

Four-loop form factor in N = 4

/w Tobias Huber and Gang Yang, arXiv:1705.03444 & arXiv:1711.08449

> Rutger Boels University of Hamburg

... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

- at -2,-I: $!= 0 \rightarrow$ speculation in literature
- can be computed at all \rightarrow methods

our approach is almost certainly wrong...

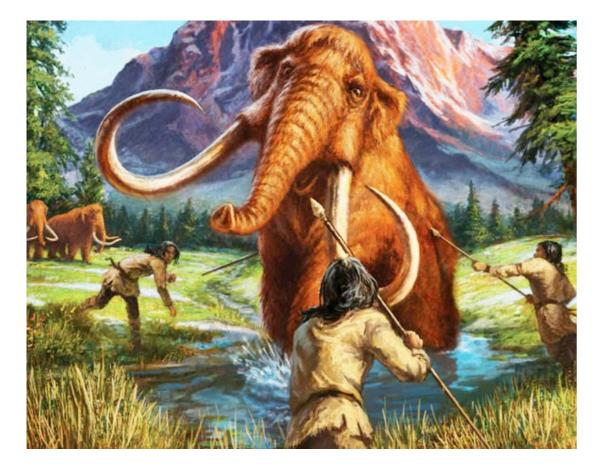
... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

our approach is almost certainly wrong...

two poles of research here at the workshop

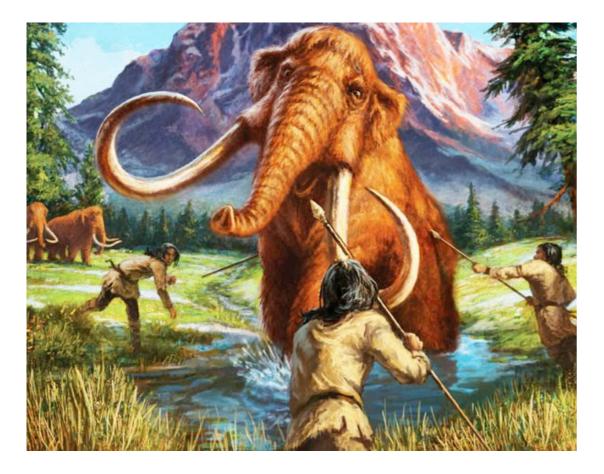
UH

two poles of research here at the workshop



UH İİİ

two poles of research here at the workshop



"preprocessing"

generate integrand

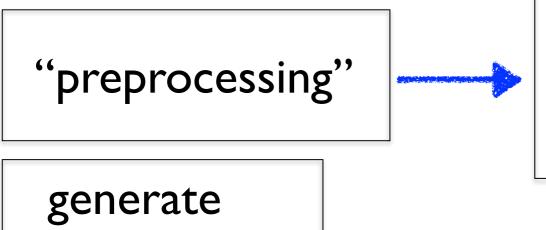
reduce to simpler integrals

explicit integration

"postprocessing"

HH

perturbative QFT talks cheatsheet



integrand

reduce to simpler integrals

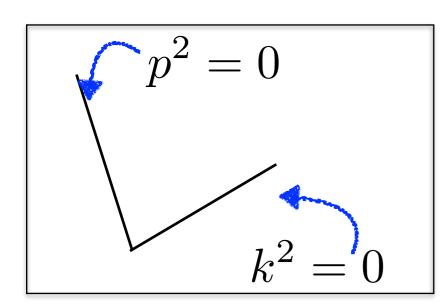
explicit integration

"postprocessing"

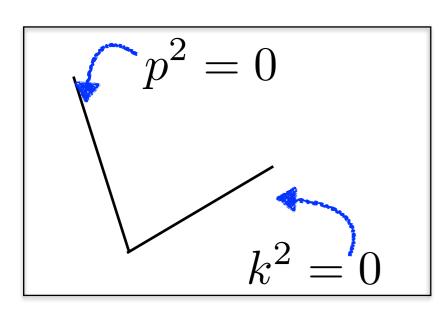
- what to compute and why?
- define 'success'
- how badly do we want it?

• govern IR/UV divergences [long literature, ~70 - today]

- govern IR/UV divergences [long literature, ~70 today]
- example: light-like cusp anomalous dimension
 - I anomalous dimension of light like cusped Wilson line
 II leading infrared divergence of amplitudes
 III logarithmic growth of high-spin Wilson operators
 IV related to gluon Regge trajectory
 V appears in AdS/CFT (N=4)



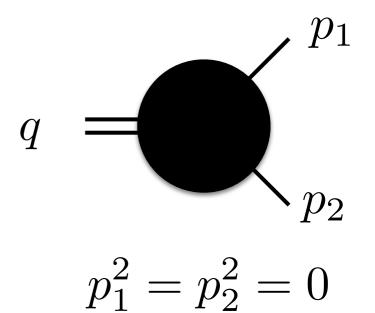
- govern IR/UV divergences [long literature, ~70 today]
- example: light-like cusp anomalous dimension
 - I anomalous dimension of light like cusped Wilson line
 II leading infrared divergence of amplitudes
 III logarithmic growth of high-spin Wilson operators
 IV related to gluon Regge trajectory
 V appears in AdS/CFT (N=4)



 \rightarrow ample motivation to compute it! (many approaches to compute it...)

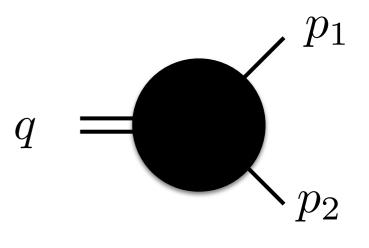
 here: two gluon + stress-tensor multiplet in N=4

$$\mathcal{F}^{(l)} = \mathcal{F}^{\text{tree}} g^{2l} (-q^2)^{-l\epsilon} F^{(l)}$$



 here: two gluon + stress-tensor multiplet in N=4

$$\mathcal{F}^{(l)} = \mathcal{F}^{\text{tree}} g^{2l} (-q^2)^{-l\epsilon} F^{(l)}$$



$$p_1^2 = p_2^2 = 0$$

• general theory of IR divergences:

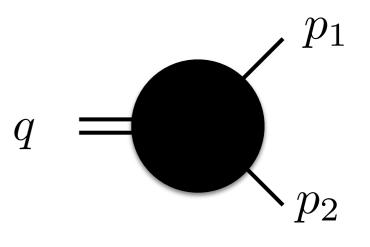
$$(\log F)^{(l)} = -\left[\frac{\gamma_{\text{cusp}}^{(l)}}{(2l\epsilon)^2} + \frac{\mathcal{G}_{\text{coll}}^{(l)}}{2l\epsilon} + \text{Fin}^{(l)}\right] + \mathcal{O}\left(\epsilon\right)$$

H iii

anomalous dimensions

 here: two gluon + stress-tensor multiplet in N=4

$$\mathcal{F}^{(l)} = \mathcal{F}^{\text{tree}} g^{2l} (-q^2)^{-l\epsilon} F^{(l)}$$



$$p_1^2 = p_2^2 = 0$$

• general theory of IR divergences:

$$(\log F)^{(l)} = -\left[\frac{\gamma_{\text{cusp}}^{(l)}}{(2l\epsilon)^2} + \frac{\mathcal{G}_{\text{coll}}^{(l)}}{2l\epsilon} + \text{Fin}^{(l)}\right] + \mathcal{O}\left(\epsilon\right)$$

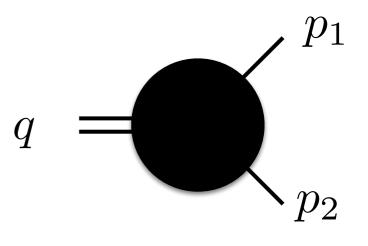
• in N=4 two loop form factor: [Van Neerven, 1986], three loops [Gehrmann-Henn-Huber, 11]

H iii

anomalous dimensions

 here: two gluon + stress-tensor multiplet in N=4

$$\mathcal{F}^{(l)} = \mathcal{F}^{\text{tree}} g^{2l} (-q^2)^{-l\epsilon} F^{(l)}$$



$$p_1^2 = p_2^2 = 0$$

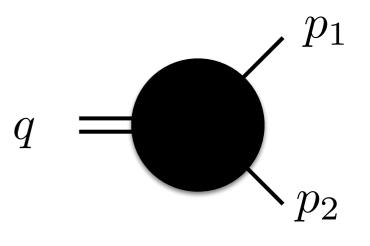
• general theory of IR divergences:

$$(\log F)^{(l)} = -\left[\frac{\gamma_{\text{cusp}}^{(l)}}{(2l\epsilon)^2} + \frac{\mathcal{G}_{\text{coll}}^{(l)}}{2l\epsilon} + \text{Fin}^{(l)}\right] + \mathcal{O}\left(\epsilon\right)$$

