1p1 + ↵i
2p2 + ↵i

3q1 + ↵i
4q2

consider integrand           in D=4I
�
~↵i
�

‘constant leading singularity’ → simple poles in all variables

• many multi residues possible (4*4=16 variables)

• pick random sequences: non-UT integrals tend to fail quickly  
                                                → double or higher poles

if non-simple pole appears in taking multi-residues:   
integral not UT

integral property from integrand
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finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues:   
integral certainly not UT

• take a set of integrals

• find any higher-pole-generating sequence of residues
• derive constraint on set of integrals to evade higher order 
residue → smaller set of integrals
• repeat

{
→ output is a set of integrals that pass checks: UT candidates

maximal initial set of integrals from dimensional analysis: here 
quadratic numerator integrals (190)

(some topologies have no candidates!)
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express form factor in terms of UT integrals

• now known: form factor & a set of candidate UT 
integrals & IBP solution → in principle enough information

• refinement: IBP relations without epsilon dependence

• can be obtained directly, but here from IBP-
subreduction, [Boels-Kniehl-Yang, 16]

• advantage: fits easily in laptop memory!
• disadvantage: less powerful

• output is a minimal set of rational IBP relations for given set  
of integrals

result: full form factor expressed in UT-candidate integrals 

form factor is (likely) maximally transcendental



• want to put UT integrals into product form for easy input into 
FIESTA / MB

• brute force using Mathematica
• aim to minimise number of integrals for form factor

X
ciUTCi = (quadratic in li) (quadratic in li)

• found choice of 23 / 34 UT integrals non-planar/planar

• all passing >10.000 random residue checks separately

• dLog:

express form factor in terms of UT integrals
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reduce to 
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perturbative QFT talks cheatsheet

“preprocessing”

generate 
integrand

explicit integration

reduce to 
simpler integrals

“postprocessing”

• Mellin-Barnes representation
• dimensional recurrences
• sector decomposition
• otherwise
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numerical integration, non-planar

• rest: FIESTA + CUBA (mostly vegas) + complete cluster  
[Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09]
[Smirnov,13,15] + [Hahn, 04]

important observation: UT integrals are simpler to integrate 
numerically than non-UT ones!

• FIESTA uses sector decomposition (cf Sophia Borowska’s talk)
• (some cross-checks for simple integrals)

• for some integrals derived low-dimensional valid MB 
representation by hand & inspection → precise results

• one integral known analytically

• automated tools used include: [Czakon, 05], [Smirnov^2, 
07], [Gluza, Kajda, Riemann, 07 / 11], [Blümlein et.al, 14]
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numerical integration and results

other users of the local cluster after some time:

improvements of accuracy scale as 
p
maxeval

maxevalintegration time scales as 
limiting 
factor:
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numerical integration and results

• integrals diverge as

• non-planar cusp is at

⇠ 1

✏8

⇠ 1

✏2
(transcendentality 6)

numerics for first five orders good enough to apply “PSLQ” 
to convert to “small rational * zeta value”

(mathematica: “FindIntegerNullVector”)

seven orders of expansion, first six should cancel

→ non-planar form factor cancels analytically down to ⇠ 1

✏4

. . .+ (0.0007± 0.0186)✏�3 + (1.60± 0.19)✏�2 + (�17.98± 3.47)✏�1



some sample result… 
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the rug

integration error is somewhat naive
(cf. [Marquard-Smirnov^2-Steinhauser-Wellmann, 16]) 

• MB, exact cross-checks
• PSLQ possible
• eps^-3 coefficient central value
• checked stability of central value with increasing points
• error dominated by very few integrals

. . .+ (0.0007± 0.0186)✏�3 + (1.60± 0.19)✏�2 + (�17.98± 3.47)✏�1



the rug: example check

• uses number theory to check numerical computations!

• take PSLQ result as exact result, and study numerical 
deviation
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in short

• at -2,-1:  != 0

• can be computed at all → methods 

→ speculation in literature

fun result: a four loop form factor in N=4

. . .+ (0.0007± 0.0186)✏�3 + (1.60± 0.19)✏�2 + (�17.98± 3.47)✏�1

• extend UT finding to other integrals (five loops!)
• analytical results for integrals needed… 
• QCD applications: nice choice of basis 
• input for non-planar Beisert-Eden-Staudacher 



THANKS FOR A NICE 
WORKSHOP!



Your Question
Here?


