Feasibility and implication of installation of the string test in SM18 with a slope

M. Bajko WP16

Open technical issues under discussions

Integartion

- With SLOPE or not (no request from CRG nor from magnets and Vac)
- Tooling : for Sc link and DFX installation
- Which set up point 1 or 5? Paolo Integration? The most complex one
- String should validate installation and dismounting procedures

Cryogenics:

- Need of a quench buffer, 10 g/s recovery line at warm, operational pressure 20 bars
- Which cooling (point 1 or point 5)
- Do we have spare DFX or we use a standard one?
- V_{He} in a cold mass = 25 l/ m? Herve?

Magnets

- Machine cycles...see with ABP
- Training till Inom? Iultimate?
- Provoked quenches with QHs to check propagation, QH delays
- Tracking test (measurements during ramp?)
- Thermal cycle?

<u>Alignment</u>

• Monitoring also during operation the position of the magnets (installation, cool down, warm up)

<u>Vacuum</u>

- Beam screen? With dedicated instrumentation? Chaufrettes?
- De we have counted in the budget the beam screens? 700 kCHF extra cost?WP12?we would need for Q1 proto (166mm) and D1(6mm dipole) proto, we have for the series but we need to instrument at least one (6 mm quad).

Q1

Q2a

Q2b

Integartion

DF>

- With SLOPE or not (no request from CRG nor from magnets and Vac)
- Tooling : for Sc link and DFX installation

ORX

• Which set up point 1 or 5? Paolo Integration? The most complex one

Q2b

String should validate installation and dismounting procedures

We have to choose between: P1 or P5 Where P1L = P5R, and P1R= P5L

DFX

Using the argument of the SM18 set-up the choice is: P5L or P1L
 Using the argument of complexity is : P5L

CP

Position of the cryo line between the wall and magnets

P5L is the most complicated and coherent set up with the Sm18 installations and the tunnel is the smallest.
We plan to reproduce the space allowed in that place of the tunnel for the interventions

Q3

Integartion

- With SLOPE or not (no request from CRG nor from magnets and Vac)
- Tooling : for Sc link and DFX installation
- Which set up point 1 or 5? Paolo Integration? The most complex one
- String should validate installation and dismounting procedures

There is no clear show stopper in SM18 to simulate the SLOPE but we did not get till today REQUEST for doing it.

P5L is the most complicated and coherent set up with the Sm18 installations and the tunnel is the smallest. We plan to reproduce the space allowed in that place of the tunnel for the interventions

TODAY we do not consider to implement a SLOP for the IT STRING.

P5

Integartion

- With SLOPE or not (no request from CRG nor from magnets and Vac)
- Tooling : for Sc link and DFX installation

QRX

D1

DFX

Q2a

3rd Q 2019

- Which set up point 1 or 5? Paolo Integration? The most complex one
- String should validate installation and dismounting procedures

03

СР

Q1

Q2b

Q2a

D1

2021

Magnets ordered by arrival option 1

- Q2a prototype 1st-3rd Q 2019
- Q2b series 2nd Q 2020
- Q1 prototype 2nd Q 2020
- CP series 2nd Q 2020
- D1 prototype 1st Q 2021
- Q3 series 2nd Q 2021

HL LHC IT STRING

In principle more difficult the installation and have more interest for the WP15 and for Vac as allows instrumenting the Beam screen of Q1 (the tick version)

2020

3rd Q 2021

Integartion

- With SLOPE or not (no request from CRG nor from magnets and Vac)
- Tooling : for Sc link and DFX installation •
- Which set up point 1 or 5? Paolo Integration? The most complex one •
- String should validate installation and dismounting procedures

Magnets ordered by arrival option 2

- Q2a prototype 1st-3rd Q 2019
- Q2b series 2nd Q 2020
- Q3 prototype 2nd Q 2020
- CP series 2nd Q 2020 •
- D1 prototype 1st Q 2021

Cryogenics:

- Need of a quench buffer, 10 g/s recovery line at warm, operational pressure 20 bars
- Which cooling (point 1 or point 5)
- Do we have spare DFX or we use a standard one?
- V_{He} in a cold mass = 25 l/ m? Herve?