- in N=4 two loop form factor: [Van Neerven, 1986], three loops [Gehrmann-Henn-Huber, 11]
- in QCD, three loops [Gehrmann et.al, 06] [Baikov et.al, 09]

 here: two gluon + stress-tensor multiplet in N=4

$$\mathcal{F}^{(l)} = \mathcal{F}^{\text{tree}} g^{2l} (-q^2)^{-l\epsilon} F^{(l)}$$



$$p_1^2 = p_2^2 = 0$$

• general theory of IR divergences:

$$(\log F)^{(l)} = -\left[\frac{\gamma_{\text{cusp}}^{(l)}}{(2l\epsilon)^2} + \frac{\mathcal{G}_{\text{coll}}^{(l)}}{2l\epsilon} + \text{Fin}^{(l)}\right] + \mathcal{O}\left(\epsilon\right)$$

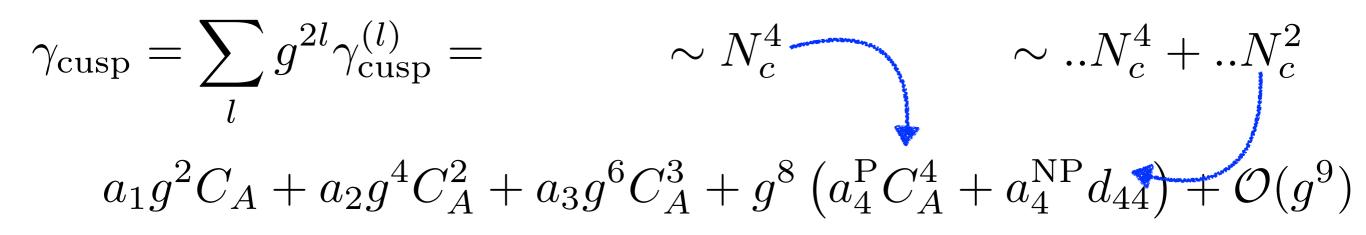
- in N=4 two loop form factor: [Van Neerven, 1986], three loops [Gehrmann-Henn-Huber, 11]
- in QCD, three loops [Gehrmann et.al, 06] [Baikov et.al, 09]
- planar limit known exactly [Beisert-Eden-Staudacher, 06]

• function of coupling constant, group theory:

$$\gamma_{\text{cusp}} = \sum_{l} g^{2l} \gamma_{\text{cusp}}^{(l)} =$$

$$a_1 g^2 C_A + a_2 g^4 C_A^2 + a_3 g^6 C_A^3 + g^8 \left(a_4^{\text{P}} C_A^4 + a_4^{\text{NP}} d_{44} \right) + \mathcal{O}(g^9)$$

• function of coupling constant, group theory:



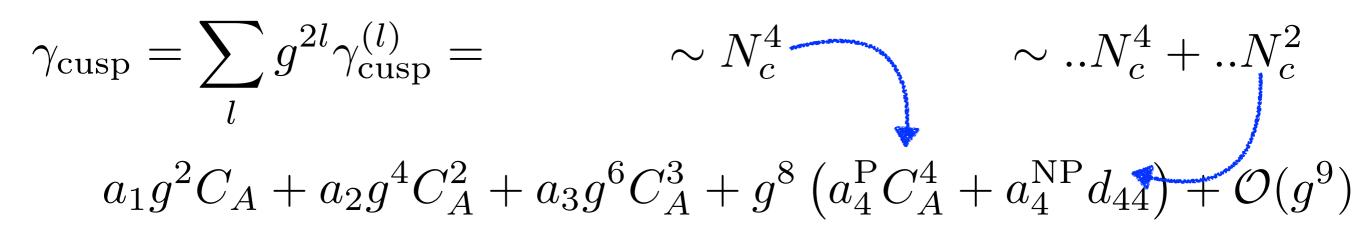
• first "non-planar" correction at four loops!

• function of coupling constant, group theory:

$$\gamma_{\text{cusp}} = \sum_{l} g^{2l} \gamma_{\text{cusp}}^{(l)} = \sim N_{c}^{4} \sim ..N_{c}^{4} + ..N_{c}^{2}$$
$$a_{1}g^{2}C_{A} + a_{2}g^{4}C_{A}^{2} + a_{3}g^{6}C_{A}^{3} + g^{8} \left(a_{4}^{P}C_{A}^{4} + a_{4}^{NP}d_{44}\right) + \mathcal{O}(g^{9})$$

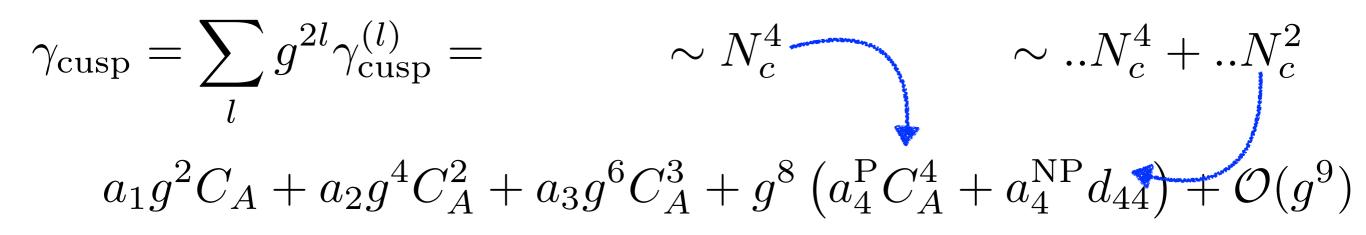
- first "non-planar" correction at four loops!
- a⁴_{NP} conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]

• function of coupling constant, group theory:



- first "non-planar" correction at four loops!
- a⁴_{NP} conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]
- today: the first computation of nonplanar cusp in any QFT

• function of coupling constant, group theory:



- first "non-planar" correction at four loops!
- a⁴_{NP} conjectured to vanish [Becher-Neubert, 09] in any QFT cf. [(Dixon-)Gardi-Magnea, 09],[Ahrens-Neubert-Vernazza, 09]
- today: the first computation of nonplanar cusp in any QFT

(see also more recent: [Moch-Ruijl-Ueda-Vermaseren-Vogt, 17], [Grozin-Henn-Stahlhofen, 17])

"preprocessing"

- what to compute and why?
- define 'success'
- how badly do we want it?

"preprocessing"

- what to compute and why?
- define 'success'
- how badly do we want it?
- non-planar correction to the 'Sudakov' form factor in N=4 at four loops to at least leading divergent term: $\epsilon^{-2},\,\epsilon^{-1}$
- is it zero? \rightarrow numerics (may) suffice
- quite... \rightarrow long-standing conjecture

"preprocessing"

generate integrand

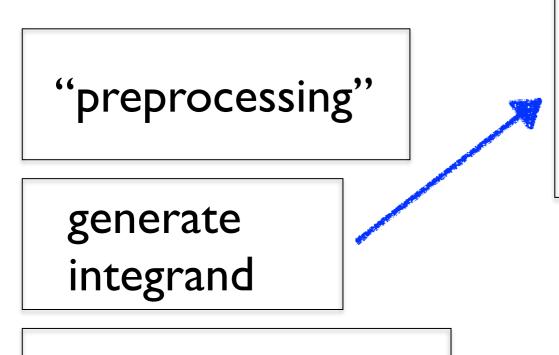
reduce to simpler integrals

explicit integration

"postprocessing"

H

perturbative QFT talks cheatsheet



reduce to simpler integrals

explicit integration

"postprocessing"

- Feynman graphs
- unitarity based approaches
- (string theory)

[Bern-Carrasco-Johannson, 08, 10]

• write a gauge theory tree amplitude as:

$$\mathcal{A}_n = g_{ym}^{n-2} \sum_{\Gamma_i} \frac{n_i c_i}{s_i}$$

[Bern-Carrasco-Johannson, 08, 10]

• write a gauge theory tree amplitude as:

$$\mathcal{A}_n = g_{ym}^{n-2} \sum_{\Gamma_i} \frac{n_i c_i}{s_i}$$

sum over trivalent, connected tree graphs

[Bern-Carrasco-Johannson, 08, 10]

• write a gauge theory tree amplitude as:

color structure for each graph

 $\mathcal{A}_n = g_{ym}^{n-2} \sum_{\Gamma_i} \frac{n_i c_i}{s_i}$ sum over trivalent, connected tree graphs

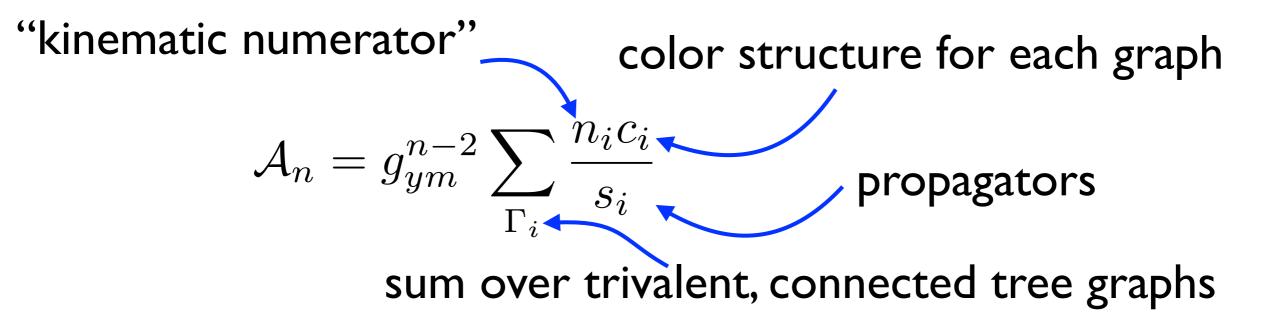
[Bern-Carrasco-Johannson, 08, 10]