P5L is the most complicated and coherent set up with the Sm18 installations and the tunnel is the smallest. We plan to reproduce the space allowed in that place of the tunnel for the interventions

Antonio Perin is working on the cryogenics. Together with MSC-TF and P. Gayet we are evaluating the pumping capacity for SM18. *The last conclusion made by L. Serio (with SM18 UPG) was that no need of additional pumping.*

Magnets

Magnets

- Machine cycles...see with ABP
- Training till Inom? Iultimate?
- Provoked quenches with QHs to check propagation, QH delays
- Tracking test (measurements during ramp?)
- Thermal cycle?

Hardware Commissioning Special Tests Hardware Commissioning Special Tests

nom is what we have considered thill now. In the phase of HWC of the STRING 120 quenches were estimated to be done till I nom. An other 50 quenches are planned to do with the goal of "special test" not done in the shadow of the HWC.

		1				1					1			
	energy @		nr of quen	ches aftre	1st cool do	own	nr of quenches aftre Thermal Cycle							
nomina		LOW	MEDIUM	HIGH	NOMINAL	NOMINAL	LOW	MEDIUM	HIGH	NOMINAL	NOMINAL			
magnet name	[MJ]	10%Inom	40%Inom	75%Inom	Inom	STUDIES Inom	10%Inom	40%Inom	75%Inom	Inom	STUDIES Inom			
2 xMQXFA (Q1)	9.82	10	8	8	4	8	10	2	2	2	4			
MQXFB (Q2a)	8.37	10	4	4	2	4	10	2	2	1	2			
MCBXFb(Q2a)	0.1	5	5	5	2	5	5	1	1	1	2			
MQXFB (Q2b)	8.37	10	4	4	2	4	10	2	2	1	2			
MCBXFb(Q2b)	0.12	5	5	5	2	5	5	1	1	1	2			
2 xMQXFA (Q3)	9.82	10	8	8	4	8	10	2	2	2	4			
D1	2.15	5	3	3	1	3	5	1	1	1	1			
MCBXFA	0.22	5	5	5	2	5	5	1	1	1	2			
НО	0.1	9	9	9	0	9	9	4	4	0	4			
DSH		0	0	0	1	0	0	0	0	0	0			
bus bar		0	0	0	0	0	0	0	0	0	0			
DHL														
total in the string	39.07	69	51	51	20	51	69	16	16	10	23			
total nr of quenches				173			65							

The Current level

has a non-negligible consequence on the energy deposition into the cold mass + extraction and so on the pumping capacity affecting finally also the planning

1 TC is planned

Vacuum

<u>Vacuum</u>

- Beam screen? With dedicated instrumentation? Chaufrettes?
- De we have counted in the budget the beam screens? 700 kCHF extra cost?WP12?we would need for Q1 proto (166mm) and D1(6mm dipole) proto, we have for the series but we need to instrument at least one (6 mm quad).

Beam Screens will be installed

Following the magnets availability and the needs in testing all type of beam screens we have: 3 instrumented: Q1 proto, D1 proto and Q2a or Q2b proto

Planning (Draft version)