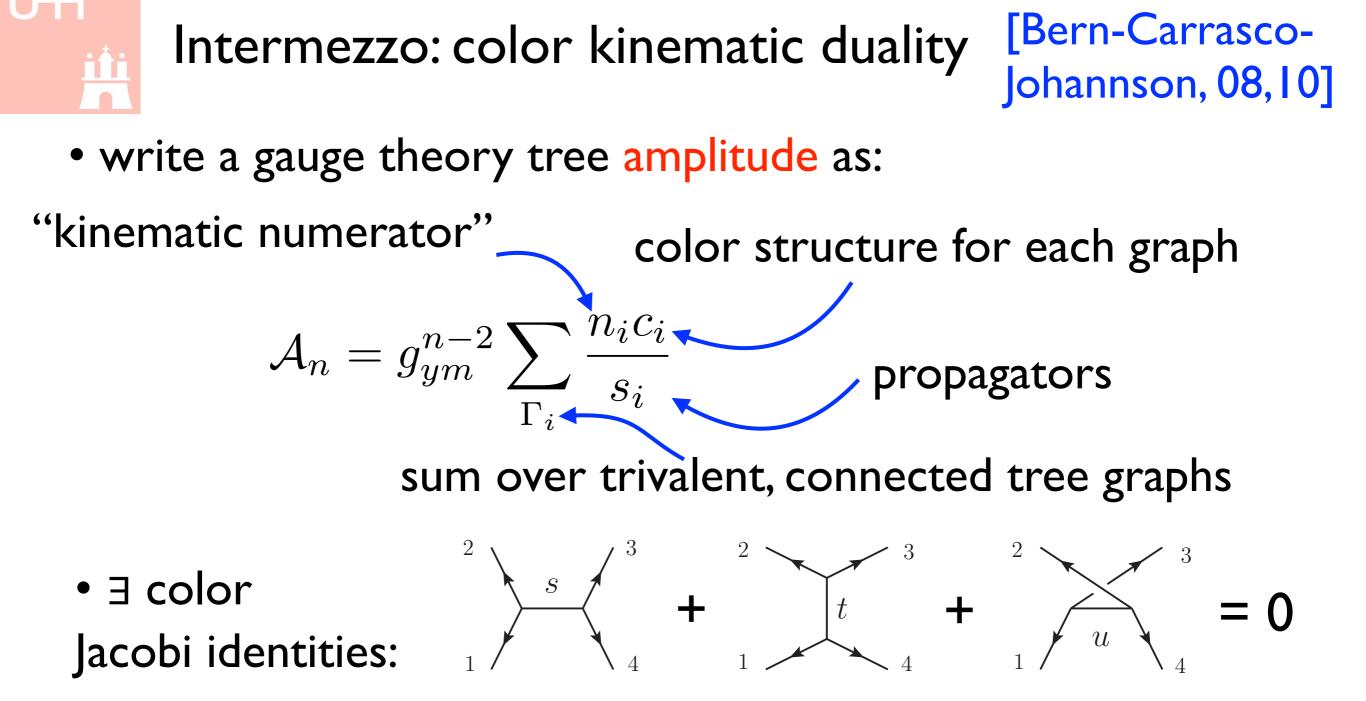
• write a gauge theory tree amplitude as:

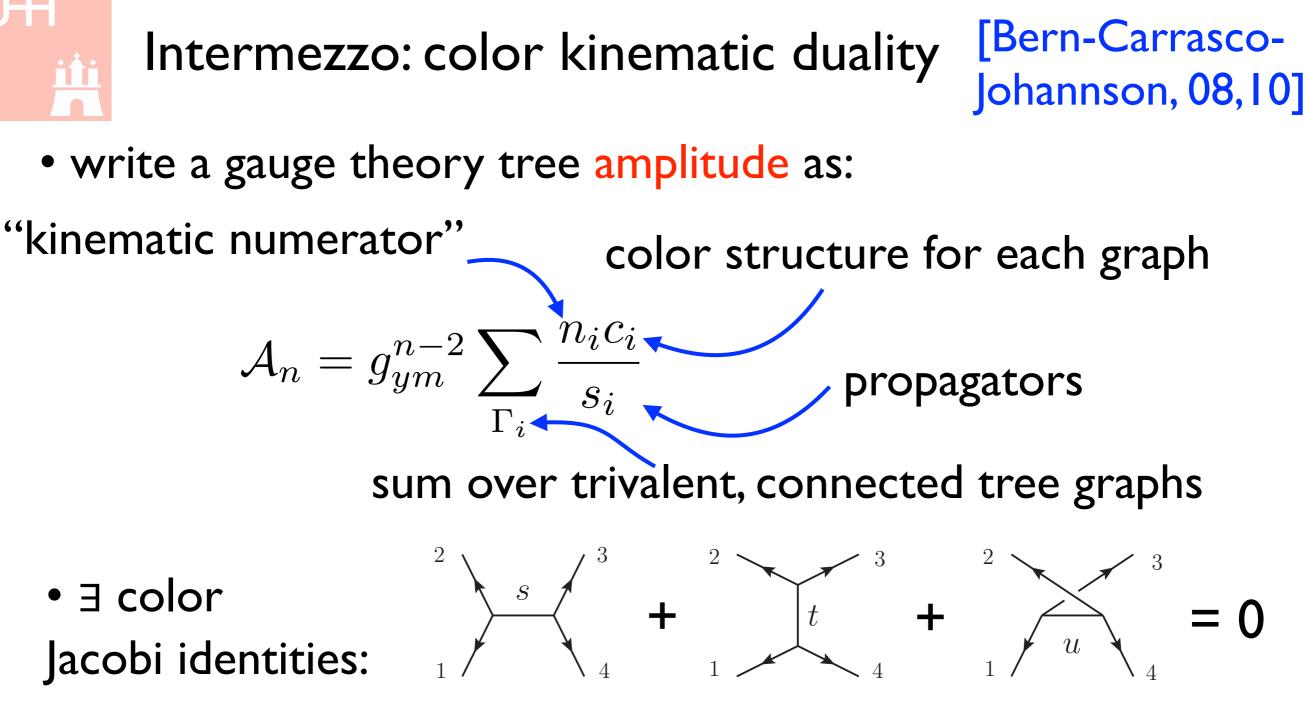
"kinematic numerator" color structure for each graph $\mathcal{A}_n = g_{ym}^{n-2} \sum_{\Gamma_i} \frac{n_i c_i}{s_i}$ sum over trivalent, connected tree graphs

[Bern-Carrasco-Johannson, 08, 10]

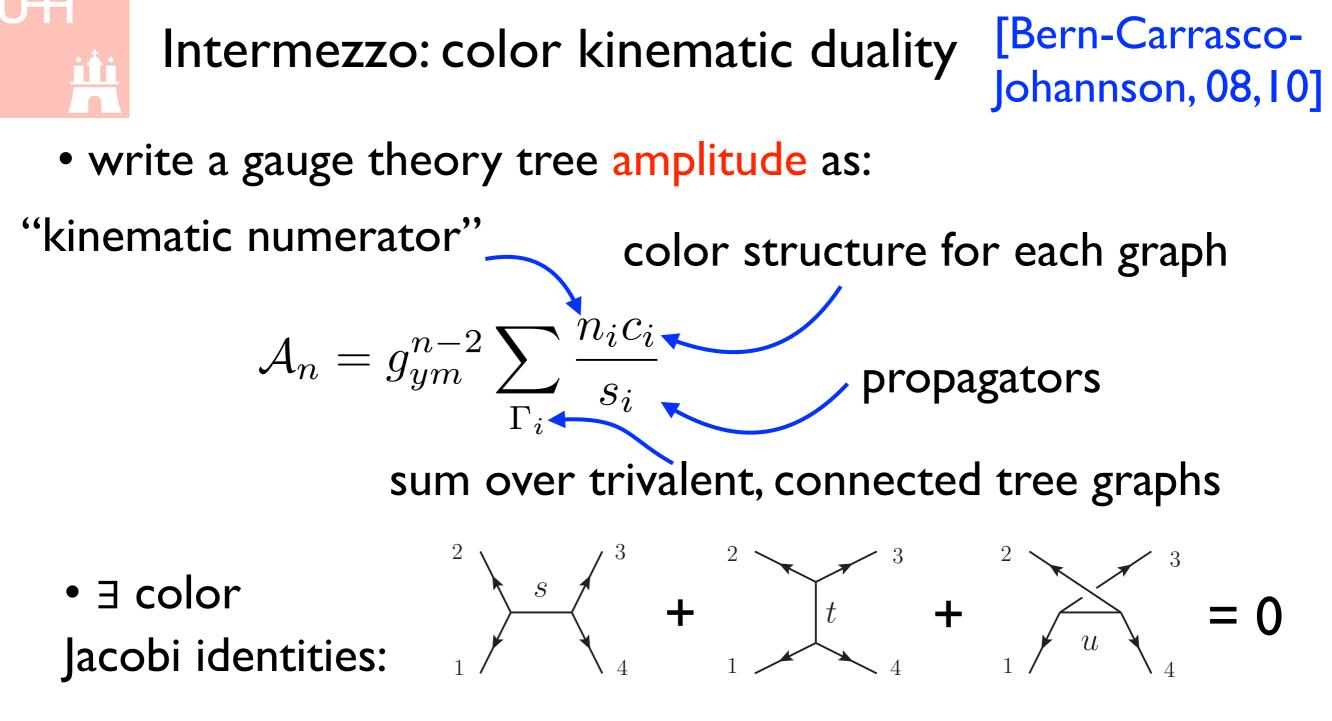
• write a gauge theory tree amplitude as:







• demand that the kinematic numerators satisfy same Jacobi's: $\forall \{c_i = c_k - c_j\} \Rightarrow n_i = n_k - n_j$



- demand that the kinematic numerators satisfy same Jacobi's: $\forall \{c_i = c_k c_j\} \Rightarrow n_i = n_k n_j$
- always possible at tree level, very similar looking loop level conjecture, see review in [lsermann, 13]

suspicion of duality enough as "Ansatz-generator"

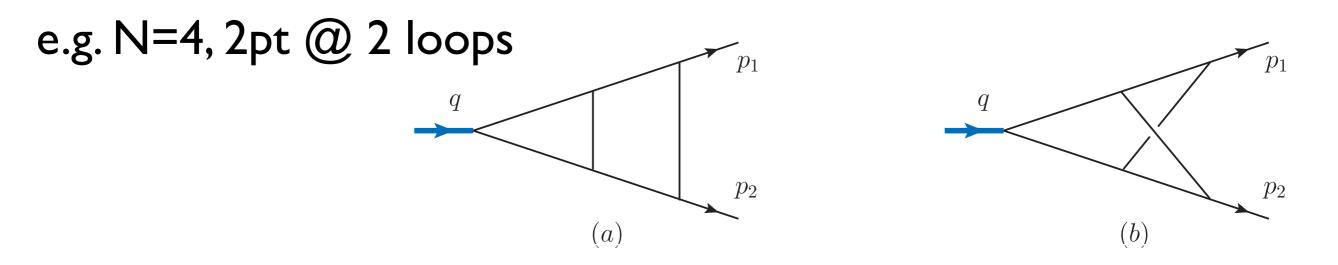
inspired by amplitude computation [Bern-et.al, 12]:

inspired by amplitude computation [Bern-et.al, [2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
 check Ansatz using cuts

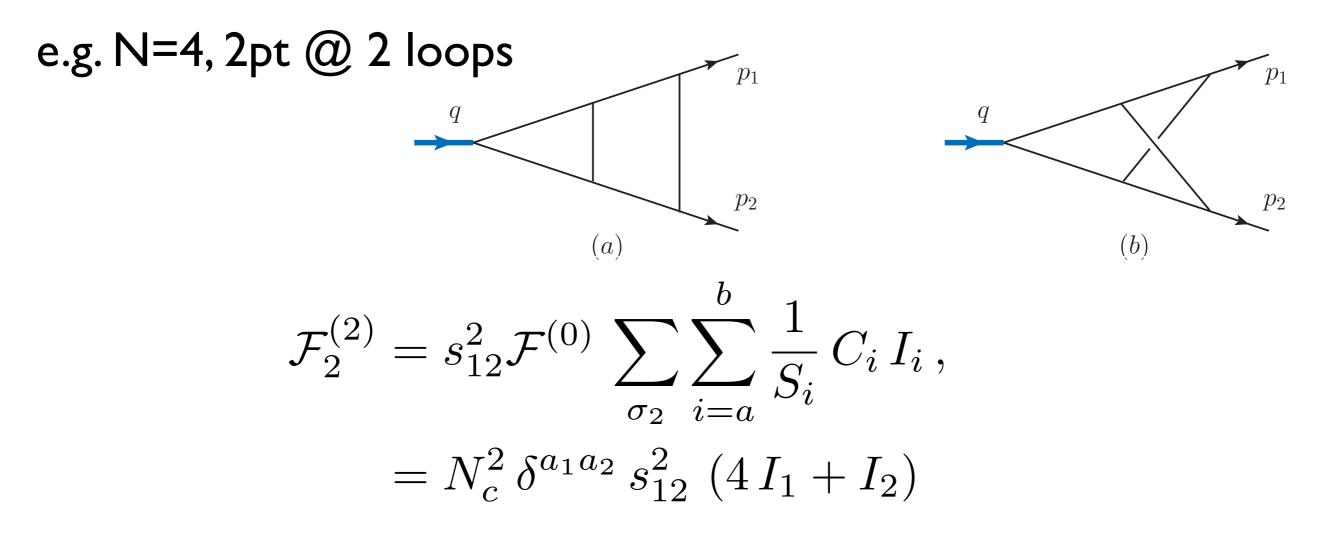
inspired by amplitude computation [Bern-et.al, 12]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
- check Ansatz using cuts



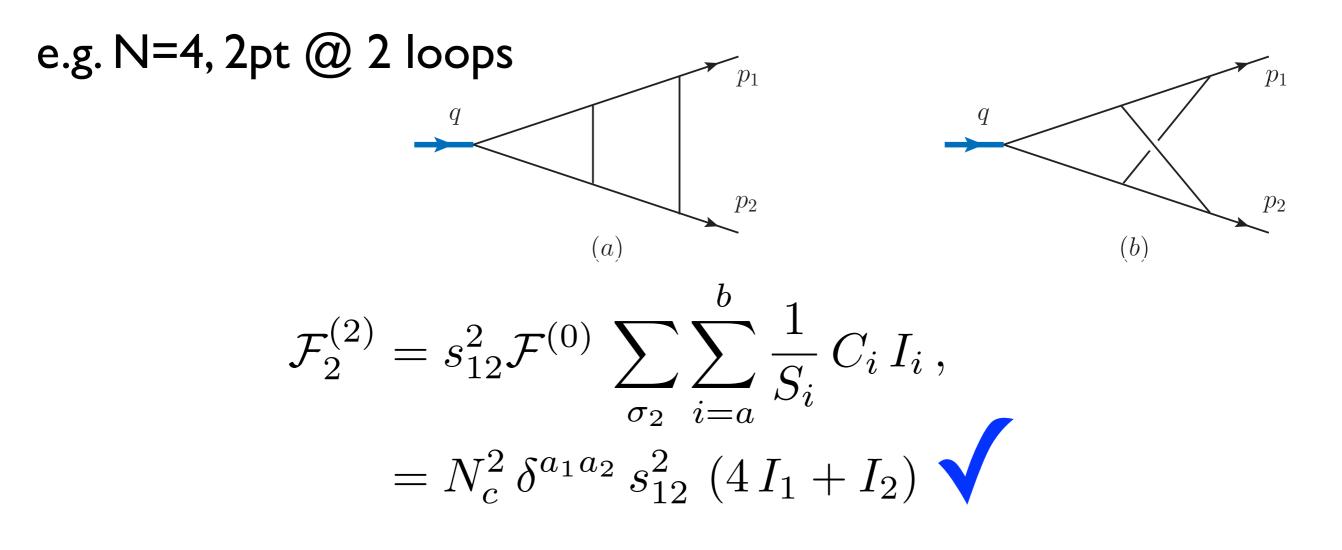
inspired by amplitude computation [Bern-et.al, [2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
 check Ansatz using cuts



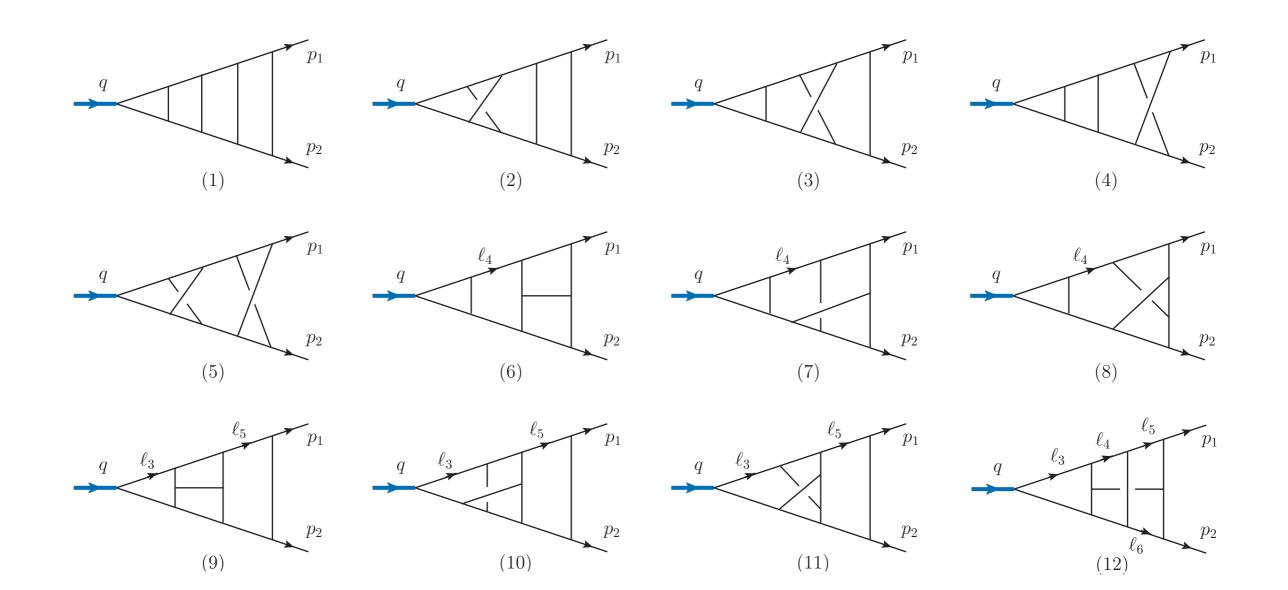
inspired by amplitude computation [Bern-et.al, [2]:

- draw all trivalent graphs, relate numerators by duality
- feed in expectations about answer:, e.g. UV divergences
 check Ansatz using cuts



- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

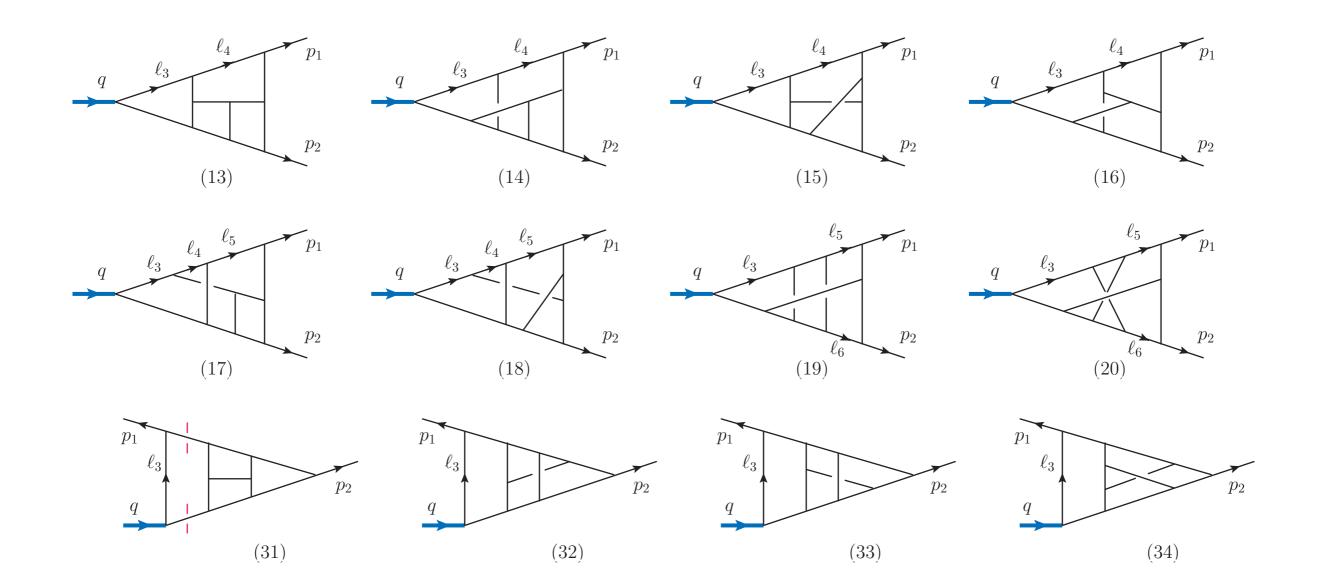
- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:



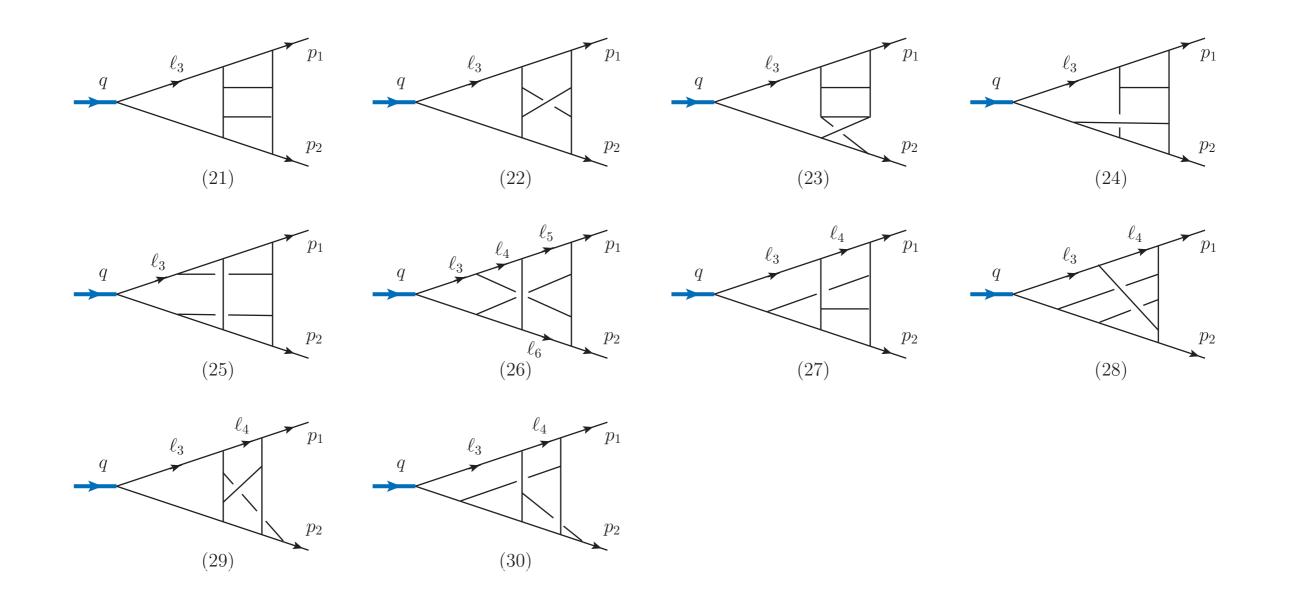
OH Applica

Application: form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:



- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:



- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left

→ color-kinematic duality exists up to four loops for (some) form factors

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- 34 graphs, 2 "master" graphs.
- first true non-planar corrections
- Ansatz constructed, most unitarity cuts checked
- I truly free parameter left

→ color-kinematic duality exists up to four loops for (some) form factors

[Yang, 16]: five loop case

Integral statistics after generation:

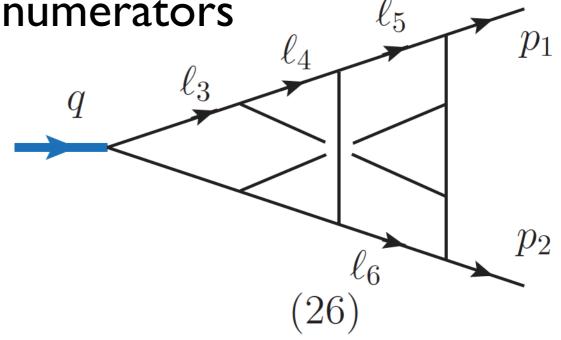
- 34 integrals
- 13 have a non-planar color part
- 10 are purely non-planar color
- mostly quadratic in 6 irreducible numerators
- topology 26: no internal boxes