	Font	Es .		Schedule		Schedule					Tasks		Insert	Insert		Properties			Editing
	Oct '20	Dec	'20	Feb '21	Apr '21	Jun "	21	Aug '21	Oct '2	1	Dec '21	Feb '22	Apr '22	Jun '22		Aug '22		Oct '22	Dec '2
rt [INFRASTRUCTURE		MAGNE	T INSTALLATIO	N	COOLI	NG	HWC	I			STUDIES	тс			HWC aftr	e TC	S	WARMING
:0	Tue 01/09/20 - Mon 2	28/12/20	Tue 29/1	.2/20 - Mon 17/0	5/21	Fri 21/	05/21 -	Thu 22/07/	/21 - Mon 31/01	./22		Tue 01/02/	/2	energy @		nr of quen	ches aftre	Thermal (Cycle
Ľ										-				nominal	LOW	MEDIUM	HIGH	NOMINAL	NOMINAL
													magnet name	[MJ]	10%Inom 4	40%Inom	75%Inom	Inom	STUDIES Inom
				Qtr 2, 2020	Qtr 3, 202	20	Qtr 4, 2020) Qti	r 1, 2021	Qtr 2, 202	1 Qtr 3,	, 2021 Q	tr 2 xMQXFA (Q1)	9.82	10	2	2	2	4
Ta	ask Name		Duration 👻	Jun Jul	Aug Sep O	ct Nov	Dec Jan	n Feb Ma	ar Apr May	Jun Ju	Aug Sep	Oct Nov D	e MQXFB (Q2a)	8.37	10	2	2	1	V 2
\triangleright	INFRASTRUCTURE	F \$	25 dave	•	TNERA	стрист	IDE						MCBXFb(Q2a)	0.1	5	1	1	1	2
P	INTRASTRUCTORE	- '	JJ uays			JIKUCI							MQXFB (Q2b)	8.37	10	2	2	1	2
					I								MCBXFb(Q2b)	0.12	5	1	1	1	2
\triangleright	MAGNET INSTALL		aveb 001	•			MAG						2 xMQXFA (Q3)	9.82	10	2	2	2	4
			Loo aays										D1	2.15	5	1	1	1	1
									1				MCBXFA	0.22	5	1	1	1	2
\triangleright	COOLING	4	14 days										но	0.1	9	4	4	0	4
	coolino		i i uu jo						-				DSH		0	0	0	0	0
									1		I		bus bar		0	0	0	0	0
\triangleright	HWC	1	138 days	•								HWC	DHL						
1			,.										total in the string	39.07	69	16	16	10	23
						1					۰		total nr of quenches				65		
\triangleright	STUDIES	5	50 days	·		energy @		nr of quench	hes aftre 1st coo	de	own		STUDI	S	↑				↑
						nominal	LOW	MEDIUM	HIGH NOMIN	AL	NOMINAL								
				n	nagnet name	[MJ]	10%Inom	40%Inom 7	5%Inom Inom		STUDIES Ino	<u>m</u>	I	1					
⊳	тс	7	76 days	· 2 xM	QXFA (Q1)	9.82	. 10	8	8	4		8			тс				
				MQXF	B (Q2a)	8.37	10	4	4	2		4							
				MCBX	Fb(Q2a)	0.1	. 5	5	5	2		5				· · ·			
\triangleright	HWC aftre TC	6	51 days	1 MQXF	B (Q2b)	8.37	10	4	4	2		4				HV	/C aftre	TC	
			-	MCBX	Fb(Q2b)	0.12	5	5	5	2		5							
				2 xM	QXFA (Q3)	9.82	. 10	8	8	4	1	8						· '	
\triangleright	STUDIES aftre TC	1	LO days	. D1		2.15	5	3	3	1		3					STU	JDIES af	tre TC
				MCBX	FA	0.22	5	5	5	2		5						Ċ,	
			•	но		0.1	. 9	9	9	0		9							
\triangleright	WARMING	3	32 days	DSH			0	0	0	1		0						W/	ARMING
				bus ba	ar		0	0	0	0		0						Г	i
				DHL															Ņ
				total i	n the string	39.07	69	51	51	20	!	51							
				total r	nr of quenches				173										

SUMMARY

Today we do **NOT** consider to implement a **SLOP** for the **IT STRING**.

P5L

is the most complicated and coherent set up with the Sm18 installations

We plan to make **1 TC** and approximately 200 quenches up to a **maximum of I** nominal