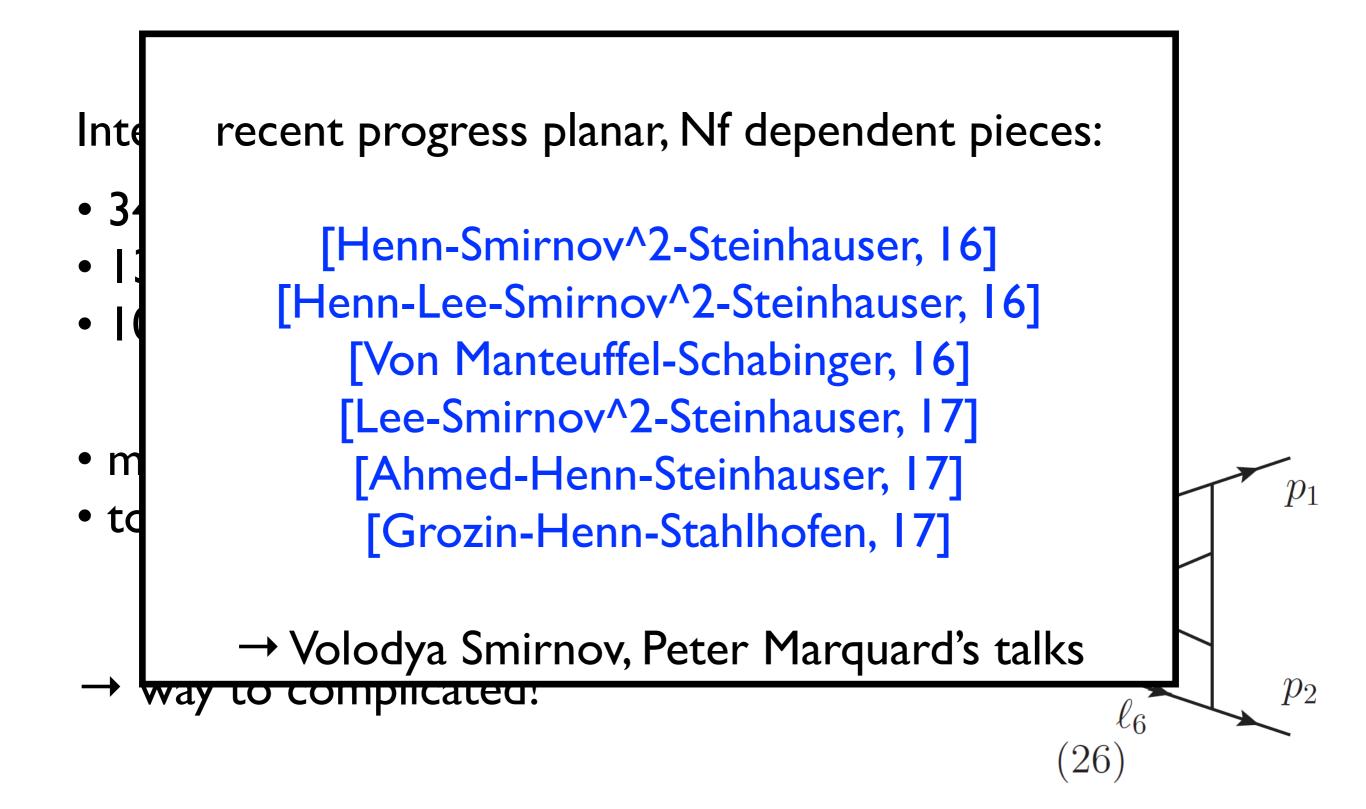


Integral statistics after generation:

- 34 integrals
- 13 have a non-planar color part
- 10 are purely non-planar color
- mostly quadratic in 6 irreducible numerators
- topology 26: no internal boxes

 \rightarrow way to complicated!





perturbative QFT talks cheatsheet

"preprocessing"

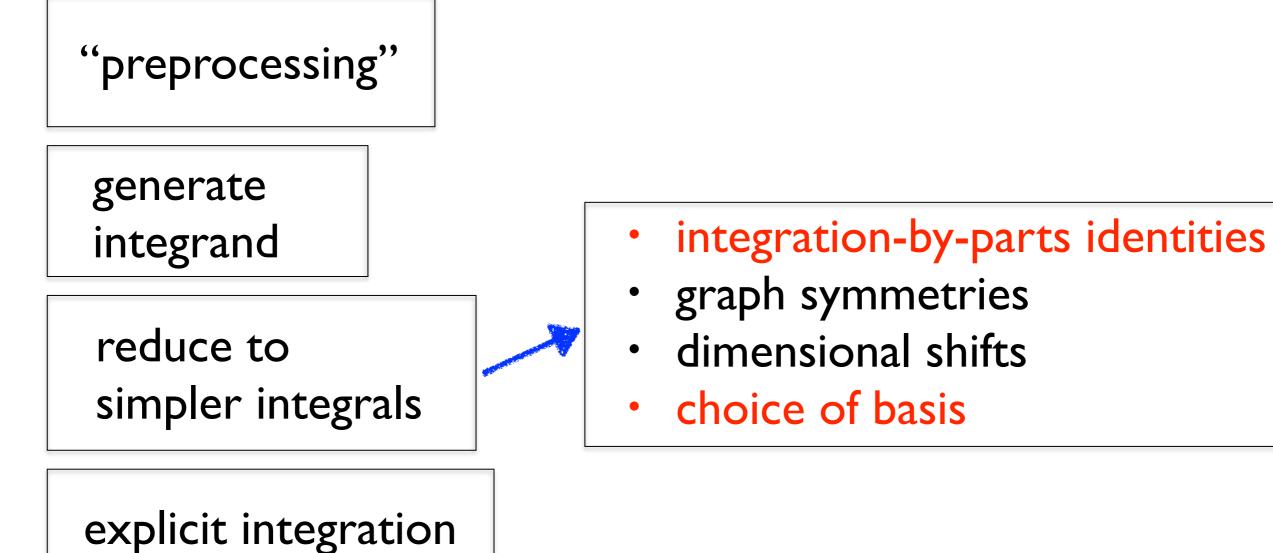
generate integrand

reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet



"postprocessing"

simplification?

simplification?

• integration-by-parts identities

$$\int d^D l_1 \dots d^D l_L \ \frac{\partial}{\partial l_i^{\mu}} (\text{integrand}) = 0$$

- LARGE systems of linear equations, solution in terms of choice of master integrals
- Laporta algorithm, implemented in e.g. LiteRed, FIRE, Reduze, Kira, Air, private → Volodya's talk

simplification?

integration-by-parts identities

$$\int d^D l_1 \dots d^D l_L \ \frac{\partial}{\partial l_i^{\mu}} (\text{integrand}) = 0$$

- LARGE systems of linear equations, solution in terms of choice of master integrals
- Laporta algorithm, implemented in e.g. LiteRed, FIRE, Reduze, Kira, Air, private → Volodya's talk
- here: Reduze ([Von Manteuffel-Studerus, 12]) in [Boels-Kniehl-Yang, 15]

two problems:

- too many hard master integrals
- epsilon dependent coefficients

$$FF = \ldots + \left(\frac{\sim 1}{\epsilon^4} + \frac{\sim 10}{\epsilon^3} + \ldots\right) I_{\text{master}}$$

key idea: uniformly transcendental integrals are good

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values e.g. $\zeta(n)$

not that many constants:

 $\{1\}, \{ \}, \{\pi^2\}, \{\zeta_3\}, \{\pi^4\}, \{\pi^2\zeta_3, \zeta_5\}, \{\pi^6, \zeta_3^2\}, \dots$

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values e.g. $\zeta(n)$

not that many constants:

 $\{1\}, \{ \}, \{\pi^2\}, \{\zeta_3\}, \{\pi^4\}, \{\pi^2\zeta_3, \zeta_5\}, \{\pi^6, \zeta_3^2\}, \dots$

every order in epsilon expansion typically has a maximal 'weight'
in N=4, only maximal terms observed

maximal transcedental part of QCD ↔ N=4

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values e.g. $\zeta(n)$

not that many constants:

 $\{1\}, \{ \}, \{\pi^2\}, \{\zeta_3\}, \{\pi^4\}, \{\pi^2\zeta_3, \zeta_5\}, \{\pi^6, \zeta_3^2\}, \dots$

every order in epsilon expansion typically has a maximal 'weight'
in N=4, only maximal terms observed

- maximal transcedental part of QCD ↔ N=4
- idea: find integrals only have maximal terms

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values e.g. $\zeta(n)$

not that many constants:

 $\{1\}, \{ \}, \{\pi^2\}, \{\zeta_3\}, \{\pi^4\}, \{\pi^2\zeta_3, \zeta_5\}, \{\pi^6, \zeta_3^2\}, \dots$

every order in epsilon expansion typically has a maximal 'weight'
in N=4, only maximal terms observed

- maximal transcedental part of QCD ↔ N=4
- idea: find integrals that are uniformly transcendental

key idea: uniformly transcendental integrals are good

in expansions of Feynman integrals certain constants always appear: multiple zeta values e.g. $\zeta(n)$

not that many constants:

 $\{1\}, \{ \}, \{\pi^2\}, \{\zeta_3\}, \{\pi^4\}, \{\pi^2\zeta_3, \zeta_5\}, \{\pi^6, \zeta_3^2\}, \dots$

every order in epsilon expansion typically has a maximal 'weight'
in N=4, only maximal terms observed

- maximal transcedental part of QCD ↔ N=4
- idea: find integrals that are uniformly transcendental
- cf. [Gehrman-Henn-Huber, 11] at 3 loops

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$\begin{split} I_{12 \text{ prop}} = & \frac{1}{576} + \epsilon^2 \frac{1}{216} \pi^2 + \epsilon^3 \frac{151}{864} \zeta_3 + \epsilon^4 \frac{173}{10368} \pi^4 + \epsilon^5 \left[\frac{505}{1296} \pi^2 \zeta_3 + \frac{5503}{1440} \zeta_5 \right] + \\ & + \epsilon^6 \left[\frac{6317}{155520} \pi^6 + \frac{9895}{2592} \zeta_3^2 \right] + \epsilon^7 \left[\frac{89593}{77760} \pi^4 \zeta_3 + \frac{3419}{270} \pi^2 \zeta_5 - \frac{169789}{4032} \zeta_7 \right] \end{split}$$

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$\begin{split} I_{12 \text{ prop}} = & \frac{1}{576} + \epsilon^2 \frac{1}{216} \pi^2 + \epsilon^3 \frac{151}{864} \zeta_3 + \epsilon^4 \frac{173}{10368} \pi^4 + \epsilon^5 \left[\frac{505}{1296} \pi^2 \zeta_3 + \frac{5503}{1440} \zeta_5 \right] + \\ & + \epsilon^6 \left[\frac{6317}{155520} \pi^6 + \frac{9895}{2592} \zeta_3^2 \right] + \epsilon^7 \left[\frac{89593}{77760} \pi^4 \zeta_3 + \frac{3419}{270} \pi^2 \zeta_5 - \frac{169789}{4032} \zeta_7 \right] \end{split}$$

can you tell an integral is UT without integrating it?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$\begin{split} I_{12 \text{ prop}} = & \frac{1}{576} + \epsilon^2 \frac{1}{216} \pi^2 + \epsilon^3 \frac{151}{864} \zeta_3 + \epsilon^4 \frac{173}{10368} \pi^4 + \epsilon^5 \left[\frac{505}{1296} \pi^2 \zeta_3 + \frac{5503}{1440} \zeta_5 \right] + \\ & + \epsilon^6 \left[\frac{6317}{155520} \pi^6 + \frac{9895}{2592} \zeta_3^2 \right] + \epsilon^7 \left[\frac{89593}{77760} \pi^4 \zeta_3 + \frac{3419}{270} \pi^2 \zeta_5 - \frac{169789}{4032} \zeta_7 \right] \end{split}$$

can you tell an integral is UT without integrating it?

(differential equations)

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$\begin{split} I_{12 \text{ prop}} = & \frac{1}{576} + \epsilon^2 \frac{1}{216} \pi^2 + \epsilon^3 \frac{151}{864} \zeta_3 + \epsilon^4 \frac{173}{10368} \pi^4 + \epsilon^5 \left[\frac{505}{1296} \pi^2 \zeta_3 + \frac{5503}{1440} \zeta_5 \right] + \\ & + \epsilon^6 \left[\frac{6317}{155520} \pi^6 + \frac{9895}{2592} \zeta_3^2 \right] + \epsilon^7 \left[\frac{89593}{77760} \pi^4 \zeta_3 + \frac{3419}{270} \pi^2 \zeta_5 - \frac{169789}{4032} \zeta_7 \right] \end{split}$$

can you tell an integral is UT without integrating it?

example from [Henn-Smirnov-Smirnov-Steinhauser, 16]:

$$\begin{split} I_{12 \text{ prop}} = & \frac{1}{576} + \epsilon^2 \frac{1}{216} \pi^2 + \epsilon^3 \frac{151}{864} \zeta_3 + \epsilon^4 \frac{173}{10368} \pi^4 + \epsilon^5 \left[\frac{505}{1296} \pi^2 \zeta_3 + \frac{5503}{1440} \zeta_5 \right] + \\ & + \epsilon^6 \left[\frac{6317}{155520} \pi^6 + \frac{9895}{2592} \zeta_3^2 \right] + \epsilon^7 \left[\frac{89593}{77760} \pi^4 \zeta_3 + \frac{3419}{270} \pi^2 \zeta_5 - \frac{169789}{4032} \zeta_7 \right] \end{split}$$

can you tell an integral is UT without integrating it?

- dLog form exist: certainly UT
- conjecture: constant 'leading singularity' integrals are UT [Bern-Hermann-Litsey-Stankowicz-Trnka, 14] [Henn-Smirnov-Smirnov-Steinhauser, 16]

finding UT integrals

express all loop momenta in a four D basis: $l^i = \alpha_1^i p_1 + \alpha_2^i p_2 + \alpha_3^i q_1 + \alpha_4^i q_2$

consider integrand $I(\vec{\alpha}^i)$ in D=4

'constant leading singularity' \rightarrow simple poles in all variables

finding UT integrals

express all loop momenta in a four D basis: $l^i=\alpha_1^ip_1+\alpha_2^ip_2+\alpha_3^iq_1+\alpha_4^iq_2$

consider integrand $I(\vec{\alpha}^i)$ in D=4

'constant leading singularity' \rightarrow simple poles in all variables

if non-simple pole appears in taking multi-residues: integral not UT

integral property from integrand

finding UT integrals

express all loop momenta in a four D basis: $l^i = \alpha_1^i p_1 + \alpha_2^i p_2 + \alpha_3^i q_1 + \alpha_4^i q_2$

consider integrand $I(\vec{\alpha}^i)$ in D=4

'constant leading singularity' \rightarrow simple poles in all variables

if non-simple pole appears in taking multi-residues: integral not UT

C integral property from integrand

- many multi residues possible (4*4=16 variables)
- pick random sequences: non-UT integrals tend to fail quickly \rightarrow double or higher poles

finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues: integral certainly not UT

- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat

finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues: integral certainly not UT

- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
- → output is a set of integrals that pass checks: <u>UT candidates</u>

finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues: integral certainly not UT

- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
- \rightarrow output is a set of integrals that pass checks: <u>UT candidates</u>

maximal initial set of integrals from dimensional analysis: here quadratic numerator integrals (190)

finding UT integrals: algorithm

if non-simple pole appears in taking multi-residues: integral certainly not UT

- take a set of integrals
- find any higher-pole-generating sequence of residues
- derive constraint on set of integrals to evade higher order residue \rightarrow smaller set of integrals
- repeat
- \rightarrow output is a set of integrals that pass checks: <u>UT candidates</u>

maximal initial set of integrals from dimensional analysis: here quadratic numerator integrals (190)

(some topologies have no candidates!)

• now known: form factor & a set of candidate UT integrals & IBP solution \rightarrow in principle enough information

result: full form factor expressed in UT-candidate integrals

- now known: form factor & a set of candidate UT integrals & IBP solution \rightarrow in principle enough information
- refinement: IBP relations without epsilon dependence
- can be obtained directly, but here from IBPsubreduction, [Boels-Kniehl-Yang, 16]
- output is a minimal set of rational IBP relations for given set of integrals
 advantage: fits easily in laptop memory!
 - disadvantage: less powerful

result: full form factor expressed in UT-candidate integrals

- now known: form factor & a set of candidate UT integrals & IBP solution \rightarrow in principle enough information
- refinement: IBP relations without epsilon dependence
- can be obtained directly, but here from IBPsubreduction, [Boels-Kniehl-Yang, 16]
- output is a minimal set of rational IBP relations for given set of integrals
 advantage: fits easily in laptop memory!
 - disadvantage: less powerful

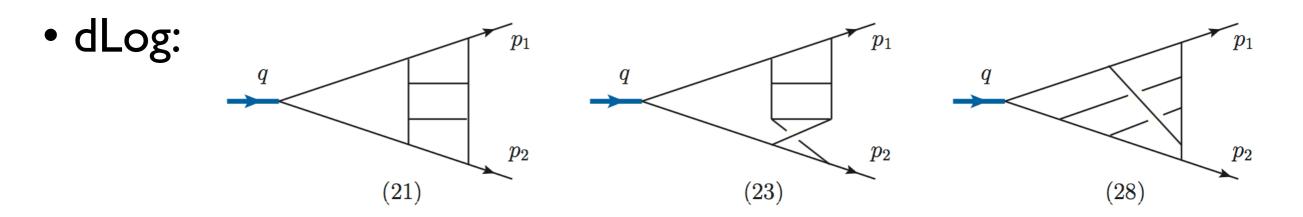
result: full form factor expressed in UT-candidate integrals

form factor is (likely) maximally transcendental

 want to put UT integrals into product form for easy input into FIESTA / MB

 $\sum c_i \text{UTC}_i = (\text{quadratic in } l_i) (\text{quadratic in } l_i)$

- brute force using Mathematica
- aim to minimise number of integrals for form factor
- found choice of 23 / 34 UT integrals non-planar/planar
- all passing >10.000 random residue checks separately



perturbative QFT talks cheatsheet

"preprocessing"

generate integrand

reduce to simpler integrals

explicit integration

"postprocessing"

perturbative QFT talks cheatsheet

"preprocessing"

generate integrand

reduce to simpler integrals

explicit integration

"postprocessing"

- Mellin-Barnes representation
- dimensional recurrences
- sector decomposition
- otherwise

numerical integration, non-planar

numerical integration, non-planar

important observation: UT integrals are simpler to integrate numerically than non-UT ones!

- for some integrals derived low-dimensional valid MB representation by hand & inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov², 07], [Gluza, Kajda, Riemann, 07 / 11], [Blümlein et.al, 14]

• one integral known analytically

- for some integrals derived low-dimensional valid MB representation by hand & inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov², 07], [Gluza, Kajda, Riemann, 07 / 11], [Blümlein et.al, 14]
- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster
 [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09]
 [Smirnov,13,15] + [Hahn, 04]

- for some integrals derived low-dimensional valid MB representation by hand & inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov², 07], [Gluza, Kajda, Riemann, 07 / 11], [Blümlein et.al, 14]
- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster
 [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09]
 [Smirnov,13,15] + [Hahn, 04]
- FIESTA uses sector decomposition (cf Sophia Borowska's talk)

- for some integrals derived low-dimensional valid MB representation by hand & inspection \rightarrow precise results
- automated tools used include: [Czakon, 05], [Smirnov², 07], [Gluza, Kajda, Riemann, 07 / 11], [Blümlein et.al, 14]
- one integral known analytically
- rest: FIESTA + CUBA (mostly vegas) + complete cluster
 [Smirnov-Tentyukov,08][Smirnov^2-Tentyukov,09]
 [Smirnov,13,15] + [Hahn, 04]
- FIESTA uses sector decomposition (cf Sophia Borowska's talk)
- (some cross-checks for simple integrals)

limiting factor:

improvements of accuracy scale as $\sqrt{}$

integration time scales as maxeval

'maxeval

limiting factor:

other users of the local cluster after some time:

- integrals diverge as $\sim rac{1}{\epsilon^8}$
- non-planar cusp is at $\sim \frac{1}{\epsilon^2}$

(transcendentality 6)

seven orders of expansion, first six should cancel

- integrals diverge as $\sim \frac{1}{\epsilon^8}$
- non-planar cusp is at $\sim \frac{1}{\epsilon^2}$

(transcendentality 6)

seven orders of expansion, first six should cancel

numerics for first five orders good enough to apply "PSLQ" to convert to "small rational * zeta value"

(mathematica: "FindIntegerNullVector")

- integrals diverge as $\sim rac{1}{\epsilon^8}$
- non-planar cusp is at $\sim \frac{1}{\epsilon^2}$

(transcendentality 6)

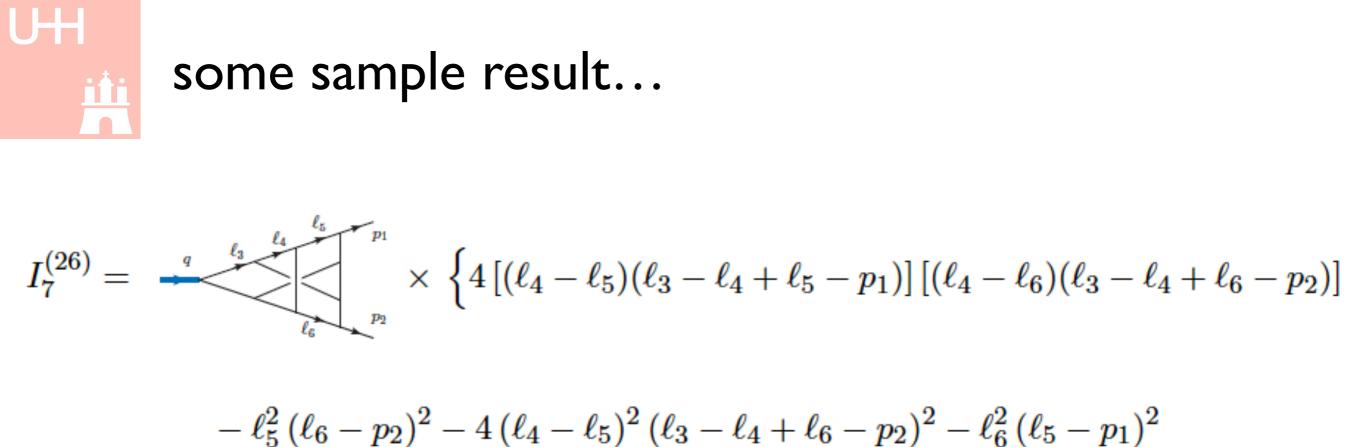
seven orders of expansion, first six should cancel

numerics for first five orders good enough to apply "PSLQ" to convert to "small rational * zeta value"

(mathematica: "FindIntegerNullVector")

 \rightarrow non-planar form factor cancels analytically down to $\sim \frac{1}{c^4}$

... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$



$$-(\ell_3-\ell_4)^2(\ell_5+\ell_6-\ell_4)^2-\ell_4^2(\ell_3-\ell_4+\ell_5+\ell_6-p_1-p_2)^2\Big\}$$

 $= \frac{0.00347222}{\epsilon^8} - \frac{0.0000000013}{\epsilon^7} + \frac{0.0114231(17)}{\epsilon^6} + \frac{1.1631(3)}{\epsilon^5} + \frac{2.90880(35)}{\epsilon^4} - \frac{12.2720(43)}{\epsilon^3} + \frac{29.708(57)}{\epsilon^2} + \frac{3185.60 \pm 2.63}{\epsilon} ,$ $I_{7,\text{PSLQ}}^{(26)} = \frac{1}{288\epsilon^8} + \frac{\zeta_2}{144\epsilon^6} + \frac{209\zeta_3}{216\epsilon^5} + \frac{43\zeta_4}{16\epsilon^4} + \mathcal{O}(\epsilon^{-3}) .$

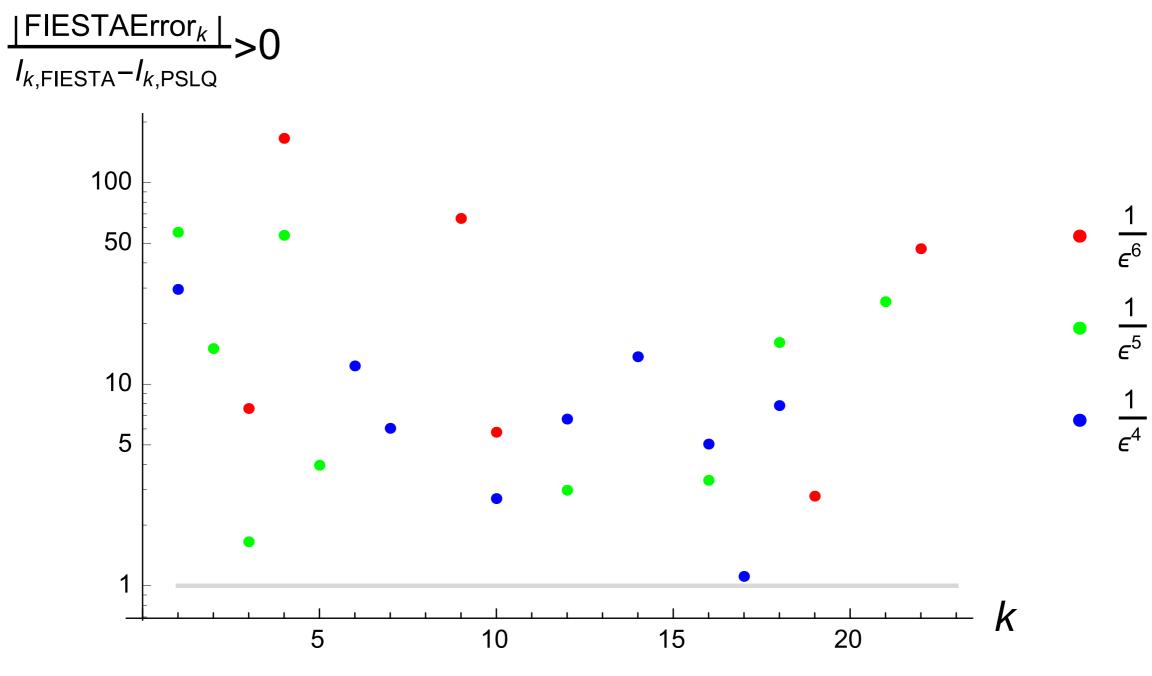
... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

integration error is somewhat naive (cf. [Marquard-Smirnov^2-Steinhauser-Wellmann, 16])

- MB, exact cross-checks
- PSLQ possible
- eps^-3 coefficient central value
- checked stability of central value with increasing points
- error dominated by very few integrals

the rug: example check

take PSLQ result as exact result, and study numerical deviation



uses number theory to check numerical computations!

fun result: a four loop form factor in N=4

- at -2,-1: $!= 0 \rightarrow speculation in literature$
- can be computed at all \rightarrow methods

fun result: a four loop form factor in N=4

... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

- at -2,-1: $!= 0 \rightarrow speculation in literature$
- can be computed at all \rightarrow methods

fun result: a four loop form factor in N=4

... + $(0.0007 \pm 0.0186)\epsilon^{-3} + (1.60 \pm 0.19)\epsilon^{-2} + (-17.98 \pm 3.47)\epsilon^{-1}$

- at -2,-1: $!= 0 \rightarrow speculation in literature$
- can be computed at all \rightarrow methods

- extend UT finding to other integrals (five loops!)
- analytical results for integrals needed...
- QCD applications: nice choice of basis
- input for non-planar Beisert-Eden-Staudacher

THANKS FOR A NICE WORKSHOP!

Your Question Here?